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1 Relativity & Electromagnetism

Observers who move relative to one another do not always agree about the values of quantities,
such as speed, mass, energy etc, associated with the same physical system. The special theory
of relativity tells us how we may predict the values measured by any observer once we know
the values assigned by one particular observer, for example ourselves.

Special relativity teaches us to think of experience as being made up of ‘events’, each
with a definite location in the four-dimensional continuum of spacetime. Any given observer
assigns to each event a unique 4-tuple of numbers (t, x, y, z). Of course he can do this in many,
many ways. But special relativity claims that there are certain specially favoured systems for
assigning coordinates to events, the so-called inertial coordinate systems. O chooses one inertial
system and another observer, O′, sets up a different one. But according to special relativity the
coordinates (t′, x′, y′, z′) O′ assigns to any event can be related to O’s coordinates (t, x, y, z) of
the same event by 


ct′

x′

y′

z′


 =



ct0
x0
y0
z0


+ L ·



ct
x
y
z


 , (1.1)

where c is the speed of light and (t0, x0, y0, z0) is a set of numbers characteristic of the two
observers, as is the 4× 4 matrix L.

Clearly, (t0, x0, y0, z0) are the coordinates O′ assigns to the event that marks the origin of
O’s coordinates. For simplicity we shall assume that (t0, x0, y0, z0) = 0. In general L can be
represented as the product of matrices generating a rotation, a boost parallel to a coordinate
direction and a second rotation: L = R′ ·L0 ·R, where R rotates the coordinate axes so as to
align the boost direction with a coordinate direction, L0 effects the boost along the given axis
and R′ rotates the coordinates to any desired final orientation. If R is chosen such that the
x-axis becomes the boost direction, L0 has the form

L0 =




γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1


 where

β ≡ v/c

γ ≡ 1/
√

1− β2
. (1.2)

For simplicity we confine ourselves to observers whose spatial coordinate systems are
aligned, and whose relative motion lies along their (mutually parallel) x-axes. Then in (1.1)
L = L0 and we get the familiar equations of a Lorentz transformation:

t′ = γt− γvx/c2

x′ = γx− γvt

y′ = y

z′ = z

(1.3)

4-vectors Lorentz transformations mix up space and time, so it is useful to define new
coordinates which all have dimensions of length. We write x0 ≡ ct, x1 ≡ x, x2 ≡ y, x3 ≡ z, and
refer to a general component of the 4-vector (x0, x1, x2, x3) as xµ. (The reason for labelling
the components with superscripts rather than subscripts will emerge shortly.) Then we write
a Lorentz transformation as

xµ = Λµ
νx

ν , (1.4a)

where

Λ ≡




γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1


 . (1.4b)
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In (1.4a) the Einstein summation convention is being used in that the summation sign∑1
ν=0 has been omitted for brevity. You know it’s really there because ν appears twice on the

right-hand side of the equation, once up and once down.

Why do we write the row index of Λ as a superscript and the column index as a subscript?

A key property of a Lorentz transformation is that −(ct′)2 + x′2 + y′2 + z′2 = −(ct)2 +
x2+y2+z2. This is analogous to the fact that if two vectors a and a′ are related by a rotation
matrix, then a′2x + a′2y + a′2z = a2x + a2y + a2z. So a Lorentz transformation is a sort of modified,
four-dimensional rotation. When we rotate a vector a we like to say that the length |a| is
invariant (i.e., stays constant). Analogously we define the length of the 4-vector x to be

|x| ≡ −(x0)2 + (x1)2 + (x2)2 + (x3)2. (1.5)

Notes:

(i) We don’t extract a square root because we have no guarantee that |x| ≥ 0.

(ii) 4-vectors that have negative lengths are called time-like, while those with positive lengths
are space-like. Vectors with zero length are said to be null.

(iii) Every book on relativity uses a different convention. The sign of the lengths of space-like
vectors is called the “signature of the metric”.

The lengths of 4-vectors are sufficiently important for it to be useful to have a way of
writing them that does not involve writing out all the components explicitly. To achieve this
we introduce this matrix, called the Minkowski metric:

η ≡




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (1.6)

Then we have
|x| = x · η · x, (1.7a)

or in component form
|x| = xµηµνx

ν . (1.7b)

The Einstein convention is here being used to drop two summation signs. We write both of η’s
indices as subscripts so that each sum is over one up and one down index.

Covariant and contravariant vectors We write the result of matrix multiplication of
x by η as

xµ ≡ ηµνx
ν .

We have x0 = −x0 = −ct, x1 = x1, x2 = x2 and x3 = x3. Thus the length of x is

xµxµ = −c2t2 + x2 + y2 + z2.

Notice that here as everywhere else, we are summing over one up and one down index. In order
to stick rigidly to this rule, we define

ηµν ≡ ηµν ≡




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (1.8)

Note:

We have ηµγηγν = δµν , or in matrix form η ·η = I, where I and δµν are two ways of writing
the 4 × 4 identity matrix. Also ηµν = ηµγδνγ , so in a sense η is merely the up-up and
down-down forms of the identity matrix.
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From xµ we can recover xµ;
xµ = ηµνxν . (1.9)

xµ is a 4-vector, but of a slightly different type than xµ, because under a Lorentz trans-
formation we have

x′µ = ηµνx
′ν = ηµνΛ

ν
κx

κ = ηµνΛ
ν
κη

κλxλ

=




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






x0
x1
x2
x3




=




γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1






x0
x1
x2
x3


 ≡ Λµ

νxν ,

(1.10)

where we have defined a new matrix

Λµ
λ ≡ ηµνΛ

ν
κη

κλ. (1.11)

Notice that the transpose of Λµ
ν is the inverse of Λµ

ν :

Λµ
κΛµ

ν = δνκ, (1.12)

where we have again written the 4× 4 identity matrix as δνκ.

Exercise (1):
Obtain (1.12) from the requirement that for any two vectors x, y, we have x′µy

′µ = xµy
µ.

Vectors with their indices below are called covariant (xµ). Vectors with indices above are
called contravariant (xµ). I shall call them down and up vectors. The operation of setting
two indices equal and summing from 0 to 3 is called contraction. In a contraction one index
must be up and one down. Quantities like

∑
µ xµxµ have nothing to do with physics. An

important motivation for writing xµ rather than x is to distinguish the up from the down
form of x. Often an expression is equally valid for up or down vectors provided the basic
rules are obeyed, and then it is neater to use conventional vector notation than to stick in
indices. For example, if a and b are vectors and M is a matrix, we can interpret a = M · b
as aµ = Mµνbν , as aµ = Mµνb

ν , or in yet other ways. But if you ever express a 4-vector
in component form, you must come clean and say whether you’re giving the up or the down
vector, as in xµ = (ct, x, y, z).

According to special relativity, all quantities of physical interest can be grouped into n-
tuples.

1.1 1-tuples (4-scalars)

On some things all observers agree, for example the charge and total spin of the an electron.
These quantities are called 4-scalars or relativistic invariants. The length of a 4-vector is a
4-scalar.

1.2 4-tuples (4-vectors)

If O measures the wave-vector and frequency of a photon to be k and ω, then an observer O′

who moves at speed v along O’s x-axis measures wave-vector k′ and frequency ω′ given by



ω′/c
k′x
k′y
k′z


 =




γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1






ω/c
kx
ky
kz


 . (1.13a))
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The matrix form of this equation is

(
ω′/c
k′

)
= Λ ·

(
ω/c
k

)
where Λ ≡




γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1


 . (1.13b))

Notes:

(i) The Lorentz transformation matrix Λ is dimensionless, so ω has to be divided by c to give
the same dimensions as k before being put into the last place of a 4-vector with k.

(ii) Vectors written in italic boldface (k) are 3-vectors, while those written in Roman boldface
(k) are 4-vectors.

If we define k0 ≡ ω/c, then

k′ = Λ · k i.e., k′µ = Λµ
νk

ν . (1.14)

Exercise (2):
Determine whether the photon is blue or red shifted between its emission by O and its
detection by O′. Relate this to the question of whether O′ is approaching or receding from
O.

The length of a photon’s 4-vector is the scalar

|k| ≡ −(k0)2 + (k1)2 + (k2)2 + (k3)2 = −ω
2

c2
+ |k|2 = 0.

One can prove that this really is a scalar by brute force:

|k′| = −(k′0)2 + (k′1)2 + (k′2)2 + (k′3)2

= −
(
γ
ω

c
− βγk1

)2
+
(
− βγ

ω

c
+ γk1

)2
+ (k2)2 + (k3)2

= −γ2
(
1− β2

)ω2

c2
+ γ2

(
1− β2

)
(k1)2 + (k2)2 + (k3)2

= −(k0)2 + (k1)2 + (k2)2 + (k3)2.

Another familiar 4-tuple: if observer O measures energy E and momentum p for some
particle, then O′ will measure E′ and p′ given by

(
E′/c
p′

)
= Λ ·

(
E/c
p

)
, (1.15)

or setting p0 ≡ E/c, we have p′µ = Λµ
νp

ν .

The length of the momentum-energy 4-vector of a particle of rest mass m0 6= 0 is just
−c2 times the square of its rest mass m0. We show this by arguing that it doesn’t matter
in whose frame we evaluate a scalar. We choose the particle’s rest frame. Then p = 0 and
E = cp0 = m0c

2, so

(p0)2 + (p1)2 + (p2)2 + (p3)2 = −m2
0c

2.
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1.3 6-tuples (antisymmetric 2nd rank tensors)

If the electric and magnetic fields measured by O are arranged into the antisymmetric matrix
F,

Fµν ≡




0 Ex/c Ey/c Ez/c
−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0


 (SI units), (1.16)

then O′ will measure E′ and B′ as




0 E′
x/c E′

y/c E′
z/c

−E′
x/c 0 B′

z −B′
y

−E′
y/c −B′

z 0 B′
x

−E′
z/c B′

y −B′
x 0


 ≡ F ′µν = Λµ

κΛ
ν
λF

κλ. (1.17)

Note that Fµν transforms as if it were the product pµpν of two down-vectors (which it isn’t).
Objects that transform in this way are called second-rank tensors.

F is called the Maxwell field tensor.

Exercise (3):
Transform Fκλ with the matrix Λµ

ν defined by (1.13b) to show that an observer who moves
at speed v down the x-axis of an observer who sees fields E = (Ex, Ey, 0) and B = 0,
perceives fields E′ = (Ex, γEy , 0) andB′ = (0, 0, γvEy/c). [Hint: since Λ is symmetric, we
can write F′ = Λ ·F ·Λ.] Hence deduce the general rules E′

‖ = E‖, E
′
⊥ = γ(E⊥ +v×B),

B′
‖ = B‖, B⊥ = γ(B⊥ − v ×E/c2). Verify that (B2 − E2/c2) = (B′2 − E′2/c2).

Some 6-tuples correspond to elements of area. This correspondence works as follows.
With any two displacements, say u and v, we associate the parallelogram bounded by u
and v. Information about the size and orientation of this parallelogram is conveyed by the
antisymmetric tensor Sαβ ≡ uαvβ − uβvα; in particular, if u = v, then S = 0. S has six
degrees of freedom rather than the eight numbers involved in u and v because we can add to
u any multiple of v without affecting S, and vice versa for v and u.

Exercise (4):
Prove the last statement and give a geometrical interpretation of this result.

In three-space the size and orientation of a parallelogram may be specified by giving
the magnitude and direction of the normal. Hence in three-space full information about an
antisymmetric 2nd rank tensor can be packed into the three components of the 3-vector which
we call the cross-product of the parallelogram’s sides. In four-dimensional spacetime each
parallelogram has a magnitude and two mutually perpendicular normals, requiring six numbers
for its full specification. Consequently there is no direct analogue of the cross product and we
must represent areas directly with antisymmetric tensors.

Exercise (5):
Relate the above statements to the number of independent components of an antisymmetric
n× n matrix for n = 2, 3, 4.

A physically interesting 6-tuple that describes an area is the tensor (xµpν − xνpµ) formed
from the space-time coordinate vector xµ = (ct, x, y, z) and the 4-momentum of a particle. If
the angular momentum about the origin is L, we have

Hµν ≡ (xµpν − xνpµ) =




0
. . .

. . .

c(xE/c2 − tpx) 0
. . .

. . .

c(yE/c2 − tpy) −Lz 0
. . .

c(zE/c2 − tpz) Ly −Lx 0



, (1.18)
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where the diagonal dots stand for minus the quantities in the lower left triangle of the matrix.
The numbers in the first column of this matrix give mc times the particle’s initial position
vector.

With every 6-tuple we get two free scalars. If the 6-tuple is of the form (uαvβ − uβvα),
then one of these is twice the squared magnitude of the corresponding parallelogram:

Sµν(ηµκηνλS
κλ) ≡ SµνSµν = −TrS · S

= (uµvν − uνvµ)(uµvν − uνvµ) = 2[|u||v| − (u · v)2].

Evaluation in the particle’s rest frame shows that the scalar 1
2HµνH

µν = [|x||p| − (x · p)2] =
−(m0cr0)

2, where r0 is the distance (in the rest frame) between the particle and the origin at
t = 0.

It is interesting to evaluate this same scalar for the Maxwell field tensor. Straightforward
matrix multiplication shows that the down-down shadow of Fµν is1

Fµν ≡




0 −Ex/c −Ey/c −Ez/c
Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0


 (SI units), (1.19)

Multiplying each element of Fµν by the corresponding element of Fµν we find

m ≡ 1
2FµνF

µν = − 1
2 TrF · F

= 1
2 (each element of Fµν)× (corresponding element of Fµν)

= (B2 − E2/c2).

(1.20)

To extract another scalar from a 6-tuple we need to introduce the Levi-Civita symbol:

ǫαβγδ =

{
+1 if αβγδ is an even permutation of 0123
−1 if αβγδ is an odd permutation of 0123
0 otherwise.

(1.21)

Note:

Whereas when n is odd, the cyclic interchange i1 → i2 → . . .→ in−1 → in → i1 is an even
permutation of the ik, when n is even, this permutation is odd. (To prove this exchange
i1 and in and then make n−2 exchanges to work i1 back to the second place.) So whereas
for 3-dimensional tensors ǫjki = ǫijk, we now have ǫβγδα = −ǫαβγδ .

ǫαβγδ allows us to form the dual F of F:

F
αβ ≡ 1

2ǫ
αβγδFγδ

=




0 Bx By Bz

−Bx 0 −Ez/c Ey/c
−By Ez/c 0 −Ex/c
−Bz −Ey/c Ex/c 0


 .

(1.22)

F can be obtained from F by the transformation E → B, B → −E. The other scalar is the
trace of the product of F with its dual:

f ≡ TrF · F
= −(each element of Fαβ)× (corresponding element of F

αβ
)

=
4

c
E ·B.

(1.23)

1 It is worth remembering that in special relativity the lowering operation only changes the sign of the mixed
space-time components.
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1.4 10-tuples (symmetric 2nd rank tensors)

Imagine that we move some charges around. Then the rate at which we do work on the e.m.
field is

Ė = −
∫

E · j d3x

= − 1

µ0

∫
E ·

(
∇×B − 1

c2
∂E

∂t

)
d3x

(1.24)

But ∇ · (E ×B) = B · (∇×E)−E · (∇×B), so (1.24) can be rewritten

Ė =
1

µ0

∫
∇ · (E ×B) d3x+

1

µ0

∫ (
−B · (∇×E) +

1

c2
E · ∂E

∂t

)
d3x

=
1

µ0

∮
(E ×B) · d2S +

1

2µ0

∫
∂

∂t

(
B2 + E2/c2

)
d3x.

