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1 Space, Time & Spacetime

Physics like betting is about predicting the future. From a study of the past (the “form”) and
some general principles gleaned from experience, we endeavour to predict what will happen
somewhere at some future time. Thus it behoves us to be clear about the concepts of “space”
and “time”.

If you think this is a simple matter, hardly worthy of further thought, think again! There is
nothing inevitable or absolute about our notions of time and space; they are merely one stage
in a continuing process of development and refinement and are even now being challenged
by theories in which time and space are merely crude reductions of an underlying 10- or 26-
dimensional world. So let us look closely at our current notions of space-time before progress
sweeps them aside.

We owe our current concepts of space and time to the “Special Theory of Relativity”.
Nothing is so absurd about this theory as its name—it ought properly to be called the “Theory
of Absolutivity”. For the theory’s central thesis is that there exists an absolute continuum
called spacetime and that spacetime carries a definite and unvarying structure, the Minkowski
metric, which firmly divides it into “space” and “time”. A few paragraphs about the more
familiar concept of absolute space will help to elucidate this point.

We master the concept of absolute space before we can even talk: we are all familiar with
the objects parents hang across their babys’ cots and with the games of “peek-a-boo” with
which they seek to develop in their offspring a sense for spatial relationships. Soon a parent is
spending hours looking with his or her child at picture books, pointing out the houses, cars,
cats etc. shown there, and the child automatically thinks of these items as solid objects firmly
seated in an imaginary three-dimensional world. He learns to speak by learning to name these
objects. Thus an essential preliminary to the acquisition of language is the the development
of the conviction that the two-dimensional patterns sensed by the retina are caused by three-
dimensional objects; a chair looks quite different when seen from the front and when viewed
from below. But every toddler sees the power of the unifying abstraction “chair”: the chair is
the thing that stays the same when his point of view changes.

Having grasped the power of abstrations such as “box” and “car” to organize and explain
his sense-experience, he is soon exploring the relations between these abstractions—discovering
which toy cars can be put into a box this way or that. The relationships he is exploring have
nothing whatever to do with his point of view. This car won’t go into that box irrespective of
the angle from which he views the two objects. We most of us become pretty good at this kind
of relationship-building, so that even the most innumerate humanist can hit a good shot on a
squash court or solve a jigsaw puzzle.

However, lamentably few people ever learn to place their ability to manipulate spatial
relationships on a quantitative basis, that is, to do Euclidean geometry. Yet it is perhaps
significant that the latter was the first branch of mathematics to be brought to something like
its present state of completeness—by late classical times the Greek-speaking world knew an
astonishing amount about how planar and even solid figures can be disected and superposed.

Very much later, with the invention towards the end of the 17th century of coordinate
geometry, it was discovered how geometry can be reduced to algebra and arithmetic. This
reduction is a great boon computationally, but it suffers from one notable disadvantage: we
reduce a series of points, curves and surfaces to algebraic form only by choosing a coordinate
system, and there is no unique way of doing that. So later still (in fact, not until the dawn
of the 20th century) vectors were invented as a device which enables geometrical entities to
be manipulated algebraically without the distraction of picking out one particular coordinate
system. Thus instead of indicating a displacement by giving its components ax, ay and az
parallel to given coordinate directions, we write simply a for the entire displacement. Similarly
denoting some other displacement by b we form the compound displacement c = a + b and



2 Introduction

write the angle between a and b as φab = arccos(a ·b/|a||b|). In short, vector notation enables
us to perform the largest possible number of calculations without polluting our intellectual
environment with any particular coordinate system.

We see then that both for an individual human and for the species as a whole, the line of
development has been

spatial relationships → coordinate geometry → vectors.

By contrast, the crucial concept of spacetime is approached from the middle; we first meet
spacetime in coordinate form and only rather later, and with difficulty, perceive its intrinsic
geometrical structure. Thus if I say some event occurred at the spacetime point (t, x, y, z) you
will know exactly what I mean, while if I started to explain the nature of the spacetime two-
surface described by the electromagnetic field tensor F, I would encounter only blank stares.
The first goal of this course is to indicate how the discipline of organizing relations between
physically interesting quantities into “covariant” equations between tensors (in effect, making
the transition: coordinate geometry → vectors) leads us to introduce spacetime objects p,
F, T etc, which are the spacetime analogues of boxes and cars; it is p, F and T which stay the
same when we change our “point of view” by boosting to a speeding frame of reference.

In infancy we discovered the relations between things by manipulating boxes and cars in
our hands. Unfortunately, our hands do not permit us to manipulate p, F and T. So we inform
ourselves about spacetime relationships by developing a calculus, tensor calculus, which, like
vector algebra, is designed enable us to deal as far as possible in the underlying entities p,
F, T etc rather than in coordinate-dependent expressions. Experience in the manipulation
of spacetime objects with this calculus helps us gradually to develop that feel for spacetime
relationships which we were sadly unable to develop in our playpens.1

1.1 Inertial Coordinates & Lorentz Transformations

Special relativity teaches us to think of experience as being made up of numbers of events, each
with a definite location in the four-dimensional continuum of spacetime. Any given observer
assigns to each event a unique 4-tuple of numbers (t, x, y, z). Of course he can do this in many,
many ways. But special relativity claims that there are certain specially favoured systems for
assigning coordinates to events, the so-called inertial coordinate systems. An observer O can
set up an inertial coordinate system by assigning the coordinates (t,−1, 0, 0) and (t, 1, 0, 0) to
the events that occur at the ends of a ruler which drifts force-free and non-rotating through
space, and the coordinates (t, 0, 1, 0) to events local to a particle that likewise moves freely and
is always equidistant from the ruler’s ends and as far from its middle as are the ends. The
times t should be marked off by a good clock located at the origin. Another observer O′ may
set up an entirely different inertial coordinate system, but according to special relativity the
coordinates (t′, x′, y′, z′) he assigns to any event can be related to O’s coordinates (t, x, y, z) of
the same event by 



ict′

x′

y′

z′


 =




ict0
x0
y0
z0


+ L ·




ict
x
y
z


 ,

where c is the speed of light and (t0, x0, y0, z0) is a set of numbers characteristic of the two
observers, as is the 4 × 4 matrix L. Clearly, (t0, x0, y0, z0) are the coordinates O′ assigns

1 Why do not children develop an instinct for spacetime structures? It would be rash to offer a definitive
answer to this question, but undoubtedly a contributing factor is the circumstance that for all everyday pur-
poses a particular direction for the time-axis is picked out for us—the temporal direction of our rest frame.
Furthermore, we tend to look out into spacetime along either this particular temporal direction or one of the
associated spatial directions: “at that time” or “over there”. We simply don’t have opportunity to ramble at
will through through spacetime viewing its contents from a variety of different perspectives.
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to the event that marks the origin of O’s coordinates. For simplicity we shall assume that
(t0, x0, y0, z0) = 0. In general L can be represented as the product of matrices generating a
rotation, a boost parallel to a coordinate direction and a second rotation: L = R′ ·L0 ·R, where
R rotates the coordinate axes so as to align the boost direction with a coordinate direction,
L0 effects the boost along the given axis and R′ rotates the coordinates to any desired final
orientation. If R is chosen such that the x-axis becomes the boost direction, L0 has the form

L0 =




γ −iβγ 0 0
iβγ γ 0 0
0 0 1 0
0 0 0 1


 where

β ≡ v/c

γ ≡ 1/
√

1− β2
. (1.1)

Defining
ψ ≡ arctanh(β) = arccosh(γ), (1.2a)

we can rewrite equation (1.1) as

L0 =




coshψ −i sinhψ 0 0
i sinhψ coshψ 0 0

0 0 1 0
0 0 0 1


 . (1.2b)

Recalling that the matrix of rotation by angle θ about the z-axis is

R =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 ,

and bearing mind the relations cos iψ = coshψ and sin iψ = i sinhψ, we see from (1.2b) that
L0 is identical with the matrix for a rotation in the (t, x) plane through the imaginary angle
θ = −iψ.

Special relativity claims that the fundamental laws of physics must look the same when
written in terms of O’s coordinates as they do when expressed in terms of the coordinates of
O′; these gentlemen are simply observing the world from two different but equally valid points
of view. The dynamics of what they observe, being independent of any observer, can depend
only on those relations between the objects that control the dynamics which are unaffected by
pseudo-rotations of the coordinates (1.2b). Thus every physical quantity should be associated
with a geometrical entity in spacetime such as a line, or a directed area or an ellipsoid etc, and
physics should consist of statements such as “the length of the line associated with a proton is
(1836)2 times the length of an electron’s line” and “when particles interact, the sum of their
lines is invariant”. We should, in fact, be able to suppose that everything in which we are
interested in physics is associated with a spacetime object as real as any box or car.