(1.25)

If energy is to be conserved, the energy we deploy moving the charges has to go somewhere.
According to (1.25) energy will be conserved if we interpret the Poynting vector

N ≡ 1

µ0
E ×B (1.26)

as the flux of e.m. energy, and
1

2µ0

(
B2 + E2/c2

)
(1.27)

as the density of e.m. energy.

How do the Poynting vector and the e.m. energy-density fit into the scheme of n-tuples?
From F we can construct the following important tensor:

Tµν =
1

µ0
[− 1

4 (FδγF
δγ)ηµν − Fµ

γF
γν ];

T =
1

µ0

[
1
4
Tr(F · F)η −F · F

]
,

(1.28)

where F is, as usual, the Maxwell field tensor (1.16). It’s easy to see that TrT = 0. A little
slog shows that in terms of E and B the tensor T is

Tµν =




1
2µ0

(B2 + E2/c2) Nx/c Ny/c Nz/c

Nx/c
Ny/c Pij

Nz/c


 , (1.29)

where

Pij ≡
1

µ0

[
1
2δij

(
B2 +

E2

c2

)
−
(
BiBj +

EiEj

c2

)]
(i, j = 1, 2, 3). (1.30)

Thus the energy density in the e.m. field is the 00 component of T and the Poynting vector
occupies the mixed space-time components of T. It turns out that the 3×3 matrix Pij describes
the flux of the three kinds of momentum: Pix = flux of x-momentum etc.

Exercise (6):
Show that a uniform magnetic field parallel to the z-axis is associated with tension (neg-
ative pressure) along the axis, and pressure in the perpendicular directions.

As an example of T consider a plane e.m. wave running along î polarized parallel to ĵ.
Then

E = (0, E, 0) cos(ωt− kx)

B = (0, 0, B) cos(ωt− kx).
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E and B are related by −∂B/∂t = ∇×E ⇒ B = kE/ω = E/c. Hence

N = (E2/µ0c, 0, 0) cos
2(ωt− kx).

The first term in our expression (1.30) is non-zero only on the diagonal. The second term is
non-zero only in the yy and zz slots and there cancels the first term. So P is

Pij =




1 0 0
0 0 0
0 0 0


 E2

µ0c2
cos2(ωt− kx),

and finally

Tµν =




1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0


 E2

µ0c2
cos2(ωt− kx). (1.31)

The stress tensor P has only an entry in the xx slot because our wave is engaged in the
business of carrying x-type momentum in the x-direction; the wave would push back a mirror
placed in a plane x = constant. Clearly the Poynting vector is also directed along the x axis,
which accounts for the off-diagonal units inT. In proper relativistic units the wave employs unit
energy density (“capital employed”) to carry unit fluxes of energy and momentum (“turnover”).
Notice that the wave’s phase is the scalar −k · x.

1.5 Derivatives of tensors

Derivatives with respect to any system of coordinates can be expressed in terms of derivatives
w.r.t. any other system by use of the chain rule:

∂

∂x′µ
=

∂xν

∂x′µ
∂

∂xν
. (1.32)

If the primed and unprimed systems are linked by a Lorentz transformation,

x′
ν
= Λν

µx
µ, (1.33)

we have on multiplying by Λν
κ and summing over ν,

Λν
κx′

ν
= Λν

κΛν
µx

µ = xκ,

where the last step follows by (1.12). Differentiating we get

∂xκ

∂x′ν
= Λν

κ. (1.34)

Thus
∂

∂x′µ
= Λµ

ν ∂

∂xν
, (1.35)

and we see that

✷µ ≡ ∂/∂xµ =
(1
c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
(1.36)

transforms like a down vector.
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Notes:

(i)
∂

∂xµ
operates on scalars to produce vectors: Gµ ≡ ∂φ

∂xµ
≡ ✷µφ ≡ φ,µ

∂

∂xµ
operates on vectors to produce 2nd rank tensors:

Gµν ≡ ∂Aν

∂xµ
≡ ✷µAν ≡ Aν ,µ

∂

∂xµ
operates on tensors to produce higher-rank tensors:

Gµλν ≡ ∂Bλν

∂xµ
≡ ✷µBλν ≡ Bλν ,µ

The operand’s indices can be either up or down: Gµ
ν = ✷µA

ν .

(ii) If we contract the tensor produced by operating on a vector, we get a scalar, the 4-
divergence ψ = ✷µA

µ.

(iii) We can reduce the number of indices on a higher-rank tensor by contraction: Aν = ✷µG
µν .

(iv) The 4-analogue of taking the curl of a vector is to antisymmetrize the tensor formed by
operating on a vector: Fµν = (✷µAν −✷νAµ). If Aν = ✷νφ, then Fµν = 0 because partial
derivatives commute.

Example:

In e.m. the usual vector potential A and the electrostatic potential φ form the four com-
ponents of an up vector

Aµ = (φ/c,Ax, Ay, Az) [⇒ Aµ = (−φ/c,Ax, Ay, Az)]. (1.37)

Our old friend the Maxwell field tensor F is then

Fµν = ✷µAν −✷νAµ. (1.38)

Thus F12 =
∂Ay

∂x
− ∂Ax

∂y
= Bz and F01 =

Ȧx

c
+

1

c

∂φ

∂x
= −Ex/c.

Derivatives with respect to proper time The history of a particle defines a curve in
space-time. Let λ be a parameter which labels points on the curve in a continuous way. Then
the coordinates xµ of points on the curve are continuous functions xµ(λ). For δλ≪ 1 the small
vector

δx ≡ dx

dλ
δλ

almost joins two points on the curve. Hence it is time-like and |δx| < 0. For any two points A
and B on the curve, we define

τ ≡ 1

c

∫ B

A

√
−
∣∣∣∣
dx

dλ

∣∣∣∣dλ (1.39)

to be the proper time difference between A and B along the curve. If the curve is a straight
line, we may transform to the coordinate system in which xµ = (ct, 0, 0, 0) at all points on the
curve, and then

τ =
1

c

∫ B

A

√
−dct

dλ

d(−ct)
dλ

dλ = [tB − tA]. (1.40)

Hence the name. We regard the coordinates xµ of events along the trajectory as functions
xµ(τ) of the proper time. Differentiating w.r.t. τ and multiplying through by the rest mass m0

we obtain a 4-vector, the momentum

p ≡ m0
dx

dτ
. (1.41)
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From the zeroth component of the up version of this equation we have dt = γdτ ; the hearts of
passengers on a fast train (they mark off units of τ) appear to beat slowly to a medic on the
station platform (whose watch keeps t).

1.6 Laws of e.m. and Mechanics in Tensor Form

The relativistic generalization of Newton’s second law is

m0
d2x

dτ2
=

d

dτ

(
m0

dx

dτ

)
=

dp

dτ
= f , (1.42)

where f is the 4-force. The last three components of fµ are just the Newtonian force compo-
nents fi. With µ = 0 equation (1.42) states that the zeroth component of fµ is to 1/c times the
rate of change of the particle’s energy cp0; hence physically f0 is 1/c times the rate of working
of the force w. In summary

fµ = (w/c, fx, fy, fz). (1.43)

The divergence of (1.16) consists of these four equations:

Fµν ,ν =




1

c

∂Ex

∂x
+

1

c

∂Ey

∂y
+

1

c

∂Ez

∂z
∂Bz/∂y − ∂By/∂z − 1

c2
∂Ex/∂t

−∂Bz/∂x+ ∂Bx/∂z − 1
c2
∂Ey/∂t

∂By/∂x− ∂Bx/∂y − 1
c2
∂Ez/∂t


 =

( 1
c∇ ·E

∇×B − 1

c2
∂E

∂t

)
. (1.44)

The zeroth component is by Poisson’s equation equal to ρ/(cǫ0) = cµ0ρ, where ρ is the charge
density. By Ampere’s law, the last three of these equations are equal to µ0j, where j is the
current density. Hence if we form a 4-vector

jµ = (cρ, jx, jy , jz), (1.45)

we may write four of Maxwell’s equations as

Fµν ,ν = µ0j
µ. (1.46)

It is straightforward to verify that Maxwell’s other four equations can be written

Fµν ,λ +Fλµ,ν +Fνλ,µ = 0 (µ 6= ν 6= λ). (1.47)

Exercises (7):

(i) Show that when λ, µ and ν equal 1, 2 and 3 respectively, (1.47) becomes ∇ ·B = 0.

(ii) Show that with equation (1.22) equation (47) may also be written F
µν
,ν = 0.

Charge conservation is expressed as

µ0✷ · j = µ0j
µ,µ = Fµν ,νµ = 0, (1.48)

where the last step follows by the antisymmetry of F.

The natural definition of the 4-current associated with a particle of charge q is

J = q
dx

dτ
. (1.49)

Since the force exerted on a charged particle by an e.m. field has to be linear in q, the fields
represented by F, and the particle’s velocity vector, a suitable 4-vector to try as the force is

f = F · J. (1.50)
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Tentatively inserting this into (1.42) and multiplying through by dτ/dt = 1/γ to obtain the
acceleration as measured in the laboratory frame, we get

dp

dt
= qF · dx

dt
. (1.51)

It is straightforward to check that the last three components of the up form of this vector are

d

dt

(
m0γ

dx

dt

)
= q(v ×B +E),

while the zeroth component is

d(m0cγ)

dt
=
q

c
E · v,

or, in words, “the rate of change of the particle’s energy mc2 is equal to the rate of working of
the Lorentz force.”

Gauge invariance At a classical (i.e. non-quantum level) only E and B are physically
meaningful—A is just an abstraction from which E and B can be calculated via Fµν =
(✷µAν −✷νAµ). So nothing physical changes if we replace A by

A′ ≡ A+✷Λ, (1.52)

where Λ(x) is any scalar-valued function of space-time coordinates. The change (1.52) in A is
called a gauge transformation.

Gauge transformations can be used to ensure that A satisfies an additional equation. In
particular, given A we can choose Λ s.t. A′ satisfies one of these gauge conditions:

(i) Lorentz gauge:

✷ ·A′ = 0 ⇒ ✷
2Λ = ✷ ·A (1.53)

The Lorentz condition (1.53) does not uniquely specify A′ since many non-trivial functions
satisfy ✷

2φ = 0 and so given one Λ satisfying the 2nd of eqs (1.53), we can construct many
others Λ′ = Λ+ φ.

(ii) Coulomb or radiation or transverse gauge

∇ ·A′ = 0 ⇒ ∇2Λ = ∇ ·A (1.54)

In this gauge the 0th eqn of the set ✷νFµν = µ0jµ reads

ρ

cǫ0
= −µ0j0 = −✷

ν(✷0Aν −✷νA0)

= −✷0✷
νAν +✷

ν
✷νA0

= −✷0✷
0A0 +✷

ν
✷νA0

= ✷
i
✷iA0

= −∇2φ/c

(1.55)

i.e., in this gauge the electrostatic potential satisfies Poisson’s eqn, which explains the
gauge’s name.
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1.7 Summary

The special theory of relativity requires that any physical quantity must fit into an n-tuple of
numbers, where n = 1, 4, 6, 10, . . .. Physical laws must be expressed as equations connecting
the n-tuples associated with different physical quantities. These equations must be constructed
in accordance with the rules of tensor calculus, which permit only:

(i) the multiplication of n-tuples to form either higher-rank n-tuples (as inHµν = xµpν−xνpµ)
or lower-rank n-tuples (as in fµ = Fµ

νJν), or

(ii) the addition of n-tuples of the same rank.

In particular, both sides of every acceptable equation always form valid n-tuples of the same
kind.

Rest-mass, electric charge and total spin are scalars (1-tuples). The most important 4-
vectors (4-tuples) include any particle’s energy-momentum p, e.m. current J or acceleration
dp/dτ , and the potential A of the e.m. field. Important 6-tuples include any particle’s angular
momentum H and the Maxwell field tensor F. An important 10-tuple is the density T of the
energy-momentum due to the e.m. field.

In 4-vector notation the key equation of mechanics and e.m. are

v =
dx

dτ
; p = m0v ; J = qv

f = F · J ;
dp

dτ
= f

Fµν = ✷µAν −✷νAµ ; Fµν ,ν = µ0jµ ; F
µν
,ν = 0,

where Fµν ≡ ηµγηνδFγδ and F
µν ≡ 1

2ǫ
µνγδFγδ . The energy-monentum tensor of the e.m. field

is

Tµν =
1

µ0

[
1
4
Tr(F · F)ηµν − Fµ

γF
γν
]
.

1.8 Physics from invariance

In favourable cases the requirement that every physically interesting number fit into some n-
tuple enables us to guess how things will transform under boosts from a knowledge of how they
behave at zero velocity.

For example, the e.m. field of a moving electric dipole is bound to contain a magnetic
component. It is plausible that this component is generated by a magnetic dipole and thus
that a moving electric dipole is also a magnetic dipole.

Let the electric and magnetic dipoles be µ and ǫ, respectively. Then the energies due
to the two types of dipole are −ǫ · E and −µ · B. These energies are obviously the same in
a lab where everything is a mirror image of our lab. So ǫ must be a vector like E and µ a
pseudo-vector like B. Since ǫ and µ are somehow coupled by boosts, it is more than probable
that they are embedded in a common 6-tuple just as E and B are. In other words the following
must be a 4-tensor: 


0 cǫx cǫy cǫz

−cǫx 0 µz −µy

−cǫy −µz 0 µx

−cǫz µy −µx 0


 . (1.56)

It follows that ǫ ·E − µ ·B is a 4-scalar.
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2 Radiation of Electromagnetic Waves

In the Lorentz gauge (1.53), ✷νF
µν = µ0j

µ becomes

µ0j
µ = ✷

µ
✷νA

ν −✷
2Aµ = −✷

2Aµ, (2.1)

so each component of A obeys the wave equation with the corresponding component of −µ0j
as a source. So let’s find particular integrals of

✷
2φ = s(x), (2.2)

for prescribed s(x). The key is to find an appropriate Green’s function G(x,x′), that is, a
solution for s = δ(x− x′):

✷
2
xG(x,x

′) = δ(x− x′). (2.3)

[(Here δ(x) ≡ δ(x0)δ(x1)δ(x2)δ(x3).] Clearly G(x,x′) = G(x − x′), so we first find G in the
case x′ = 0 and then obtain G for general x′ by substituting x → x− x′ in our solution. Thus
we now solve

✷
2G(x) = δ(x). (2.4)

We look for a spherically symmetric G(r, t):

1

r2
∂

∂r

(
r2
∂G

∂r

)
− 1

c2
∂2G

∂t2
= δ(ct)δ(x). (2.5)

This can be reduced to the ordinary wave equation for the new variable S ≡ rG:

∂2S

∂r2
− 1

c2
∂2S

∂t2
= rδ(ct)δ(x). (2.6)

Away from x = 0 this is the homogeneous wave eqn. So there S = f(r− ct)+ g(r+ ct) and we
see that G is a superposition of an outward-going wave (f) and an inward-going one (g). On
physical grounds we take the amplitude of the latter to be zero: g = 0.

Physically we expect that a blip in s at (r = 0, t = 0) will produce a disturbance confined
to the surface r = ct, so we try f(r − ct) = Aδ(r − ct). To check that this works and get the
proportionality constant A, we integrate (2.4) with G = Aδ(r − ct)/r from t1 to t2:

∫ t2

t1

dt✷2
(
Aδ(r − ct)/r

)
=

{
∇2
(A
r

)
− A

cr

[ ∂
∂t
δ(r − ct)

]t2
t1

if ct1 < r < ct2

0 otherwise.
(2.7)

The second term on the upper right of (2.7) is zero because the δ-function and all its derivatives
vanishes when its argument is non-zero, as here. On the other hand, we know from electrostatics
that ∇2r−1 = −4πδ(x). Hence the first term on the upper right of (2.7) is non-zero only if
r = 0 ⇒ t1 < 0 < t2, and then is appropriately infinite. Bearing in mind the lower line on the
right of (2.7), we see that ✷

2
(
Aδ(r − ct)/r

)
is non-zero only in the neighbourhood of x = 0,

as we had hoped. Integrating both sides of (2.7) through a very small sphere centred on the
orgin, we see that ∫

r<a
t1<t<t2

d4x✷
2
(
Aδ(r − ct)/r

)
= −4πA. (2.8)

Since we require
∫
d4xG = 1, we set A = −1/4π and have, finally

G(x) = −δ(|x| − ct)

4π|x| ⇒ G(x− x′) = −δ[|x− x′| − c(t− t′)]

4π|x− x′| . (2.9)
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Box 1: Two Lemmas on δ-functions

(I) For any function f(x) which never touches the x axis we have

δ[f(x)] =
∑

xi s.t. f(xi)=0

δ(x− xi)∣∣df/dx
∣∣ . (B1.1)

Proof: For arbitrary g form the integral
∫
δ[f(x)]g(x) dx. Obviously this gets contri-

butions only from the neighbourhoods of zeros xi of f . In each such neighbourhood,
f is a monotone function of x, so we can use f as the independent variable. Then
dx = df/(df/dx) and each interval contributes

δI =
g

df/dx

∣∣∣∣
xi

∫ f(xi+)

f(xi−)

δ(f) df, (B1.2)

If df/dx < 0, then f(xi−) > f(xi+) and the integral in (B1.2) is −1. On combining the
contributions from different intervals, we therefore have

∫
δ[f(x)]g(x) dx =

∑

xi s.t. f=0

g(xi)

|df/dx|xi

.

But this is just the integral of g(x) times the r.h.s. of (B1.1).

(II) For any two functions a, b which never touch the x-axis we have

δ(ab) =
δ(a)

|b| +
δ(b)

|a| . (B1.3)

Proof: The zeros of ab split into those where a = 0 and those where b = 0. So with
(B1.1) we have

δ(ab) =
∑

xi s.t. a=0

δ(x− xi)

|b(da/dx)| +
∑

xi s.t. b=0

δ(x− xi)

|a(db/dx)| . (B1.4)

But this is precisely what we get on applying (B1.1) to the r.h.s. of (B1.3).

Eqn (2.9) is not manifestly Lorentz invariant, as one might expect G to be since it solves
(2.3), which is. However, from Lemma II in the box we have

δ(|x − x′|) = δ[−c2(t− t′)2 + |x− x′|2]
= δ[(−c(t − t′) + |x− x′|)(c(t − t′) + |x− x′|)]

=
δ[−c(t− t′) + |x− x′|]

2|x− x′| +
δ[c(t − t′) + |x− x′|]

2|x− x′| ,

(2.10)

(2.10) allows us to rewrite (2.9) in the manifestly invariant form

G(x− x′) = − 1

2π
θ(t− t′)δ(|x − x′|) where θ(t) =

{
0 t < 0
1 t > 0

. (2.11)

We can now write down the solution to (2.1) in two forms:

A(x) = −µ0

∫
G(x,x′)j(x′)d4x′

=
µ0

2π

∫
θ(t− t′)δ(|x − x′|)j(x′)d4x′

(2.12)

A(t,x) = µ0

∫
d3x′

∫
dct′ j(t′,x′)

δ[|x − x′| − c(t− t′)]

4π|x− x′|

=
µ0

4π

∫
j(t− |x− x′|/c,x′)

|x− x′| d3x′.

(2.13)
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Because it is evaluated at a re-
tarded time, A for an oscillating
charge oscillates with amplitude
∼ 1/r with a fixed wavelength.
So A’s gradient declines like A
and not like A/r as in the static
case.

The quantity A given by these eqns is called the retarded potential. From (2.12) or (2.13)
we can find the potential A generated by any system of charges.

2.1 Dipole radiation

What potential does (2.13) predict for a point very far away from a fluctuating charge distri-
bution? We put the coordinate origin in the middle of the charge distribution. Then in |x−x′|
we can neglect x′ by comparison with x, and have

A(t,x) ≃ µ0

4π|x|

∫
j(t− |x|/c,x′) d3x′. (2.14)

The equation of charge conservation, ∂ρ/∂t = −∇·j, enables us to relate the spatial components
of this to the dipole moment of the charges grouped around the origin. The latter is

p ≡
∫
ρ(x)xd3x (2.15)

so
dp

dt
=

∫
∂ρ

∂t
xd3x

= −
∫

(∇ · j)xd3x

=

∫
(j · ∇)xd3x

=

∫
j d3x.

(2.16)

Thus

A(t,x) ≃ µ0

4π|x|
dp

dt

∣∣∣∣
(t−|x|/c)

. (2.17)

Notice that the amplitude of the potential falls off as 1/r as for the electrostic field of a point
charge. But if the charge distribution fluctuates, the potential acquires extra spatial variation
through ṗ, and this enables the fields E, B that one derives from A to be fall off like 1/r also.
This is the effect that enables electrons in the Sun to perceptibly wiggle your electrons as you
lie on a beach 93,000,000 miles away.

Exercise (8):
Show that (2.14) gives A0 = 0 in the far field. [Hint: exploit charge conservation.]
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At what rate does a fluctuating charge distribution radiate energy? Ideally we’d calculate
this by integrating the energy-momentum tensor T around a sphere. But we want to avoid
calculating curls in spherical polars because that would be tedious, so we cheat a bit and argue
that at large x the wave-fronts can be treated as planar. For a planar wave propagating in the
k̂ direction

A(t,x) = Ãf(t− k̂ · x/c), (2.18)

where Ã is a constant vector. This gives

B = ∇×A = −1

c
k̂ × Ãf ′(t− k̂ · x/c).

Furthermore, the set (E,B,k) is known to form a right-handed set of mutually orthogonal
vectors. Thus

E = cB × k̂.

The Poynting vector is therefore

N =
1

µ0
E ×B =

cB2

µ0
k̂

=
1

µ0c

[
Ã2 − (k̂ · Ã)2

]
f ′2k̂.

(2.19)

Comparing (2.17) with (2.18) we have that

k̂ = x̂ and Ãf =
µ0

4π|x| ṗ. (2.20)

Using this in (2.19) we find

N =
1

µ0c

(
µ0

4π|x|

)2[
p̈2 − (x̂ · p̈)2

]
x̂. (2.21)

The angular distribution of the flux |N | is that of a quadrupole field: it vanishes for x ‖ p̈

and peaks in the orthogonal directions. Integrating over a sphere of radius |x| we find that the
radiated power is

P =
µ0|p̈|2
6πc

. (2.22)

This is known as Larmor’s formula for the power radiated by a system of charges. If the
charge distribution consists of a single charge with position vector r, then p = qr and from
(2.22) the power radiated is

P =
q2

4πǫ0

2|r̈|2
3c3

. (2.23)

(Notice that power has units of force×speed, so q2/4πǫ0 needs to be multiplied by something
with units V/L2 made out of r̈ and c.)

2.2 Single accelerated charge∗

One important special case is that of an accelerated particle of charge q: if the charge’s world-
line is X(τ), one has

j(x) = qc

∫
Ẋδ(x−X) dτ

= qc

∫
δ(x−X) dX.

(2.24)

∗ Lies beyond the syllabus
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Exercise (9):
Check the validity of (2.24) by (i) showing that it is dimensionally correct, (ii) showing
that

∫
j d3x = q(dX/dt), i.e., the total current is just q times the Newtonian velocity,

and (iii) showing similarly that the total charge in any spatial slice is always q.

Plugging (2.24) into (2.12) yields

A(x) =
µ0qc

2π

∫
d4x′θ(t− t′)δ(|x − x′|)

∫
Ẋδ(x′ −X) dτ

=
µ0qc

2π

∫
θ(t− T )δ(|x −X|)Ẋ dτ

= − q

4πǫ0c

Ẋ

(x−X) · Ẋ

∣∣∣∣
|x−X|=0

.

(2.25)

where use has again been made of (B1.1). This is called the Liénard-Weichert potential.
Notice that for Ẋ = (c,) it gives the Coulomb potential as it should.

3 Lagrangian Mechanics

3.1 Paths, functionals & the calculus of variations

Before a ’plane takes off from New York for London, its computer chooses an optimal path
x(t); i.e., it finds that sequence of longitudes, latitudes and altitudes at each moment t of the
flight which, given prevailing winds, will get it to London at the prescribed time with least
expenditure of fuel. The quantity of fuel required to get to London in a given time is a single
number F that depends on the whole path x(t); one says that F is a functional F [x] of the
path x(t).

The simplest functionals are integrals along the path of functions of x(t) and its derivatives
with respect to t:

F1[x] ≡
∫ t0

0

|x(t)|2 dt

F2[x] ≡
∫ t0

0

|ẋ(t)|2 dt

F3[x] ≡
∫ t0

0

x · ẋ(t) dt

· · · · · ·

How do we find the path that minimizes a functional

F [x] ≡
∫ t0

0

f(x, ẋ) dt?

Let x(t) be the minimizing path and let η(t) be a small variation, so that x(t) ≡ x(t)+η(t) ≈
x(t). We insist on η vanishing at t = 0, t0 so that x(t) and the modified path both start and
finish at the same places at the same times. Then

F [x] ≤ F [x] =

∫ t0

0

f(x+ η, ẋ+ η̇) dt

=

∫ t0

0

(
f(x, ẋ) +

∂f

∂x
· η +

∂f

∂ẋ
· η̇ + · · ·

)
dt

= F [x] +

∫ t0

0

(∂f
∂x

· η +
∂f

∂ẋ
· η̇ + · · ·

)
dt.

(3.1)
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We now integrate by parts the second term in the integral of the last line:
∫ t0

0

∂f

∂ẋ
· η̇ dt =

[
∂f

∂ẋ
· η
]t0

0

−
∫ t0

0

d

dt

(∂f
∂ẋ

)
· η dt. (3.2)

Since η(0) = η(t0) = 0, the [.] vanishes. Putting this into (3.1) we have

0 ≥ F [x]− F [x] =

∫ t0

0

[(∂f
∂x

− d

dt

∂f

∂ẋ

)
· η + · · ·

]
dt. (3.3)

This relation must hold for any η, no matter how small. So the higher terms indicated by + · · ·
can be neglected. The remaining integrand is proportional to η, so if it were non-zero for some
particular function η(t), it would have the opposite sign for η′ ≡ −η. The inequality on the
extreme left would then be violated for one of η of η′. Hence the integral must vanish for all
η. This is possible only if the coefficient of η vanishes for all 0 < t < t0: if it did not vanish
for some t, say t1, the integral would fail to vanish for the particular choice η = δ(t − t1). So
x(t) minimizes F if and only if

d

dt

∂f

∂ẋ
− ∂f

∂x
= 0. (3.4)

This is called the Euler-Lagrange equation (‘EL eqn’), and the theory that underlies it
is called the calculus of variations. It is one of the few results we have in the theory of
functionals—one everywhere in physics encounters problems that cry out for a fully fledged
calculus of functions that shows how to integrate, Taylor expand, exponentiate etc functionals
the way we do functions.

Legend has it that the calculus of variations was invented by Newton after dinner one
evening to solve this challenge problem (set in 1695 by Johann Bernoulli):

Exercise (10):
A bead slides on a smooth wire that passes through two rings, one at the origin, the other
at (x′, y′, z′) = (x0, 0,−z0) with z0 > 0. To what curve (the ‘brachystochrone’) must the
wire be bent in order to minimize the time required for the bead to slide from rest at the
upper ring to the lower ring?

Solution: The optimal curve obviously lies in the plane y′ = 0. It is convenient to work
in coordinates (x, y, z) such that z increases downwards. Then the time of flight is

τ =

∫ z0

0

dz

ż
.

But 1
2
(ẋ2 + ż2) = gz, so ż =

√
2gz/[(dx/dz)2 + 1] and

τ =

∫ z0

0

dz√
2gz

√(dx
dz

)2
+ 1.

We need to minimize this with respect to the path x(z). The EL eqn tells us that the
optimal path satisfies

0 =
d

dz

(
dx/dz

√
z
√

(dx/dz)2 + 1

)
,

which implies

x(z) =

∫ z

0

√
Az

1−Az
dz,

where A is a constant of integration. (A may be determined by first solving x0/z0 =
(θ0 − 1

2
sin 2θ0)/ sin

2 θ0 for θ0 and then using this value in A = sin2 θ0/z0.) In terms of

variable sin2 θ ≡ Az the answer is

x =
1

A

(
θ − 1

2
sin 2θ

)
. (3.5)

If we write φ ≡ 2θ this may be written z = (1− cosφ)/2A, x = (φ− sinφ)/2A, which is a
cycloid with the origin at its cusp.
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3.2 Lagrangian for relativistic motion

Quantum mechanics ensures that every particle moves from one event x1 to another x2 in such
a way that a functional S of its world-line between these events, x(τ), is extremized. We’ll see
how q.m. does this in §5. But granted that it can be done, it is easy to see what the functional
S[x] must be: we write

S[x] =

∫
s(x) dτ

and ask what form the function s may take. S is called the action for single-particle motion.
The action must be a scalar since there is no obvious higher n-tuple into which we can fit it.
τ is a scalar, so s must be a scalar too, and we have only to ask what scalars we can construct
from the world-line x(τ) and quantities such as A, F associated with the e.m. field.

First we note that S shouldn’t depend on our choice of origin, so only derivatives ẋ, ẍ etc
should occur in s, not x itself. Furthermore, the EL eqn involves differentiation with respect to
the variable that parameterizes position along the extremal path, in this case τ . So we will get
as 2nd-order eqn of motion, if s depends on ẋ, but not on higher derivatives of x(τ). Similarly,
the EL eqn involves differentiation w.r.t. the general position vector x, so if the eqn of motion
is to depend on F and not its derivatives, s should depend on A but not F. So the invariants
to consider are (i) |ẋ|2 = −c2 and (ii) ẋ · A—we exclude |A|2 from consideration since its
contribution to S proves to be both gauge- and path-dependent. So the simplest thing to try
is

S =

∫
(−m0c

2 + qẋ ·A) dτ, (3.6)

where we’ve included the rest mass m0 for future convenience and q is some constant.

Exercise (11):
Show that the gauge-dependent part of the action (3.6) is path-independent.