Sadly for most of us the reality must fall far short of this Platonic ideal because, not
having had adequate spacetime toys in our playpens, we experience difficulty picturing and
manipulating geometrical entities in spacetime. Hence we fall back on algebra and calculus
as a blind man reaches for his stick. But by hard work and diligent thought is possible
to extend one’s geometrical intuition to abstract spaces, and the development of theoretical
physics in the 20th century has time and again shown the power of geometrical formulations of
fundamental theories. In the next section we show how the most important physical quantities
are represented geometrically. But first we must deal with a tiresome technicality.

1.2 Real & Imaginary Coordinates

The key difference between a true rotation and the pseudo-rotation (1.2b) is that while a
true rotation would change the coordinates so as to leave invariant the squared distance d2 =
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(ct)2 + x2 + y2 + z2, (1.2b) holds constant the quantity s2 = −(ct)2 + x2 + y2 + z2. Now there
are two ways in which we can generate that irritating minus sign in s2: either we work with
pure imaginary time coordinates, or we stick to real coordinates and introduce a metric tensor

η ≡




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

With η we can write s2 really:

s2 = ( ct, x, y, z ) · η ·




ct
x
y
z


 .

If one is doing only special relativity, it is arguable that it is better to put up with the in-
convenience of using an imaginary time coordinate rather than to carry η through all one’s
calculations. But for calculations in general relativity one is without question better off with
a real time coordinate and a generalized η. The reason for this is simply that in general rela-
tivity one must use coordinates in which s2 cannot be expressed simply as a sum or difference
of the squares of coordinates, but necessarily involves some 4× 4 matrix. We may as well take
advantage of this matrix to banish the unaesthetic factor of i from our time coordinates.

1.3 Summary

Physics is about relations between geometrical objects in space-time. To quantify these objects
we have to choose a coordinate system. But space-time objects enjoy an existence independent
of the point of view imposed by any particular system of coordinates.

2 Tensors in Special Relativity

Observers who move relative to one another do not always agree about the values of quantities,
such as mass, energy, momentum etc, associated with the same physical system. The special
theory of relativity tells us how we may predict the values measured by any observer once
we know the values assigned by one particular observer, for example ourselves. For simplicity
we confine ourselves to observers who assign the space-time coordinates (0,0) to the same
event, whose spatial coordinate systems are aligned and whose relative motion lies along their
(mutually parallel) x-axes.

According to special relativity, all quantities of physical interest can be grouped into n-
tuples. Each n-tuple specifies some geometrical quantity.

2.1 1-tuples (4-scalars)

On some things all observers agree, for example the charge and total spin of the an electron.
These quantities are called 4-scalars or relativistic invariants. A scalar describes an intrinsic
shapeless property of an object, such as a colour or a temperature.
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2.2 4-tuples (4-vectors)

Two observers O and O′ use Cartesian axes that are parallel to one another and at t = 0 their
coordinate origins coincide. But O′ moves at speed v with respect to O down their mutual
x-axis. Then coordinates assigned by O and O′ to the same event are related by




ct′

x′

y′

z′


 =




γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1







ct
x
y
z


 (2.1)

Moreover, if O measures the wave-vector and frequency of a photon to be k and ω, then an
observer O′ who moves at speed v along O’s x-axis measures wave-vector k′ and frequency ω′

given by 


ω′/c
k′x
k′y
k′z


 =




γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1







ω/c
kx
ky
kz


 . (2.2)

In matrix notatioin these equations are written
(
ct′

x′

)
= Λ ·

(
ct
k

)
;

(
ω′/c
k′

)
= Λ ·

(
ω/c
k

)
(2.3a)

where

Λ ≡




γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1


 . (2.3b)

Notes:

(i) Vectors written in italic boldface, x or (k), are 3-vectors, while those written in Roman
boldface, x or (k), are 4-vectors.

(ii) The Lorentz transformation matrix Λ is dimensionless, so t has to be multiplied by c and
ω has to be divided by c to give the same dimensions as x and k, respectively, before being
put into the first place of a 4-vector with x or k.