Unfortunately we cannot apply the EL eqn to (3.6) as it stands because we want to
hold constant the events of arrival and departure, x1 and x2, rather than the proper-time
elapse between these events. So we have first to eliminate τ from (3.6) in favour of, say, t.
dt/dτ = p0/m0c = γ, so

S =

∫ (
−m0c

2
√

1− v2/c2 + q
dx

dt
·A
)
dt. (3.7)

If this guess is to be right it must predict rectilinear motion when A = 0. Applying (3.4) with
A = 0 gives

d

dt

m0v√
1− v2/c2

= 0 ⇒ dγv

dt
= 0. (3.8)

The correctness of this result is manifested by multiplying through by γ to produce

m0
d

dτ

dx

dτ
= 0.

So far so good. Now for the case A 6= 0. Since Aµ = (φ/c,A) and dxµ/dt = (−c,v), the
action is

S =

∫ [
−m0c

2
√

1− v2/c2 + q(−φ+ v ·A)
]
dt, (3.9)

so the EL eqn is
d

dt

( m0v√
1− v2/c2

+ qA
)
+ q∇(φ− v ·A) = 0. (3.10)

Here the derivative w.r.t. t is along the path, so

dA

dt
=
∂A

∂t
+ (v · ∇)A. (3.11)
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The partial derivative here can be combined with the ∇φ term in (3.10) to produce E =
−∇φ− ∂A/∂t. Putting all these things back into the EL eqn (3.10) yields

m0
dγv

dt
= q
[
E +∇(v ·A)− (v · ∇)A

]
. (3.12)

It’s now straightforward to show that the last two terms on the right of (3.12) equal v ×B as
one would hope: bearing in mind that ∇v = 0 we have

v ×B = v × (∇×A)

= ∇(v ·A)− (v · ∇)A

Thus the EL eqn applied to the action (3.6) gives

m0
dγv

dt
= q(E + v ×B) (3.13)

and we are able to identify q with the particle’s charge.

3.3 Lagrangian for non-relativistic motion

From (3.9) the action for non-relativistic motion in an electrostatic field is

S =

∫ [
−m0c

2 + L(x, ẋ, t)
]
dt, where L(x, ẋ) ≡ 1

2m0ẋ
2 − qφ(x, t). (3.14)

Since
∫
m0c

2 dt is the same for all paths that start and finish at the given events, it plays no
role in picking out the true path. So it can be dropped, and we obtain the principle of least
action:

δS = 0 where S ≡
∫
L(x, ẋ, t) dt. (3.15)

The function L is called the Lagrangian. By (3.14) it is the difference between the particle’s
kinetic and potential energies.

The equations of motion of every conservative dynamical system can be derived from a
Lagrangian. At heart every system is conservative; friction arises from neglect of the micro-
scopic degrees of freedom to which energy tends to be transferred from the macroscopic ones
to which the eqns of motion apply. So Lagrangians are a very general tool.

The Lagrangian of a dynamical system depends on the system’s n coordinates, convention-
ally written q and velocities q̇. The 2n-dimensional space of initial conditions (q, q̇) is called
phase space. (Notice that we are here treating q̇ as completely independent of q; from the
point of view of phase space q isn’t part of a path, just a configuration of the system.) The
eqns of motion allow one to determine uniquely the system’s future and past from its present
position in phase space. Geometrically, through every point of phase space there runs a curve
along which the system evolves. These curves never intersect one another.

3.4 Equations of motion from Lagrangians

Lagrangians provide a neat way of calculating eqns of motion in odd coordinate systems because
it is easier to transform a single function to new-fangled coordinates that a set of eqns of motion.
Consider, for example, motion in a rotating frame.

Suppose both primed and unprimed coordinates share the same origin, but the primed
coordinates rotate with angular velocity ω with respect to the unprimed coordinates, which
are inertial. Then

vinertial = ṙ′ +ω × r′.
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So written in terms of the primed coordinates the k.e. is

T = 1
2mv

2 = 1
2m
∣∣ṙ′ + ω × r′

∣∣2

= 1
2m|ṙ′|2 +mṙ′ · (ω × r′) + 1

2m|ω × r′|2
(3.16)

The p.e. is just V (r′, t), and we have ṙ′ · (ω × r′) = r′ · (ṙ′ × ω), so

L = 1
2m|ṙ′|2 +mṙ′ · (ω × r′) + 1

2m|ω × r′|2 − V (3.17)

and the EL eqns are

0 =
d

dt

∂L

∂ṙ′
− ∂L

∂r′

=
d

dt
(mṙ′ +mω × r′)−

[
mṙ′ × ω +

∂

∂r′

(
1
2m|ω × r′|2 − V

)]
.

(3.18)

Collecting everything together we have finally

mr̈′ = 2mṙ′ × ω − ∂Veff
∂r′

where Veff ≡ V − 1
2m|ω × r′|2. (3.19)

In a rotating frame there is a contribution to the “acceleration” r̈′ from the Coriolis force
2mω× ṙ′, and the potential needs to be augmented by a term that gives rise to the centrifugal
force rω2 − (ω · r′)ω. Forces such as these, which appear because one’s frame is non-inertial,
are called pseudo-forces.

A second example illustrates that Lagrangians work even for coordinates that depend
explicitly on time. In cosmology it is handy to use ‘comoving’ coordinates such that the spatial
coordinates of particles that move apart as the Universe expands are constant. Let the primed
system be inertial and the unprimed system comoving. Then r′ = a(t)r, where a(t) is the
cosmic scale factor. So

T = 1
2mṙ′2 = 1

2m(aṙ + ȧr)2. (3.20)

Writing the potential energy as V = mΦ the EL eqns are

0 =
d

dt

[
m(aṙ + ȧr)a

]
−m(aṙ + ȧr)ȧ+m

∂Φ

∂r
.

Cleaning up we get

r̈ + 2
ȧ

a
ṙ +

ä

a
r = − 1

a2
∂Φ

∂r
. (3.21)

A final example illustrates how to get T in a weird curvilinear coordinate system. Oblate
spheroidal coordinates (u, v, φ) are related to regular cylindrical polars (R, z, φ) by

R = ∆coshu cos v ; z = ∆sinhu sin v. (3.22)

Slightly changing u, v and φ in turn while leaving the other coordinates alone, generates small
displacements

eu = ∆δu(sinhu cos vR̂+ cosh u sin vẑ)

ev = ∆δv(− cosh u sin vR̂ + sinhu cos vẑ)

eφ = Rδφ̂.

The R z and φ unit vectors are orthogonal, so the distance one goes on changing all of (u, v, φ)
simultaneously is

ds2 = ∆2
[
(δu)2(sinh2 u cos2 v + cosh2 u sin2 v)

+ (δv)2(cosh2 u sin2 v + sinh2 u cos2 v) + (δφ)2 cosh2 u cos2 v
]

= ∆2
{
(cosh2 u− cos2 v)[(δu)2 + (δv)2] + cosh2 u cos2 v(δφ)2

}
.

(3.23)
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Dividing through by dt2 we get the kinetic energy in terms of (u̇, v̇, φ̇):

T = 1
2
m∆2

{
(cosh2 u− cos2 v)[u̇2 + v̇2] + cosh2 u cos2 vφ̇2

}
. (3.24)

The eqns of motion are therefore

m∆2

{
d

dt

[
((cosh2 u− cos2 v)u̇

]
− 1

2
sinh 2u

(
u̇2 + v̇2 + cos2 vφ̇2

)}
+
∂V

∂u
= 0

m∆2

{
d

dt

[
((cosh2 u− cos2 v)v̇

]
− 1

2 sin 2v
(
u̇2 + v̇2 − cosh2 uφ̇2

)}
+
∂V

∂v
= 0

m∆2

[
d

dt

(
cosh2 u cos2 vφ̇

)]
+
∂V

∂φ
= 0.

3.5 Normal modes from Lagrangians

Obviously, when a system is in equilibrium all its time derivatives vanish. From the EL eqns
we infer that equilibrium configurations correspond to ∂V/∂qi = 0, where qi is any coordinate.
(qi is often called a generalized coordinate to emphasize that it needn’t be Cartesian or
otherwise special.) By expanding V (q) around the stationary point qs corresponding to an
equilibrium configuration and plugging the expansion into the EL eqns, one sees that the
equilibrium is stable if qs is a local minimum of V , and unstable otherwise.

When slightly disturbed from an stable equilibrium, the system will oscillate in a motion
that can be represented as a superposition of normal modes. Lagrangians provide a relatively
painless route to the frequencies and forms of these normal modes. The trick is to expand
L(q, q̇) in a Taylor series around the equilibrium configuration q = qs, q̇ = 0, discarding terms
of higher than second order in q− qs and its derivatives. Thus we write

L ≃ 1
2Mij q̇iq̇j + Cij q̇iqj +

1
2Fijqiqj +Aiq̇i +Biqi + L0, (3.25)

where M, C, F, A and B are constant matrices or vectors and the summation convention is
in force. Since the EL eqns involve only derivatives of L, we can discard the constant L0. It
is also easy to check that if C is symmetric, the terms proportional to C and A make no net
contribution to the equations of motion. Further, if we assume that qs = 0, then B = 0. So in
this case the EL eqns are

Mij q̈j = Fijqj . (3.26)

This is easily solved by writing q(t) = Qeiωt, whence the eigenfrequencies ω are the roots of

det(F+ ω2M) = 0. (3.27)

Exercise (12):
A cylinder of mass m and radius a rolls on a rough horizontal table. A second cylin-
der, mass m and radius 1

2a rolls inside the first. Find the normal frequencies for small
disturbances from equilibrium.

Solution: Let θ be the angle through which the first cylinder has turned from equilibrium,
and φ be the angle turned by the second cylinder. Then the line between the two centres
makes an angle

ψ = 1
2
φ− θ (3.28)

with the vertical. The kinetic energy of the first cylinder (translational plus rotational) is

T1 = 1
2m(aθ̇)2 + 1

2ma
2θ̇2. (3.29)
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The motion of the centre of the second cylinder is a compound of the horizontal motion
aθ̇ of the centre of the first cylinder, plus 1

2aψ̇ tangent to the line joining the centres. The
total kinetic energy is therefore

T = m(aθ̇)2 + 1
2m
[
(aθ̇ + 1

2aψ̇ cosψ)2 + (12aψ̇ sinψ)2
]
+ 1

2m(a/2)2φ̇2. (3.30)

The potential energy is simply
V = −mg 1

2a cosψ. (3.31)

In T , which is quadratic in the velocities, we set ψ = 0 and we expand V to second order
in ψ, to find

T = 1
2
ma2(9

4
θ̇2 + 1

4
θ̇φ̇+ 5

16
φ̇2),

V = constant + 1
4mga(

1
2φ− θ)2.

(3.32)

Defining ω0 ≡
√
g/a the equations of motion become

9
2
θ̈ + 1

4
φ̈− ω2

0(
1
2
φ− θ) = 0,

1
4 θ̈ +

5
8 φ̈+ 1

2ω
2
0(

1
2φ− θ) = 0.

(3.33)

The eigenfrequencies are now easily found to be ω = 0 and ω =
√

8/11ω0.

3.6 Noether’s theorem

A constant of motion is any function C(q, q̇) that satisfies dC/dt = 0, where q(t) is a
solution of the eqns of motion. For example, in a ‘conservative’ system, energy is conserved, so
E(q, q̇) is a constant of motion. Finding a constant of motion is a big step towards obtaining
a general solution of the equations of motion.

In general, a system with n degrees of freedom q1, . . . , qn admits 2n − 1 independent
constants of motion. We show this by arguing that given the phase-space position (q, q̇) at
any time t, the equations of motion allow us to give the phase-space position (q(0), q̇(0)) at any

reference time t0. Thus q
(0)
i or q̇

(0)
i is a function fα(q, q̇, t) with α = 1, . . . , 2n. On eliminating

t between these 2n functions, we have 2n− 1 constants of motion.

It seldom happens that we can find 2n − 1 constants of motion—a rare exception is the
case of motion in a Kepler potential V ∝ 1/r. In fact it turns out that essentially complete
information about solutions of the equations of motion can be extracted from n constants of
motion. A system for which n constants of motion can be found is said to be integrable.

A theorem proved by Emmy Noether (1882–1935) provides a powerful way of extract-
ing constants of motion from Lagrangians. Noether’s theorem involves identifying a flow
in phase space that leaves L invariant. A ‘flow’ is an infinitesimal transformation (q →
q + (dq/dλ)δλ, q̇ → q̇ + (dq̇/dλ)δλ). For example, the transformation x → x + îδλ with
all the velocities remaining the same, is a flow. Invariance of L just means that L takes the
same value at all points that are joined by the flow. Noether’s theorem states that if L is in-
variant under (q → q+ (dq/dλ)δλ, q̇ → q̇+(dq̇/dλ)δλ), then (dq/dλ) · (∂L/∂q̇) is a constant

of motion. Thus from the invariance of L under translation x → x + îδλ along the x-axis,
Noether’s theorem deduces the constancy of the x-momentum ∂L/∂ẋ, which is equal to mẋ
for a particle moving in a velocity-independent potential.

The proof of Noether’s theorem is simple. We have

0 = δL =
∂L

∂q
· δq+

∂L

∂q̇
· δq̇.

Using the EL eqns to eliminate ∂L/∂q this becomes

0 =
d

dt

(∂L
∂q̇

)
· δq+

∂L

∂q̇
· δq̇

=
d

dt

(∂L
∂q̇

· δq
)
,
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and the result follows on writing δq = (dq/dλ)δλ.

Consider the proof of conservation of angular momentum by Noether’s theorem. A rotation
by δθ about the unit vector n̂ changes x by δθn̂× x. So if L is invariant under this rotation,
the following is a constant of motion:

J ≡ n̂× x · ∂L
∂ẋ

= n̂ · x× ∂L

∂ẋ
.

(3.34)

For a particle moving in a velocity-independent potential this is just the component of mx× ẋ

parallel to n̂.

Here’s an application to moton in a uniform magnetic field B = Bk̂: By (3.9) the non-
relativistic Lagrangian is

L = 1
2m0v

2 + qv ·A. (3.35)

Let’s choose A = (−By, 0, 0). Then L = 1
2m0v

2 − qBvxy is invariant under two flows: (i)

x → x+ λî and (ii) x → x+ λk̂. Hence we have two invariants

px ≡ ∂L

∂ẋ
= m0vx − qBy ; pz ≡ ∂L

∂ż
= m0vz. (3.36a)

Choosing A = (0, Bx, 0) we find a third invariant for the same physical problem:

py ≡ ∂L

∂ẏ
= m0vy + qBx. (3.36b)

The physical meaning of pz is obvious, but what do px and py mean physically? Add them up:

P ≡ px + ipy = m0(vx + ivy) + qB(ix− y)

= m0ξ̇ + iqBξ
where ξ ≡ x+ iy. (3.37)

Solving this first-order d.e. for ξ we find

ξ(t) = ξ(0)e−iωt +
iP

m0ω
, where ω ≡ qB

m0
(3.38)

is the Larmor frequency. It is now easy to see that the real and imaginary parts of P encode
the y and x coordinates of the guiding centre around which the particle gyrates.

4 Hamiltonian Dynamics

It turns out that (q̇,q) are not the ideal coordinates for phase space. The natural coordinates
are (p,q), where

p ≡ ∂L

∂q̇
(4.1)

is the momentum ‘conjugate to q’. Changing coordinates from q̇ to p is analogous in ther-
modynamics to replacing V by P since P = −(∂U/∂V )S just as p = (∂L/∂q̇)q. We are
replacing a variable by the gradient of some function of that variable. Transformations of this
type are called Legendre transforms. When in thermodynamics we eliminate V in favour
of P it is expedient to introduce a new function H(S,P ) ≡ U +PV . So here we introduce the
Hamiltonian

H(p,q) ≡ p · q̇− L, (4.2)

where it is understood that q̇ is to be eliminated in favour of q, p, and t using equation (4.1).
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The total derivative of the Hamiltonian is

dH = p · dq̇+ q̇ · dp−
(
∂L

∂q

)

q̇,t

· dq−
(
∂L

∂q̇

)

q,t

· dq̇−
(
∂L

∂t

)

q,q̇

dt

= q̇ · dp−
(
∂L

∂q

)

q̇,t

· dq−
(
∂L

∂t

)

q,q̇

dt,

(4.3)

where the first and fourth terms cancel by (4.1). But we may also write

dH =

(
∂H

∂p

)

q,t

· dp+

(
∂H

∂q

)

p,t

· dq+

(
∂H

∂t

)

q,p

dt. (4.4)

Since equations (4.3) and (4.4) must be the same, we have

q̇ =

(
∂H

∂p

)

q,t

;

(
∂H

∂q

)

p,t

= −
(
∂L

∂q

)

q̇,t

;

(
∂H

∂t

)

q,p

= −
(
∂L

∂t

)

q,q̇

. (4.5)

Using the EL eqns and simplifying the notation, the first two of these equations lead us to
Hamilton’s equations

q̇ =
∂H

∂p
; ṗ = −∂H

∂q
. (4.6)

Along a trajectory {q(t),p(t)}, the Hamiltonian H[q(t),p(t), t] changes at a rate

dH

dt
=
∂H

∂q
· q̇+

∂H

∂p
· ṗ+

∂H

∂t
=
∂H

∂t
. (4.7)

Hence, if ∂L/∂t = 0, it follows from equation (4.5) that the Hamiltonian is conserved along all
dynamical trajectories. We can think of this as an extension of Noether’s theorem: the integral
H arises from the time-translation invariance of L.

Thus, for example, consider motion in the time-independent potential V (x). If we work in
Cartesian coordinates, the Lagrangian L = 1

2mẋ2−V (x) depends only on x and ẋ, so ∂L/∂t =
0. Hence the Hamiltonian H is conserved. The physical quantity to which H corresponds is
easily found. We have p = ∂L/∂ẋ = mẋ and

H(x,p) = p · ẋ− L

=
p2

2m
+ V (x),

(4.8)

which is simply the total energy E = k.e. + p.e.. Thus for motion in a fixed potential the
Hamiltonian is equal to the total energy.

What are p and H in a rotating frame? From (4.1) and (3.17) we have

p = m(ṙ + ω × r) (4.9)

which shows that p isn’t always the same as q̇. The Hamiltonian for a rotating frame is

H = m(ṙ + ω × r) · ṙ −
[
1
2m|ṙ|2 +mṙ · (ω × r) + 1

2m|ω × r|2 − V
]

= 1
2m|ṙ|2 − 1

2m|ω × r|2 + V.
(4.10)

This is not the same as the energy in an inertial frame: the kinetic contribution is different
and there is an additional centrifugal potential energy − 1

2
m|ω × r|2. Indeed, unless V is

axisymmetric [V = V (|ω× r|)], the energy in an inertial frame changes as V does work on the
potential, but H is nonetheless constant.
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The Lagrangian for non-relativistic motion in an e.m. field is (see (3.9)

L = 1
2
m|ẋ|2 + q(ẋ ·A− φ), (4.11)

so in this case
p = mẋ+ qA

H = (mẋ+ qA) · ẋ−
[
1
2m|ẋ|2 + q(ẋ ·A− φ)

]

= 1
2m|ẋ|2 + qφ

=
1

2m
|p− qA|2 + qφ.

(4.12)

Thus in an e.m. field p is not just mẋ. Although H is just what one would näıvely think of as
the energy, when expressed in terms of p it looks odd. In quantum mechanics the distinction
between p and ẋ is of the utmost importance because it turns out that when one quantizes, it
is p rather than mẋ that should be replaced by −ih̄∇

4.1 Liouville’s theorem

If we imagine releasing a bunch of dynamically identical systems from neighbouring initial
conditions, then the ‘phase points’ describing these systems flow through phase space like a
fluid. This flow is governed by Hamilton’s equations (4.6). It is an incompressible flow: the
‘velocity’ of the fluid is (ṗ, q̇) and the divergence of this velocity is

div(ṗ, q̇) =
(∂ṗ
∂p

+
∂q̇

∂q

)

=
(
− ∂2H

∂p∂q
+

∂2H

∂q∂p

)
= 0.

The divergence-freeness of the phase flow is known as Liouville’s theorem.

Let f be the probability density of systems in phase-space. Then conservation of systems
requires that f obey the continuity equation

0 =
∂f

∂t
+ div

(
(ṗ, q̇)f

)

=
∂f

∂t
+
∂f

∂p
· ṗ+

∂f

∂q
· q̇

=
∂f

∂t
− ∂f

∂p
· ∂H
∂q

+
∂f

∂q
· ∂H
∂p

(4.13)

where Liouville’s theorem has been used. The continuity equation of f in either of the last two
forms is known as Liouville’s equation.

4.2 Poincaré invariants∗

Since Hamilton’s equations (4.6) are first-order differential equations, if we are given a particle’s
phase-space coordinates (q0,p0) at time t = 0, we can solve Hamilton’s equations for the
coordinates (qt,pt) at any later time t. Thus through each point (q0,p0) in phase space there
passes a unique phase-space trajectory [q(q0,p0, t),p(q0,p0, t)], which gives the future and
past phase-space coordinates of the particle that at t = 0 has coordinates (q0,p0). We define
the time-evolution operator Ht by

Ht(q0,p0) ≡ [q(q0,p0, t),p(q0,p0, t)]. (4.14)

∗ Lies beyond the syllabus
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We say that the operator Ht is generated by the function H(q,p).

Let S0 be any two-dimensional surface in phase space, and (u, v) any pair of coordinates
that may be used to specify points of S0. The time-evolution operator Ht maps each point of
S0 into a new surface St and we denote by (u, v) the point of St into which Ht maps the point
(u, v) of S0. With these definitions, all 2n phase-space coordinates qi and pi are functions of
the three variables u, v, and t.

We define

A(t) ≡
∫∫

St

dp · dq ≡
n∑

i=1

∫∫

St

dpidqi

=

n∑

i=1

∫∫

St

∂(pi, qi)

∂(u, v)
dudv,

(4.15)

and calculate dA/dt. We set t′ ≡ t + δt, where δt is small, and introduce the conventions
q(u, v) ≡ q(u, v, t), q′(u, v) ≡ q(u, v, t′) and similar notations for p and p′. To first order in the
small time interval δt, Hamilton’s equations (4.6) yield

(q′,p′) = Hδt(q,p) =

(
q+

∂H

∂p
δt, p− ∂H

∂q
δt

)
. (4.16)

Differentiating these equations with respect to u and v, we find

∂(p′i, q
′
i)

∂(u, v)
=
∂(pi, qi)

∂(u, v)
−
[
∂qi
∂v

∂2H

∂u∂qi
− ∂pi
∂u

∂2H

∂v∂pi
+
∂pi
∂v

∂2H

∂u∂pi
− ∂qi
∂u

∂2H

∂v∂qi

]
δt

+O(δt)2.

(4.17)

Thus

dA

dt
= lim

δt→0

{
1

δt

∫∫
dudv

∑

i

[
∂(p′i, q

′
i)

∂(u, v)
− ∂(pi, qi)

∂(u, v)

]}

= −
∑

i

∫∫
dudv

[
∂qi
∂v

∂2H

∂u∂qi
− ∂pi
∂u

∂2H

∂v∂pi
+
∂pi
∂v

∂2H

∂u∂pi
− ∂qi
∂u

∂2H

∂v∂qi

]
.

(4.18)

One may show that the sum of the square brackets in equation (18) vanishes by replacing every

occurrence of
∂

∂u
in the second derivatives by

∑
k

(∂qk
∂u

∂

∂qk
+
∂pk
∂u

∂

∂pk

)
and similarly for

∂

∂v
.

Hence Ȧ = 0 and we have:

Poincaré invariant theorem If S(0) is any two-surface in phase space, and S(t) is the

surface into which S(0) is mapped by the time-evolution operator Ht, then∫∫

S(0)

dp · dq =

∫∫

S(t)

dp · dq. (4.19)

Corollary If γ(0) is any closed path through phase space, and γ(t) is the path to which γ(0)
is mapped by the time-evolution operator, then

∮

γ(0)

p · dq =

∮

γ(t)

p · dq. (4.20)

Proof. By Green’s theorem,
∮

γ(t)

p · dq =
∑

i

∮

γ(t)

pidqi =
∑

i

∫∫

S(t)

dpidqi, (4.21)

where S(t) is any surface that has γ(t) as its boundary. The result now follows from the
Poincaré invariant theorem.⊳

Any mapping of phase space onto itself which, like Ht, conserves line integrals of the form∮
p · dq, is called a canonical map.
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4.3 Poisson brackets and canonical coordinates

Let A(q,p) and B(q,p) be any two functions of the phase-space coordinates. Then thePoisson
bracket [A,B] is defined by

[A,B] ≡ ∂A

∂q
· ∂B
∂p

− ∂A

∂p
· ∂B
∂q

. (4.22)

It is straightforward to verify the following properties of Poisson brackets:

(i) [A,B] = −[B,A] and [A+B,C] = [A,C] + [B,C],

(ii) [[A,B], C] + [[B,C], A] + [[C,A], B] = 0 (Jacobi identity),

(iii) The coordinates (q,p) satisfy the canonical commutation relations

[pi, pj ] = [qi, qj ] = 0 and [qi, pj ] = δij . (4.23)

(iv) Hamilton’s equations may be written

q̇i = [qi,H] ; ṗi = [pi,H]. (4.24)

If we write (wi ≡ qi, wn+i ≡ pi i = 1, . . . , n), and define the symplectic matrix c by

cαβ ≡ [wα, wβ ] =

{
±1 for β = α± n, 1 ≤ α, β ≤ 2n;
0 otherwise,

(25a)

we have

[A,B] =

2n∑

α,β=1

cαβ
∂A

∂wα

∂B

∂wβ
. (4.25b)

Any set of 2n phase-space coordinates {Wα, α = 1, . . . , 2n} is called a set of canonical
coordinates if [Wα,Wβ ] = cαβ . Let {Wα} be such a set; then with equation (25b) and the
chain rule we have

[A,B] =

2n∑

α,β=1

cαβ
∂A

∂wα

∂B

∂wβ
=
∑

κλ

(∑

αβ

cαβ
∂Wκ

∂wα

∂Wλ

∂wβ

)
∂A

∂Wκ

∂B

∂Wλ

=
∑

κλ

[Wκ,Wλ]
∂A

∂Wκ

∂B

∂Wλ
=
∑

κλ

cκλ
∂A

∂Wκ

∂B

∂Wλ
.

(4.26)

Thus the derivatives involved in the definition (4.22) of the Poisson bracket can be taken with
respect to any set of canonical coordinates, just as the vector formula ∇ · a =

∑
i(∂ai/∂xi) is

valid in any Cartesian coordinate system.

The rate of change of an arbitrary canonical coordinate Wα along an orbit is

Ẇα =

2n∑

β=1

∂Wα

∂wβ
ẇβ , (4.27)

where, as usual, w ≡ (q,p). With Hamilton’s equations (4.24) and equation (4.26) this becomes

Ẇα =

2n∑

β=1

∂Wα

∂wβ
[wβ ,H] =

∑

βγδ

∂Wα

∂wβ
cγδ

∂wβ

∂wγ

∂H

∂wδ
=
∑

γδ

cγδ
∂Wα

∂wγ

∂H

∂wδ

= [Wα,H].

(4.28)
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Parallelism of
Lorentz invariance & Symplectic structure

inertial coordinates ↔ canonical coordinates

Lorentz transformations ↔ canonical transformations

ηµν ↔ cαβ

|x|2 ↔
∫∫

dp · dq

Thus Hamilton’s equations (4.24) are valid in any canonical coordinate system.

Finally,* we show that equation (4.15) for the Poincaré invariant of a two-surface is valid
in any canonical coordinate system. We first note that if we are given any function B(q,p)
we may obtain a one-parameter family of maps Ba of phase space onto itself by the following
procedure. From each point (q0,p0) of some (2n − 1)-dimensional surface in phase space we
integrate the coupled ordinary differential equations

dq

db
= [q, B] ,

dp

db
= [p, B] (4.29)

from the initial conditions q(0) = q0, p(0) = p0. If the initial (2n− 1)-surface is large enough,
the integral curves {q(b),p(b)} of B reach every point of phase space. Then the map Bb is
defined by

Bb(q(b
′),p(b′)) = (q(b + b′),p(b+ b′)). (4.30)

The function B(q,p) is indistinguishable from a Hamiltonian, since it satisfies Hamilton’s
equations (4.29), with b playing the role of the time t. Thus the Poincaré invariant theorem
shows that Bb is a canonical map.

Now let S be any two-surface in phase space, and U and V two functions on phase space
whose integral curves lie within S. Then we may use the maps Uu and Vv to lay out a
coordinate grid on S: we pick a point (q0,p0) of S and define (q,p)(u,v) ≡ VvUu(q0,p0). The
Poincaré invariant (4.15) of S may now be written

A =

∫∫

S

dp · dq =

∫∫ ∑

i

∂(pi, qi)

∂(u, v)
dudv

=

∫∫ ∑

i

([pi, U ][qi, V ]− [pi, V ][qi, U ]) dudv,

(4.31)

where the last equality follows by expanding the Jacobian and using equation (4.29). But by
equation (4.22), [pi, U ] = −(∂U/∂qi) and [qi, V ] = (∂V/∂pi), so we may rewrite equation (31)
as

A = −
∫∫ ∑

i

(
∂U

∂qi

∂V

∂pi
− ∂V

∂qi

∂U

∂pi

)
dudv = −

∫∫
[U, V ] dudv. (4.32)

Now notice that the Poisson bracket [U, V ] is the same when evaluated in terms of derivatives
with respect to any set of canonical coordinates. For the same reason, the map between (u, v)
and the surface S is independent of the canonical coordinates used in equation (4.29). Hence
we may change to a new set of canonical coordinates (Q,P), retrace each step in the derivation
of equation (32), and thus show that

∫∫

S

dp · dq =

∫∫

S

dP · dQ for any S. (4.33)

* The rest of this section lies beyond the syllabus.
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4.4 Canonical transformations

Suppose you have a function S(P,q) of some new variables Pi, i = 1, n and the regular
coordinates qi such that the equation

p =
∂S

∂q
(4.34a)

can be interpreted as defining P(p,q). Then the coordinates (P,Q) are canonical, where

Q ≡ ∂S

∂P
. (4.34b)

That is, [Qi, Qj ] = 0, [Qi, Pj ] = δij , [Pi, Pj ] = 0. The transformation (p,q) → (P,Q) is called
a canonical transformation and S the generating function of the transformation.