If we define x0 ≡ ct, x1 ≡ x, x2 ≡ y, x3 ≡ z, k0 ≡ ω

c
, k1 ≡ kx etc then

x′µ =

3∑

ν=0

Λµνx
ν ≡ Λµνx

ν ; k′µ =

3∑

ν=0

Λµνk
ν ≡ Λµνk

ν . (2.4)

Here we introduce two additional conventions:

(i) by “kµ =” we mean to imply the four equations for the four components of the 4-vector
kµ—thus kµ is usually synonymous with k;

(ii) by the Einstein summation convention we omit the summation sign when summing
over repeated indices in a product. (Note that in Bµν + kµkν there is no implied summa-
tion.)

The reason for writing some indices up and other down will emerge shortly.

Another familiar 4-tuple: if observer O measures energy E and momentum p for some
particle, then O′ will measure E′ and p′ given by

(
E′/c
p′

)
= Λ ·

(
E/c
p

)
, (2.5)

or setting p0 ≡ E

c
, we have p′µ = Λµνp

ν .

Each 4-tuple corresponds to an arrow in spacetime.
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Lengths of 4-vectors With every 4-vector v there comes a free 4-scalar, called the length
of the vector, written |v|2. (Notwithstanding this notation, |v|2 is not necessarily positive, and
therefore we do not take its square root, as we would to find the length of a 3-vector v.) For
example, the length of a photon’s 4-vector is the scalar

|k|2 ≡ (k0)2 + (k1)2 + (k2)2 + (k3)2 = −ω
2

c2
+ |k|2 = 0.

One can prove that this really is a scalar by brute force:

|k′|2 = −(k′0)2 + (k′1)2 + (k′2)2 + (k′3)2

= −
(
γ
ω

c
− βγk1

)2
+
(
− βγ

ω

c
+ γk1

)2
+ (k2)2 + (k3)2

= −γ2
(
1− β2

)ω2

c2
+ γ2

(
1− β2

)
(k1)2 + (k2)2 + (k3)2

= −(k0)2 + (k1)2 + (k2)2 + (k3)2.

The length of the momentum-energy 4-vector of a particle of rest mass m0 6= 0 is just −c2
times the square of its rest mass m0. We show this by arguing that it doesn’t matter in whose
frame we evaluate a scalar. We choose the particle’s rest frame. Then p = 0 and E = m0c

2, so

−p0p0 + p1p1 + p2p2 + p3p3 = −m2
0c

2.

Four-vectors that have negative lengths are called time-like, while those with positive
lengths are space-like. Vectors with zero length are said to be null.

Note:

Every book on relativity uses a different convention. The sign of the lengths of space-like
vectors is called the “signature of the metric”.

With η we can write the length of the vector neatly:

−m2
0c

2 = p · η · p = pµηµνp
ν .

(Notice that we are summing over both µ and ν from 0 to 3.)

Covariant and contravariant vectors We write the result of matrix multiplication of
p by η as

pµ ≡ ηµνp
ν .

We have p0 = −p0, p1 = p1, p2 = p2 and p3 = p3. Thus the length of pµ is

pµpµ = −m2
0c

2.

Notice that here as everywhere else, we are summing over one up and one down index. In order
to stick rigidly to this rule, we define

ηµν ≡ ηµν ≡




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (2.6)

Note:
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Later, when ηµν goes over into the general relativistic metric tensor gµν , the analogue of
ηµν will be the inverse gµν of the matrix gµν . It so happens that ηµν is its own inverse.

From pµ we can recover pµ;
pµ = ηµνpν . (2.7)

pµ is a 4-vector, but of a slightly different type than pµ, because under a Lorentz trans-
formation we have

p′µ = ηµνp
′ν = ηµνΛ

ν
κp
κ = ηµνΛ

ν
κη
κλpλ

=




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







p0
p1
p2
p3




=




γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1







p0
p1
p2
p3


 ≡ Λµ

νpν ,

(2.8)

where we have defined a new matrix

Λµ
λ ≡ ηµνΛ

ν
κη
κλ. (2.9)

Notice that the transpose of Λµ
ν is the inverse of Λµν :

ΛµκΛµ
ν = δνκ, (2.10)

where we have written the 4× 4 identity matrix as δνκ (see §2.4).
Vectors with their indices below are called covariant (pµ). Vectors with indices above are

called contravariant (pµ). I shall call them down and up vectors. The operation of setting
two indices equal and summing from 0 to 3 is called contraction. In a contraction one index
must be up and one down. Quantities like

∑
µ pµpµ are not 4-scalars and have nothing to do

with physics. An important motivation for writing pµ rather than p is to distinguish the up
from the down form of p. However, when there is no danger of confusion, I shall sometimes
refer simply to p.