Before we prove that [Qi, Pj ] = δij etc., we demonstrate the relationship of these canonical
transformations to the canonical maps introduced earlier. We do this by considering functions
S of the form

S = P · q+ s(P,q)δu, (4.35)

where δu≪ 1. For S of this form we have

Q = q+
∂s

∂P
δu ; p = P+

∂s

∂q
δu ⇒

P = p− ∂s

∂q
δu.

(4.36)

Thus S = P · q generates the identity transformation P = p, Q = q. Moreover,

Q− q

δu
=

∂s

∂P
P− p

δu
= − ∂s

∂q

(4.37)

In the limit δu → 0 we can identify P with p on the right, and these equations become

dq

du
= [q, s] ;

dp

du
= [p, s], (4.38)

which is identical with (4.29). Thus canonical transformations generated by functions of the
form (4.35) may be thought of as infinitesimal canonical maps.

There is no fundamental difference between a map and a coordinate transformation: every
map generates a coordinate transformation and every transformation a map since one can treat
changed coordinates as new numbers describing an old point (a coordinate change), or as old
numbers describing a new point (a mapping).

We now prove* that P and Q satisfy the canonical commutation relations. From the chain
rule we have that

∂

∂p

)

q

=

(
∂P

∂p

)

q

· ∂

∂P

)

q

∂

∂q

)

p

=
∂

∂q

)

P

+

(
∂P

∂q

)

p

· ∂

∂P

)

q

.

(4.39)

* The rest of this section lies beyond the syllabus.
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Applying these formulae to pi and using ∂pi/∂P = ∂2S/∂qi∂P = ∂Q/∂qi yields

δij =

(
∂P

∂pj

)

q

·
(
∂Q

∂qi

)

q

−
(
∂pi
∂qj

)

P

=

(
∂P

∂qj

)

p

·
(
∂Q

∂qi

)

q

(4.40)

Multiplying these equations together and summing over j we find

∑

kl

(
∂Qk

∂qi

)

q

(
∂Ql

∂qi′

)

q

[Pk, Pl] = −
(
∂pi
∂qi′

)

P

+

(
∂pi′

∂qi

)

P

= − ∂2S

∂qi′∂qi
+

∂2S

∂qi∂qi′
= 0.

(4.41)

Since the matrix ∂Qk/∂qi has an inverse by (4.40), this shows that [Pk, Pl] = 0.

Working again from equations (4.39) we have

[Qi, Pj ] =

(
∂Qi

∂q

)

p

·
(
∂Pj

∂p

)

q

−
(
∂Qi

∂p

)

q

·
(
∂Pj

∂q

)

p

=

[(
∂Qi

∂q

)

P

+

(
∂Qi

∂P

)

q

·
(
∂P

∂q

)

p

]
·
(
∂Pj

∂p

)

q

−
(
∂Qi

∂P

)

q

·
(
∂P

∂p

)

q

·
(
∂Pj

∂q

)

p

=

(
∂Qi

∂q

)

P

·
(
∂Pj

∂p

)

q

+

(
∂Qi

∂P

)

q

· [P, Pj ]

=
∂2S

∂Pi∂q
·
(
∂Pj

∂p

)

q

=

(
∂p

∂Pi

)

q

·
(
∂Pj

∂p

)

q

= δij .

(4.42)

Similarly,

[Qi, Qj ] =

[(
∂Qi

∂q

)

P

+

(
∂Qi

∂P

)

q

·
(
∂P

∂q

)

p

]
·
(
∂Qj

∂p

)

q

−
(
∂Qi

∂P

)

q

·
(
∂P

∂p

)

q

·
(
∂Qj

∂q

)

p

=

(
∂Qi

∂q

)

P

·
(
∂Qj

∂p

)

q

+

(
∂Qi

∂P

)

q

· [P, Qj ]

=

(
∂Qi

∂q

)

P

·
(
∂Qj

∂p

)

q

−
(
∂Qi

∂Pj

)

q

=
∂2S

∂Pi∂qk

(
∂Qj

∂P

)

q

·
(
∂P

∂pk

)

q

−
(
∂Qi

∂Pj

)

q

.

But
∂pk
∂P

)

q

=
∂2S

∂qk∂P
, so

[Qi, Qj ] =

(
∂Qj

∂Pl

)

q

(
∂Pl

∂pk

)

q

(
∂pk
∂Pi

)

q

−
(
∂Qi

∂Pj

)

q

=
∂Qj

∂Pi
− ∂Qi

∂Pj

=
∂2S

∂Pi∂Pj
− ∂2S

∂Pj∂Pi
= 0.

(4.43)
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The function that generates a canonical transformation need not be of the form S(P,q);
other forms are S(P,p), S(Q,q) and S(Q,p). The generating function is always a function of
one old coordinate and one new one. An entertaining transformation is generated by S = Q ·q:

p =
∂S

∂q
= Q ; P =

∂S

∂Q
= q. (4.44)

4.5 Point transformations

If (Qi(q), i = 1, . . . , n) are any three independent functions of the generalized coordinates
q, then by equation (4.1) we obtain the new momenta Pi = (∂L/∂Q̇i) by expressing the
Lagrangian as a function L(Q, Q̇) of the Qi and their time derivatives. The coordinate change
(q,p) → (Q,P) is called a point transformation, because the new coordinates are functions
only of the old. It is straightforward to show that the new coordinates are canonical, by
evaluating their Poisson brackets.

The importance of these results is that it is often convenient to work in curvilinear coor-
dinates Q and derive the corresponding momenta P = (∂L/∂Q̇). Since the coordinates (Q,P)
are canonical, the Poisson bracket (4.22) can be equally well evaluated by taking derivatives
with respect to Q and P as with respect to q and p. Hence all curvilinear coordinates have
equal status in Hamiltonian mechanics.

4.6 Phase-space volumes∗

Often, for example when doing statistical mechanics, one needs a credible definition of ‘phase-
space volume’. If one is using Cartesian coordinates to describe a system of N particles of
mass mi, it is natural to take the volume element to be dτ =

∏N
i (m3

i d
3xid

3vi). But it isn’t
immediately obvious what to use for dτ in a more complex case. In particular, if one decided
to describe the system of particles by some curvilinear coordinates q(x) and their conjugate
momenta p, one would expect dτ to be of the form

dτ =
∏

i

(
∂(vi,xi)

∂(pi,qi)
d3pd3q

)
. (4.45)

One of the most beautiful and useful results in the subject is that the Jacobian here is just
one. In fact, the Jacobian between any pair of canonical coordinates is always one. That is,
the volume of an arbitrary region is

V =

∫∫

V

dnpdnq =

∫∫

V

dnPdnQ, (4.46))

where (p,q) and (P,Q) are any canonical coordinates.

It is possible to prove this result by brute-force calculation of the Jacobian. But it is more
elegant and convenient to stand back and look for a coordinate-free definition of phase-space
volume and to show that in coordinate form this is dτ = dnpdnq no matter what the coordinate
system. The exercise then is to define the volume of an arbitrary parallelepiped in phase space
without reference to any system of coordinates.

We start by finding 2n functions on phase space U1(p,q), . . . , U2n(p,q) whose integral
curves (i.e., the solutions of equations (4.29) with B = Ui, b = ui) run along the edges of the
parallelepiped. We denote by ui the parameter b that measures displacement along the integral
curve generated by the function Ui through equations (4.29). Equation (4.32) for the Poincaré
invariant of the parallelogram bounded by the invariant curves of U and V suggests that we
try

dτ ≡ (−1)n

2nn!

∑
(−1)ν [Ui1 , Ui2 ]× · · · × [Ui2n−1

, Ui2n ] du1 × · · · × du2n, (4.47)

∗ Lies beyond the syllabus
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where the sum is over all permutations (i1, . . . , i2n) of the numbers (1, . . . , 2n), and ν is 0 or 1
according as the permutation is even or odd. Dimensionally at least this definition is correct:
reference to (4.32) shows that it has the dimensions of the product of n Poincaré invariants,
i.e., a volume. To understand the origin of the numerical prefactor and the role of the factor
(−1)ν , let’s evaluate (4.47) for the special case in which the parallelepiped has edges parallel
to the axes of the (p,q) system.

A function Ui whose integral curves run parallel to the qi axis, is Ui = pi, and the cor-
responding parameter is ui = qi; if we use B = pi in (4.32), we find dqj/db = δij . Similarly,
the function Un+i = qi has integral curves parallel to the pi axis, with parameter un+i = −pi.
When we use these choices for the Ui in (4.47) we find that the product of Poisson brackets fails
to vanish only when each p is bracketed with its own q, and then the product equals ±1 accord-
ing as (i1, . . . , i2n) is an even or odd permutation of the numbers (1, . . . , 2n). There are n! ways
in which the pairs of p’s and q’s can be arranged, and each arragement gives rise to 2n non-zero
terms since for each term with [pi, qi] there is one with [qi, pi]. So all these permutations add
up to a factor that is cancelled by the prefactor 1/2nn!. We are then left with the product of
the differentials in the parameters dui = dqi, dun+i = −dpi. Hence for a parallelepiped with
edges parallel to the coordinate axes, dτ = dnpdnq Since every volume can be decomposed
into such special parallepipeds for any coordinate system, (4.46) now follows.

5 Relating quantum to classical mechanics

5.1 Phase-space operators

The Poisson bracket (4.22) turns every function F on phase space into an operator F̂ on other
functions of phase space. Thus given F (p,q) we define the operator F̂ by its action on an
arbitrary function ψ(p,q):

F̂ψ ≡ −ih̄[ψ,F ]. (5.1)

Here h̄ is some constant with the dimensions of a Poincaré invariant p · q—i.e., the inverse
of the dimensions of the Poisson bracket. It is interesting to express the operators associated
with px, x, H = 1

2p
2/m+ V (x) and Lz as differential operators:

p̂x = −ih̄[·, px] = −ih̄
∂

∂x

x̂ = −ih̄[·, x] = ih̄
∂

∂px

Ĥ = −ih̄[·,H] = −ih̄
( p

m
· ∇ −∇V · ∂

∂p

)

L̂z = −ih̄[·, Lz ] = −ih̄[·, xpy − ypx]

= −ih̄
(
x
∂

∂y
− y

∂

∂x
+ px

∂

∂py
− py

∂

∂px

)
.

(5.2)

Notice that (̂p2) 6= (p̂)2. With the obvious definition of an inner product, these operators are
self-adjoint (Hermitian):

∫
dnpdnqφ∗Âψ = −ih̄

(∫
dnpdnqφ∗

∂ψ

∂q
· ∂A
∂p

−
∫

dnqdnpφ∗
∂ψ

∂p
· ∂A
∂q

)

= ih̄

(∫
dnpdnq

∂φ∗

∂q
· ∂A
∂p

ψ −
∫

dnqdnp
∂φ∗

∂p
· ∂A
∂q

ψ

)

=

∫
dnpdnq (Âφ)∗ψ.

(5.3)
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We can use the Jacobi identity to express the commutator of two of these operators in
terms of the Poisson bracket of the underlying functions:

(f̂ ĝ − ĝf̂)ψ = −h̄2
(
[[ψ, g], f ] − [[ψ, f ], g]

)

= h̄2[ψ, [f, g]]

= ih̄̂[f, g]ψ.
(5.4)

For example

x̂p̂x − p̂xx̂ = ih̄1̂

L̂xL̂y − L̂yL̂x = ih̄L̂z.
(5.5)

Here the operator 1̂ is not the identity operator but the operator to which the function 1 gives
rise—this operator annihilates all functions: 1̂ψ = 0 ∀ψ.

Let A(p,q) be some function on phase space. Then the rate of change of the value of A
along a phase trajectory is

dA

dt
=
∂A

∂p
· ṗ+

∂A

∂q
· q̇

= [A,H].

(5.6)

Consequently A is a constant of motion if it commutes with the Hamiltonian, i.e., if we have
ÂĤ − ĤÂ = 0.

Hamilton’s equations (4.24) allow Liouville’s equation (4.13) to be written

ih̄
∂f

∂t
= −ih̄[f,H]

= Ĥf.

(5.7)

The similarity of these entirely classical operators to the usual quantum-mechanical ones
is obvious. Where they differ from the usual q.m. operators is in that they don’t operate on
simple functions on configuration space: even if ψ happens to be a function ψ(x) of x only,
Ĥψ = −(ih̄p/m) · ∇ψ does depend on p.

The ‘canonical’ procedure for quantizing a classical theory is to set up this Hamiltonian
formalism in phase space, discover what commutation relations hold between the operators Ĥ,
F̂ , Â of the ‘observables’ H, F , A etc., and then to represent them as operators on functions
on just half a set of canonical coordinates, that is functions ψ(q) or ψ(p) or ψ(Q). . .

5.2 Hamilton-Jacobi Equation∗

Suppose we could find n constants of motion I1, . . . , In. And suppose it were possible to find
a system of canonical coordinates (P,Q) such that Pi = Ii etc. Then the equations of motion
for the P ’s would be trivial,

0 = Ṗi = [Pi,H]

= − ∂H

∂Qi
.

(5.8)

and would demonstrate that H(P) would be independent of the Q’s. This last observation
would allow us to solve the equations of motion for the Q’s: we would have

Q̇i =
∂H

∂Pi
≡ ωi, a constant ⇒ Qi(t) = Qi(0) + ωit. (5.9)

∗ Lies beyond the syllabus
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So everything would lie at our feet if we could find n constants of the motion and could embed
these as the ‘momenta’ of a system of canonical coordinates.2 The magic coordinates P ≡ I
and Q are called action-angle coordinates, the I’s being the actions and the Q’s the angles.

Let S(I,q) be the generating function of the transformation between regular coordinates
(p,q) and angle-action coordinates. Then we can use this to eliminate p = ∂S/∂q from H,
expressing H as a function of (I,q):

H(I,q) = H
(∂S
∂q

,q
)
. (5.10)

By moving on an orbit we can vary the qi pretty much at will while holding constant the Ii.
As we vary the qi in this way H must remain constant at the energy E of the orbit in question.
This suggests that we investigate the non-linear partial differential equation

H
(∂S
∂q

,q
)
= E, (Hamilton-Jacobi equation). (5.11)

If we can solve this equation, we identify the arbitrary constants on which the solution S(q)
depends with functions of the constants of motion Ii. For example, the H-J eqn for a free
particle moving in two dimensions is

|∇S|2
2m

= E (5.12)

We write S(x) = Sx(x) + Sy(y) and solve (5.12) by separation of variables:

constant ≡ Ix =
(∂S
∂x

)2
= 2mE −

(∂S
∂y

)2
≡ Iy. (5.13)

This example is very tame, but the technique works also for more complicated Hamiltonians
that cannot be solved by other means.

The similarity between the H-J eqn and the time-independent Schrödinger eqn is obvious.

5.3 Path integrals∗

The principle of least action (3.15) is concerned with paths q(t) through coordinate space. We
can derive classical mechanics from another, closely related, variational principle which involves
paths

(
p(t),q(t)

)
through phase space rather than coordinate space. This principle is that the

path actually followed between (ti, qi) and (tf , qf ) is that for which

δS = 0 where S ≡
∫

p · dq−H(p,q) dt. (5.14)

Here the path of integration runs between (ti, qi) and (tf , qf ). Showing that this principle
yields Hamilton’s equations (4.6) is easy:

δS =

∫ (
δp · q̇+ p · δq̇ − ∂H

∂p
· δp− ∂H

∂q
· δq
)
dt

=

∫ [(
q̇− ∂H

∂p

)
· δp−

(
ṗ+

∂H

∂q

)
· δq

]
dt+

[
p · δq

]tf
ti
.

(5.15)

Since δq vanishes at ti and tf by hypothesis, the final term in (5.15) vanishes. Then, with δp
and δq subject to arbitrary variation, it is clear that δS = 0 only if the contents of the pairs

2 Notice that to be able to embed the I ’s as a set of momenta, we require [Ii, Ij ] = 0; functions satisfying

this condition are said to be ‘in involution’.
∗ Lies beyond the syllabus
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of large round brackets in (5.15) vanish. But the vanishing of brackets is precisely the content
of Hamilton’s equations.

Notice that a very remarkable thing is being done with the variational principle (5.14):
we are treating p as quite independent of the value of q̇ along the path. This makes perfectly
good sense from the point of view of phase-space geometry, but it makes a mockery of our
original definition (4.1) of p. This definition is recovered for the true path as a consequence of
the variational principle (5.14):

q̇ =
∂H

∂p
=

∂

∂p
(p · q̇− L)

= q̇+
(
p− ∂L

∂q̇

)
· ∂q̇
∂p

.

Recall that we introduced H as p · q̇ − L, with q̇ eliminated in favour of p. Now that
we are treating p as independent of q̇, p · q̇−H becomes a quantity different from L; indeed,
L depends only on the projection of a phase-space path

(
p(t),q(t)

)
onto configuration space,

while p · q̇ − H depends on p(t) as well as q(t). Thus the action principle (5.14) is entirely
different from (3.15), although the extremal values of the two integrals are the same because
along the extremal path p = ∂L/∂q̇.

It is interesting to derive (5.14) from quantum mechanics. The basic idea is simple: we
calculate the quantum amplitude to get from (ti,qi) to (tf ,qf ) and show that it can be ex-
pressed as a sum over all possible paths between these events of amplitudes proportional to
eiS/h̄, where S is defined by (5.14). The only paths that make a net contribution to the overall
amplitude are those whose values of S lie within ∼ h̄ of a stationary value, since the contribu-
tions of other paths are cancelled by oppositely signed contributions from neighbouring paths.
Thus the overall amplitude is dominated by contributions from paths that lie within ∼ h̄ of
the classical, extremizing, path, and from a macroscopic point of view these paths are identical
with the classical path.

We start by finding the amplitude A12 to get from (t1,q1) to (t2,q2), where the interval
t2 − t1 is small. In Dirac’s notation, this amplitude is

A12 = 〈q2|ψ, t2〉, (5.16)

where |ψ, t2〉 is the ket into which |q1〉 has evolved at t2. In other words, |ψ, t2〉 is the solution
of the time-dependent Schrödinger equation (tdse) for initial condition |ψ, t1〉 = |q1〉. This is

|ψ, t2〉 = e−iĤ(t2−t1)/h̄|q1〉. (5.17)

Here the exponential is the operator with the same eigen-kets |En〉 as the Hamiltonian Ĥ, and
eigenvalues equal to eiEn(t2−t1)/h̄, where the En are the eigen-values of Ĥ. That is,

eiĤ(t2−t1)/h̄ ≡
∑

n

|En〉e−iEn(t2−t1)/h̄〈En|. (5.18)

(To prove that (5.17) satisfies the tdse, just substitute (5.18) into (5.17) and differentiate
w.r.t. t2.) Our amplitude can now be written

A12 = 〈q2|e−iĤ(t2−t1)/h̄|q1〉

=

∫
d3p〈q2|p〉〈p|e−iĤ(t2−t1)/h̄|q1〉,

(5.19)

where use has been made of the fact that
∫
d3p |p〉〈p| is just the identity operator since the

states |p〉 of well-defined momentum form a complete set.
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Ĥ and thus the function of it appearing in (5.19) is a function of the operators p̂ and q̂.
Let’s assume that every p̂ has been positioned to the left of every q̂. Then every p̂ can be
considered to act to the left and be replaced by its eigen-value p, while every q̂ acts similarly

to the right. So the complex number 〈p|e−iĤ(t2−t1)/h̄|q1〉 becomes simply

e−iH(t2−t1)/h̄〈p|q1〉 = e−iH(t2−t1)/h̄
e−ip·q1/h̄

√
2πh̄

, (5.20)

where H is the classical Hamiltonian evaluated at the classical phase-space point (p,q) and we
have used the fact that 〈p|q1〉 is just the complex conjugate of the wave-function of a particle
of well-defined momentum p. When we insert (5.20) into (5.19) and similarly replace 〈q2|p〉
by a plane wave, we find

A12 =
1

h

∫
d3p exp

[ i
h̄

(
p · (q2 − q1)−H(t2 − t1)

)]
. (5.21)

Equation (5.21) for the amplitude to get from one event to another is only valid for
infinitesimal t2 − t1. There are two issues: (i) Ĥ may be time-dependent; (ii) for finite τ the

operator e−iĤτ = 1 − iĤτ + 1
2! (Ĥτ)

2 + · · · involves high powers of Ĥ and so many reversals
of the order of the operators p̂ and q̂ will be required to ensure that the p̂’s are to the left
of all q̂’s. In view of these objections we use (5.21) only for small t2 − t1. Given two widely
separated events (ti,qi) and (tf ,qf ), we express the amplitude to pass between them by a
particular path qi → q1 → . . .→ qf as the product

Ai1A12 × · · · ×Am−1,f (5.22))

of m amplitudes of the form (5.21) over small intervals (tj+1, tj). We then obtain the amplitude
to pass between (ti,qi) and (tf ,qf ) by any path by summing (5.22) over all values of the
intermediate positions qj . The final amplitude is

Aif = lim
m→∞

1

h3m

∫ m∏

j

(d3pjd
3qj) exp

[ i
h̄

m∑

k

(
pk · (qk+1 − qk)−H(tk+1 − tk)

)]

= constant×
∫

DpDq exp
[ i
h̄

∫ (
p · dq−H dt

)]
.

(5.23)

Here the symbol DpDq means one is to sum the integrand over all paths
(
p(t),q(t)

)
which

pass through (ti,qi) and (tf ,qf ).

When Ĥ is of the form Ĥ = 1
2
p̂2/m + V (q̂), one can do the path integral over p(t) in

(5.23) and obtain an expression for Aif from which (3.15) follows in the classical limit.

Exercise (13):
In (5.23) replace H with 1

2p
2/m + V (q) and dq by q̇dt. Then do the integration over

every pj by completing the square and using
∫∞

−∞
e−x2

dx =
√
π. Explain the relation of

the resulting expression for Aif to (3.15).

6 Lagrangian Field Theory

We’ve seen how equations of motion may be derived from the least-action principle

0 = δS ≡
∫

dt L(x, ẋ) (6.1)

Starting with an action has many advantages:
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• Since L is a scalar, transforming to new coordinates is easy;

• It’s easy to ensure that the eqns of motion are Lorentz invariant (or Gallilean invariant as
appropriate) by imposing the desired invariance on L;

• Given the required invariance and the basic form of the desired eqns (second-order, linear,
say) only a few simple expressions are candidates for Lagrangians;

• Certain constants of motion can be readily derived from evident symmetries of L.

Can we obtain partial differential eqns such as the wave eqn or Maxwell’s eqns from La-
grangians?

Specimen problem: derive the wave eqn

1

c2
∂2φ

∂t2
− ∂2φ

∂x2
= 0. (6.2)

Regard φ(t, x) as a set of ∞-dimensional vectors φx(t), where x labels components of φ.
The Lagrangian has to be a scalar, so φ’s indices have to be ‘soaked up’ somehow. We make
a scalar out of an ordinary vector by dotting it with another vector—this soaks up the indices
of both vectors by introducing a sum over that index. Analogously, we soak up indices x with
generalizations of dot products; that is, one sums over x by means of an integral:

s = a · b =
∑

i

aibi ↔ s = (ψ, φ) =

∫
dxψ(x)φ(x). (6.3)

This leads one to expect that many (but not all) actions for partial differential equations are
evaluated by integrating a Lagrangian density L over space before performing the usual integral
over time:

S[φ] =

∫
dt

∫
dxL(φ, φ̇). (6.4)

When we were doing Lagrangian mechanics, S was a functional of the particle’s history x(t).
Now S is a functional of the field’s history φ(t, x). So φ has stepped into x’s place, and x has
become an independent variable with a similar standing to that of t. Consequently, in (6.4)
we’re integrating over both space and time.

In order to make the symmetry between x and t complete we henceforth allow L to involve
derivatives w.r.t. x as well as w.r.t. t; then L = L(φ,✷µφ) and

S[φ] =

∫
L(φ,✷µφ) dxdt. (6.5)

Finally, it doesn’t make things significantly more complicated to allow space to be fully three-
dimensional. So x becomes the 3-vector x and (ct,x) becomes the usual 4-vector x. Since
d4x = cdtd3x and nothing of significance is changed when S is multiplied by a constant, we
can write simply

S[φ] =
1

c

∫
L(φ,✷µφ) d

4x. (6.6)

At each t between ti and tf the field’s configuration φ(t,x) is chosen such that the integral
(6.6) through the space-time volume bounded by t = ti and t = tf is extremized:
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As in Lagrangian mechanics we are specifying a solution to the 2nd order equations of
motion by giving values of the ‘coordinates’ at two times, ti and tf , rather than the coordinates
and velocities at a single time. In this case specifying the ‘coordinates’ involves giving the
functional dependence of φ on x at some fixed t.

Here’s how we extremize S:

0 = δS = S[φ+ ψ]− S[φ] where |ψ(t,x)| ≪ |φ(t,x)|

≃
∫ (

∂L
∂φ

ψ +
∂L

∂(✷µφ)
✷µψ

)
d4x

=

∫ (
∂L
∂φ

− ∂

∂xµ
∂L

∂(✷µφ)

)
ψ d4x+

∮
∂L

∂(✷µφ)
ψ d3xµ.

(6.7)

Here the final integral
∮
is the integral over the closed 3-surface that bounds the 4-dimensional

region of space-time through which L is integrated. The surface consists of the initial and final
hypersurfaces, and the 3-surface swept out by a 2-surface at spatial ∞ as t varies from ti to tf .
This integral vanishes because ψ is zero throughout the domain integrated over: the variation
ψ vanishes on the initial and final hypersurfaces by hypothesis, and we force it to vanish at
spatial ∞ also in order to ensure that the varied field φ + ψ satisfies the same bdy condition
as the unvaried field φ. Thus

δS =

∫ (
∂L
∂φ

− ∂

∂xµ
∂L

∂(✷µφ)

)
ψ d4x (6.8)

If this is to hold for any ψ(t,x) that vanishes on the initial and final hypersurfaces, we clearly
require that

∂L
∂φ

− ∂

∂xµ

( ∂L
∂(✷µφ)

)
= 0. (6.9)

This p.d.e. is the Euler-Lagrange equation for a field. It is the field equation that follows from
the Lagrangian density L.

What do we choose for L to make (6.9) the wave eqn, ✷2φ = 0? Try3

L = 1
2 |✷φ|

2 = 1
2η

αβ
✷αφ✷βφ. (6.10)

Then ∂L/∂φ = 0 and ∂L/∂(✷µφ) =
1
2
(ηµβ✷βφ+ ηαµ✷αφ) = ✷

µφ, so (6.9) yields

0 =
∂2φ

∂x02
−∇2φ

=
1

c2
∂2φ

∂t2
−∇2φ.

Thus the wave equation emerges from the Lagrangian density which is the simplest possible
function of ✷µφ only.

6.1 Maxwell’s equations∗

What about Maxwell’s equations? These are 2nd order in A, so we look for a Lagrangian
density L that depends on A and its derivatives, ✷µA. Moreover, Maxwell’s eqns are linear
in the fields, and thus in A. So L should be quadratic in A and ✷µA. Finally, L should be
invariant under gauge transformations A → A′ + ✷Λ, and should involve ✷µA only in the

3 At this point the factor 1/2 is gratuitous since the field equations are independent of the normalization of
S. When we relate the energy-momentum tensor to L we shall find this factor 1/2 handy, however.

∗ Lies beyond the syllabus
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combination contained in F. The shortlist of functions satisfying these criteria contains (up to
an unimportant normalization) only one candidate:

Lvac(A,✷µA) =
1

4µ0
TrF · F

= − 1

4µ0
FµνF

µν

=
1

2µ0
(E2/c2 −B2),

(6.11)

where the last equality is from (1.20). (Notice that if we associate E with kinetic energy
(E = −Ȧ/c + · · ·) and B with potential energy, Lvac is of the form k.e. − p.e..) The field
equations associated with the Lagrangian (6.11) density are

∂

∂xβ

( ∂Lvac

∂(✷βAµ)

)
= 0.

Now
∂Fµν

∂(✷βAα)
=

∂

∂(✷βAα)

(
✷µAν −✷νAµ

)

= δβµδ
α
ν − δβν δ

α
µ ,

(6.12)

so
∂Lvac

∂(✷βAα)
= − 1

4µ0

∂(FµνF
µν)

∂(✷βAα)
= − 1

4µ0

∂(Fµνη
µκηνλFκλ)

∂(✷βAα)

= − 1

2µ0
(δβµδ

α
ν − δβν δ

α
µ )F

µν

= − 1

2µ0
(F βα − Fαβ)

=
1

µ0
Fαβ .

(6.13)

The field equations are therefore
∂Fαβ

∂xβ
= 0, (6.14)

that is, 4 of Maxwell’s 8 field eqns for an e.m. field in vacuo.

To get Maxwell’s eqns in the presence of charges we need to add to the action S obtained
by integrating (6.11) over spacetime, the action of particles in a given e.m. field. For a single
charged particle the latter is given by (3.6). What does this suggest for the action associated
with a swarm of particles of charge q, mass m0 that are moving with 4-velocity v(x) and in
their rest-frame have number density n(x)? Well, the form of (3.6) suggests that the part of L
which depends on both the e.m. field and the particles (the ‘interaction term’), is proportional
to the dot product of A with the current density j = qn0v associated with the particles. So
we speculate that the interaction term is kj ·A, where k is a suitable constant. We check this
conjecture by substituting from (2.24) for the current density due to a single particle:

Sinteraction = k

∫
(j ·A)

∣∣
x
d4x

= kqc

∫
Ẋ ·A(x)δ(x −X)d4xdτ

= kqc

∫
Ẋ ·A(X) dτ

(6.15)

which agrees with (3.6) for k = 1/c.
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So long as we are only interested in getting the field eqns, which are obtained by varying
A, we don’t need to bother with the contribution to S from matter alone (which is independent
of A). So let’s see whether this action begets Maxwell’s eqns with sources:

S =
1

c

∫ (
j ·A+

1

4µ0
TrF · F

)
d4x. (6.16)

Varying A with the aid of previous results, the field eqns are found to be

jµ − 1

µ0

∂Fµν

∂xν
= 0 (6.17)

in agreement with (1.46). The other four Maxwell’s eqns don’t come from minimizing the action
but from the fact that F is the 4-curl of A. So they are geometrical rather than dynamical in
nature.