Remember that the coordinates form an up-vector xµ = (ct, x, y, z).

2.3 6-tuples (antisymmetric 2nd rank tensors)

If the electric and magnetic fields measured by O are arranged into the antisymmetric matrix
F,

Fµν ≡




0 Ex/c Ey/c Ez/c
−Ex/c 0 Bz −By
−Ey/c −Bz 0 Bx
−Ez/c By −Bx 0


 (SI units), (2.11)

then O′ will measure E′ and B′ as



0 E′
x/c E′

y/c E′
z/c

−E′
x/c 0 B′

z −B′
y

−E′
y/c −B′

z 0 B′
x

−E′
z/c B′

y −B′
x 0


 ≡ F ′µν = ΛµκΛ

ν
λF

κλ. (2.12)

Note that Fµν transforms as if it were the product pµpν of two down-vectors (which it isn’t).
Objects that transform in this way are called second-rank tensors.

F is called the Maxwell field tensor.2

2 James Clerk-Maxwell was born, brought up and educated as plain James Clerk; he took the name Clerk-
Maxwell only on marriage to an heiress, Miss Maxwell. Thus but for the power of Mamon, we would speak of
Clerk’s equations and Clerkians. Mr Maxwell got a better deal than I imagine he bargained for!
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Exercise (1):

Transform Fκλ with the matrix Λµν defined by (2.2b) to show that an observer who moves
at speed v down the x-axis of an observer who sees fields E = (Ex, Ey , 0) and B = 0,
perceives fields E′ = (Ex, γEy, 0) and B′ = (0, 0, γvEy/c). [Hint: since Λ is symmetric,
we can write F′ = Λ·F·Λ.] Hence deduce the general rules E′

‖ = E‖, E
′
⊥ = γ(E⊥+v×B),

B′
‖ = B‖, B⊥ = γ(B⊥ − v×E/c2). Verify that (B2 − E2/c2) = (B′2 − E′2/c2).

Some 6-tuples correspond to elements of area. This correspondence works as follows.
With any two displacements, say u and v, we associate the parallelogram bounded by u
and v. Information about the size and orientation of this parallelogram is conveyed by the
antisymmetric tensor Sαβ ≡ uαvβ − uβvα; in particular, if u = v, then S = 0. S has six
degrees of freedom rather than the eight numbers involved in u and v because we can add to
u any multiple of v without affecting S, and vice versa for v and u.

Exercise (2):

Prove the last statement and give a geometrical interpretation of this result.

In three-space the size and orientation of a parallelogram may be specified by giving
the magnitude and direction of the normal. Hence in three-space full information about an
antisymmetric 2nd rank tensor can be packed into the three components of the 3-vector which
we call the cross-product of the parallelogram’s sides. In four-dimensional spacetime each
parallelogram has a magnitude and two mutually perpendicular normals, requiring six numbers
for its full specification. Consequently there is no direct analogue of the cross product and we
must represent areas directly with antisymmetric tensors.

Exercise (3):

Relate the above statements to the number of independent components of an antisymmetric
n× n matrix for n = 2, 3, 4.

A physically interesting 6-tuple that describes an area is the tensor (xµpν − xνpµ) formed
from the space-time coordinate vector xµ = (ct, x, y, z) and the 4-momentum of a particle. If
the angular momentum about the origin is L, we have

Hµν ≡ (xµpν − xνpµ) =




0
. . .

. . .

c(xE/c2 − tpx) 0
. . .

. . .

c(yE/c2 − tpy) Lz 0
. . .

c(zE/c2 − tpz) −Ly Lx 0



, (2.13)

where the diagonal dots stand for minus the quantities in the lower left triangle of the matrix.
The numbers in the first column of this matrix give mc times the particle’s initial position
vector.

With every 6-tuple we get two free scalars. If the 6-tuple is of the form (uαvβ − uβvα),
then one of these is twice the squared magnitude of the corresponding parallelogram:

Sµν(ηµκηνλS
κλ) ≡ SµνSµν = (uµvν − uνvµ)(uµvν − uνvµ)

= 2[|u|2|v|2 − (u · v)2].