6.2 Klein-Gordon Equation∗

The wave function of a spin-zero particle of mass m0 should satisfy p̂2ψ = −m2
0c

2ψ, where

p̂2 = |Ê/c, p̂|2 =

∣∣∣∣
ih̄

c

∂

∂t
,−ih̄∇

∣∣∣∣
2

= h̄2
( ∂2

c2∂t2
−∇2

)
.

That is, we require ✷
2ψ =

m2
0c

2

h̄2
ψ. What Lagrangian density generates this eqn? We try

L(ψ,✷µψ) =
1
2

(
|✷ψ|2 + m2

0c
2

h̄2
|ψ|2

)
. (6.18)

By |✷ψ|2 we mean

|✷ψ|2 = − 1

c2
∂ψ∗

∂t

∂ψ

∂t
+∇ψ∗ · ∇ψ. (6.19)

Differentiating w.r.t. ψ is slightly tricky because ψ∗ is a function ψ∗(ψ) of ψ. We handle this
by writing ψ = u+iv and treating the real and imaginary parts of u and v as independent real
fields:

∂|ψ|2
∂u

=
∂

∂u
(u2 + v2) = 2u,

∂|ψ|2
∂v

= 2v.

(6.20)

Further
|✷ψ|2 = ✷(u− iv) · ✷(u+ iv) = |✷u|2 + |✷v|2.

So
∂|✷ψ|2
∂(✷µu)

= 2✷µu ;
∂|✷ψ|2
∂(✷µv)

= 2✷µv. (6.21)

Hence the field eqns are

∂

∂xµ
✷

µu− m2
0c

2

h̄2
u = 0, (6.22a))

∂

∂xµ
✷

µv − m2
0c

2

h̄2
v = 0. (6.22b))

The Klein-Gordon eqn is obtained by adding i times (6.22b) to (6.22a).

∗ Lies beyond the syllabus
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The following result simplifies the variation of an action that depends on a complex field
ψ. Suppose δf(ψ,ψ∗) = 0. We have

0 = δf =
∂f

∂ψ
(δu+ iδv) +

∂f

∂ψ∗
(δu− iδv).

Since δu and δv are arbitrary, we conclude

0 =
∂f

∂ψ
+

∂f

∂ψ∗

0 =
∂f

∂ψ
− ∂f

∂ψ∗

}
⇔

{ 0 =
∂f

∂ψ

0 =
∂f

∂ψ∗
.

Thus we can proceed as though δψ and δψ∗ were independent, though they are not.

6.3 Einstein field equations∗

General relativity buffs will be wondering what action generates Einstein’s equations. Well,
Ld4x must be a scalar made up of the metric tensor gµν and its derivatives. There is only
one serious candidate for this job, the Ricci scalar R ≡ Rµ

µ ≡ Rµα
µα, where R

µ
αβγ is the

curvature tensor. So is Ld4x just Rd4x? Not quite, since we want S =
∫
L d4x to be a scalar

under general changes of coordinates x → x′, not just under Lorentz transformations. In a
general coordinate change the Jacobian ∂(x′)/∂(x) is not unity, so d4x is not a scalar, and L
cannot be a scalar either if S is to be a scalar. We have

d4x =
∂(x)

∂(x′)
d4x′. (6.23)

But

gµν =
∂x′α

∂xµ
∂x′β

∂xν
g′αβ , (6.24)

so taking determinants we have

|gµν | =
(
∂(x′)

∂(x)

)2

|g′µν |, (6.25)

since ∂(x′)/∂(x) is by definition the determinant of the matrix ∂x′α/∂xβ . Multiplying (6.23)
by the square root of (6.25) we see that

√
−|gµν |d4x is a scalar. (|g| < 0 no matter what

signature one uses.) Hence

Sgrav[g] = − c3

16πG

∫
R
√
−|gµν |d4x (6.26)

is a general scalar and a candidate for the action that generates Einstein’s equations. For a
demonstration that this action works, and justification of the numerical prefactor (which is
only of consequence when one adds in the action of matter), see e.g., Weinberg Gravitation and

Cosmology p. 364.

∗ Lies beyond the syllabus
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6.4 Noether’s theorem for internal symmetries∗

Does Noether’s theorem for the Lagrangians of particle motion extend to Lagrangian densities
for fields? Actually it yields two closely related results: one for internal symmetries and one
for external symmetries, such as Lorentz invariance. We deal with internal symmetries first.

Often L(A,✷µA) is invariant under some transformation of the field A. For example,
in the case of e.m. L is invariant under A → A + ✷Λ where Λ(x) is any scalar function.4

Whenever there is a point-by-point invariance of this type, we can write

0 = δL =
∂L
∂A

· δA+
∂L

∂(✷µA)
· δ(✷µA)

=
∂

∂xµ

( ∂L
∂(✷µA)

)
· δA+

∂L
∂(✷µA)

· ✷µ(δA)

=
∂

∂xµ

(
δA · ∂L

∂(✷µA)

)
,

(6.27)

where the field eqns (6.9) have been used. The final line states that the current density jµ has
vanishing divergence, where

jµ ≡ δA · ∂L
∂✷µA

. (6.28)

The vanishing of ✷ · j implies that the integral J ≡
∫
jµd3xµ ≡

∫
jµǫµαβγdx

αdxβdxγ is the
same for any two 3-dimensional spatial hypersurfaces: Given two such surfaces we can extend
these into the closed surface bounding a spacetime volume like this:

✷ · j = 0 implies that the flux into this volume has to equal that out of it, so the upward flux
through the bottom surface has to equal the upward flux through the top surface. Thus the
internal symmetry of L has generated a conserved flux J .

E.m. charge conservation How does this idea work out in e.m? Setting δA = ✷Λ, we
have

jµ =
(
✷αΛ

) ∂Lvac

∂(✷µAα)

=
1

µ0

(
✷αΛ

)
Fαµ,

(6.29)

where use has been made of (6.13). Equating to zero the divergence of this we find that

0 =
∂2Λ

∂xµ∂xα
Fαµ +

∂Λ

∂xα
∂Fαµ

∂xµ

=
∂Λ

∂xα
✷µF

αµ,

where the first term on the right has been eliminated by virtue of F’s antisymmetry. Since we
can arrange for ✷Λ to be any vector at a given point, (6.29) implies that ✷µF

αµ = 0. This is
just (6.14), the standard field eqn for e.m. in vacuo.

To obtain a more interesting Noether invariant one has to start from L for the e.m. field
plus a matter field, say ψ.

∗ Lies beyond the syllabus
4 Notice the difference with the least-action principle, which states that 0 = cδS = δ

∫
d4xL for any

variation δA; for most variations, L changes at each point, it is just its integral which is invariant.
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Klein-Gordon current The Klein-Gordon L (6.18) is invariant under changes in the
phase of ψ, i.e., ψ → eiθψ. When θ is small we have δu + iδv = δψ ≃ iθψ, so the changes in
the real and imaginary parts of ψ are

δu = −θv ; δv = θu. (6.30)

Since we are considering L to be a function of (u, v) and their derivatives, the dot in (6.28)
has to be interpreted as a sum over u and v. Using our results (6.21) we find that the conserved
current is

jµ = δu✷µu+ δv✷µv

= θ
(
− v

∂u

∂xµ
+ u

∂v

∂xµ

)

=
θ

2i

(
ψ∗ ∂ψ

∂xµ
− ψ

∂ψ∗

∂xµ

)
.

(6.31)

It is simple to verify ✷ · j = 0 by taking the divergence and using the Klein-Gordon equation
and its complex conjugate to eliminate ✷

2.

From simple non-relativistic q.m. we recognize (6.31) as θm/h̄ times the particle flux: For
Hamiltonian H = p2/2m we have

d

dt

∫
|ψ|2d3x =

∫ (∂ψ∗

∂t
ψ + ψ∗ ∂ψ

∂t

)
d3x

=

∫ (Hψ∗

−ih̄
ψ + ψ∗Hψ

ih̄

)
d3x

=
h̄

2im

∫ (
(∇2ψ∗)ψ − ψ∗∇2ψ

)
d3x

=
h̄

2im

∮ (
(∇iψ

∗)ψ − ψ∗∇iψ
)
d2xi.

(6.32)

In the relativistic formulation (6.31) the left side of (6.32) is to be found in the terms on the
right of the equality that involve time derivatives.

6.5 Noether’s theorem and Lorentz invariance

The Lagrangian density L of a Lorentz-covariant theory depends on x only through the field
A and its derivatives, i.e., it has no explicit space-time dependence. Consider an infinitesimal
shift in the coordinate origin which changes the coordinates of the point x to x′ ≡ x + a,
where a is very small. Then the difference in the value of L at x and at the point x+ a whose
coordinates in the unprimed frame coincide with x’s coordinates in the primed frame is

δL =
( ∂L
∂A

· ∂A
∂xα

+
∂L

∂(✷νA)
· ∂(✷νA)

∂xα

)
aα

=

(
∂

∂xν

( ∂L
∂(✷νA)

)
· ∂A
∂xα

+
∂L

∂(✷νA)
· ∂2A

∂xα∂xν

)
aα

=
∂

∂xν

( ∂L
∂(✷νA)

· ∂A
∂xα

)
aα.

(6.33)

On the other hand, if we simply regard L as a function of x through the fields, we have

δL = aα
∂L
∂xα

=
∂

∂xν
(
Lδναaα

)
. (6.34)

Equating these two expressions for δL we have

0 =
∂

∂xν

( ∂L
∂(✷νA)

· ∂A
∂xα

−Lδνα
)
aα. (6.35)
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Furthermore, a is an arbitrary small vector so its coefficient in (6.35) must vanish. Thus from
the fact that L depends on x only through the fields we can conclude that the tensor

T̂ ν
µ ≡

( ∂L
∂(✷νA)

· ∂A
∂xµ

− Lδνµ
)

(6.36)

has vanishing divergence: ✷ν T̂
ν
µ = 0. T is the canonical energy-momentum tensor and

the vanishing of its divergence expresses energy-momentum conservation.

Again using (6.13), we find for the canonical energy-momentum tensor of the e.m. field

T̂ ν
µ =

1

µ0

(
Fαν ∂Aα

∂xµ
+ 1

4FαβF
αβδνµ

)
. (6.37)

Even when we lower T’s first index by premultiplying by ηκν , this isn’t symmetric like the T
of §1.4? We’d very much like T̂ to be symmetric, if only because Einstein’s equations require
it to be so. Also we’d like the energy-momentum tensor to depend on A only through F. We
can attain both goals by adding into T̂ what’s necessary to upgrade the derivative of A in the
first term into an F. The required item is

∆ν
µ = − 1

µ0
Fαν ∂Aµ

∂xα
. (6.38)

In the absence of sources (which is when we would expect the energy-momentum tensor to be
divergence-free) ∆ is itself divergence free:

✷ν∆
ν
µ = − 1

µ0

∂2(FανAµ)

∂xν∂xα
= 0. (6.39)

So if we define T ≡ T̂ + ∆, T will be symmetric and divergence-free in vacuo. The energy-
momentum tensor of the e.m. field is then

T ν
µ =

1

µ0

(
Fαν ∂Aα

∂xµ
− Fαν ∂Aµ

∂xα
+ 1

4
FαβFαβδ

ν
µ

)

=
1

µ0

(
FµαF

αν + 1
4F

αβFαβδ
ν
µ

)
.

(6.40)

This is minus the energy-momentum tensor (1.28). The minus sign arises because we have here
defined T so that T 0

0 rather than T00 = −T 0
0 is the energy density.
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Relativity, Electromagnetism & Mechanics III

1. A particle of mass m1 hangs by a light string of length l from a rigid support, and a second
mass, m2, hangs by an identical string from m1. The angles with the vertical of the strings
supporting m1 and m2 are θ and φ, respectively. Show that the frequencies of the two normal
modes of oscillation about equilibrium are ω±, where

ω2
± = g

m1 +m2

m1

[
1±

√
m2

m1 +m2

]
.

Describe the motion in each of the normal modes in the cases (a) m1 ≫ m2, and (b) m2 ≫ m1.

2. A particle of mass m slides inside a smooth straight tube OA to which it is connected
at point O by a light spring of natural length a and modulus mk. The system rotates in
a horizontal plane with constant angular velocity ω about a fixed vertical axis through O.
Determine the distance r of the particle from O at time t for the case when ω2 < k/a, if r = a
and ṙ = 0 at t = 0. Show also for this case that the maximum value of the reaction of the tube
on the particle is 2maω3/b, where b2 ≡ (k/a− ω2).

3. Use a Lagrangian to show that when referred to spherical polar coordinates, the equations
of motion of a particle in a gravitational potential Φ(x) are

0 = r̈ − r
(
θ̇2 + sin2 θφ̇2

)
+
∂Φ

∂r

0 =
d

dt

(
r2θ̇
)
− r2φ̇2 sin θ cos θ +

∂Φ

∂θ

0 =
d

dt

(
r2 sin2 θφ̇

)
+
∂Φ

∂φ
.

In the case in which Φ = Φ(r) is spherically symmetric, show that

mr2
√
θ̇2 + sin2 θφ̇2

is a conserved quantity and interpret this result physically.

4. A circular hoop of mass m and radius a hangs from a point on its circumference and is
free to oscillate in its own plane. A bead of mass m can slide without friction around the
hoop. Choose a set of generalized coordinates and write down the Lagrangian for the system.
Show that the natural frequencies for small oscillations about equilibrium are ω1 =

√
2g/a and

ω2 =
√
g/2a.

5. What is meant by the terms symmetry principle and conservation law as used in classical
dynamics? Give simple examples to illustrate the symmetries underlying the conservation of
linear and angular momentum.

A particle with position coordinates r moves in a central potential V (r). By considering
the quantity (r × ṙ) show that the orbit of the particle lies in a fixed plane.

Find all potential functions V (r) and corresponding functions α(r) for which the vector

K = ṙ × (r × ṙ) + α(r)r

is conserved.

Find also the potentials V (r) and functions β(r) for which the components of the matrix

Qij ≡ ṙiṙj + β(r)rirj

are constants of the motion, where ri, ṙi (i = 1, 2, 3) are the components of position and velocity
of the particle along any three independent fixed axes.
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6. A system with three degrees of freedom described by coordinates q1, q2, q3 has Lagrangian

L = 1
2 (q̇

2
1 + q̇22 + q̇23)− 1

2 (q
2
1 + q22 + q23) + α(q2q3 + q3q1 + q1q2),

where 0 < α < 1
2
. Show that L is invariant under infinitesimal rotations about the (1, 1, 1) axis

in q-space, and hence find a constant of motion other than the total energy. Verify from the
equations of motion that it is indeed constant.

7. A point charge q is placed at the origin in the magnetic field generated by a spatially
confined current distribution. Given that

E =
q

4πǫ0

r

r3

and B = ∇×A with ∇ ·A = 0, show that the field’s momentum

P ≡ ǫ0

∫
E ×B d3x = qA(0).

Use this result to interpret the formula for the canonical momentum of a charged particle in
an e.m. field.