Evaluation in the particle’s rest frame shows that the scalar 1
2
HµνH

µν = [|x|2|p|2 − (x ·p)2] =
−(m0cr0)

2, where r0 is the distance (in the rest frame) between the particle and the origin at
t = 0.
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It is interesting to evaluate this same scalar for the Maxwell field tensor. Straightforward
matrix multiplication shows that the down-down shadow of Fµν is3

Fµν ≡




0 −Ex/c −Ey/c −Ez/c
Ex/c 0 Bz −By
Ey/c −Bz 0 Bx
Ez/c By −Bx 0


 (SI units), (2.14)

Multiplying each element of Fµν by the corresponding element of Fµν we find

m ≡ 1
2
FµνF

µν

= (B2 − E2/c2).
(2.15)

We will discuss the other scalar associated with a 6-tuple in §2.5.

2.4 10-tuples (symmetric 2nd rank tensors)

We introduced the matrix ηαβ in order to get a compact expression for the length of a 4-
vector, and later used it to define a down vector. No matter what coordinate system we are
considering, we want ηαβ to be the matrix defined by (2.6). Is this compatible with ηαβ being
a down-down tensor? Let bαβ be the tensor that has the form (2.6) in the unprimed coordinate
system. Then in the primed system by the rule for transforming down-down tensors,

b′αβ = Λα
κΛβ

ληκλ.

But by the definition (2.9) of Λβ
λ, this may be written

b′αβ = Λα
κ(ηβγΛ

γ
δη
δλ)ηκλ.

Now ηδληκλ is just the δκ component of the 4× 4 identity matrix. So

b′αβ = (Λα
κΛγκ)ηβγ .

Finally, the quantity in (. . .) is the matrix product of Λα
κ with the transpose of Λγκ, which is

its inverse [see (2.10)]. Hence the bracket is the αγ component of the identity matrix, so

b′αβ = ηβα = ηαβ .

Consequently, if an up-up tensor has the form (2.6) in one coordinate system system, it has
that form in all coordinate systems and we may treat ηαβ as a tensor rather than as a matrix
if we wish. This will be important and non-trivial in g.r.

In a very similar way one can show that the identity matrix can be regarded as either an
up-down or as a down-up tensor. It is conventional to write it as

δβα = δα
β = δαβ =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 (2.16)

It is hard to get excited about ηαβ and δβα as they don’t contain any physics. Something
meatier is the energy momentum tensor of a dust cloud: let there be at the event x n0(x)

3 It is worth remembering that in special relativity the lowering operation only changes the sign of the mixed
space-time components; see Appendix A.
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particles of rest-mass m0 per unit volume in the particle’s rest frame, and suppose all these
particles are moving with 4-momentum pµ. Then the energy-monentum tensor at x is

Tµν =
n0

m0
pµpν . (2.17)

Examination of T’s 00-component will show why it’s of fundamental importance. Since p0 =
γm0c, we have

T 00 = (γn0)(γm0c
2). (2.18)

This is the product of the particle density γn0 measured by an observer at rest in the given
frame (the γ arises because the region occupied by the particles is Lorentz contracted parallel
to their direction of motion), with the energy per particle in the given frame, γm0c

2. So T 00

is precisely the energy density of the particles and as such the thing which we expect to be
the source of the particles’ gravitational field. If T 00 has to appear in the differential equation
that governs a gravitational field, then the whole of the rest of T will have to appear in this
equation too.

So let’s take a look at the 3-vector formed by T’s mixed space-time components T i0 =
(γn0γm0c

2)(pi/γm0c). This is the product of the energy density and a dimensionless vector
which is proportional to the velocity of the particles. In fact, this vector is (dxi/dt)/c so T i0

is 1/c times the flux of energy associated with the dust cloud.

The form (2.17) provides a good approximation to the energy momentum tensors of a
surprisingly wide range of systems. In fact, it is seriously in error only for systems in which
vibrations such as sound waves propagate at a speed comparable to the speed of light; in all
other systems the relative velocities of constituent particles are highly sub-relativistic and the
interaction energies between particles are small compared to the particles’ rest-mass energy
m0c

2. So the energy-momentum tensor of an ordinary star is approximately of the form (2.17),
but that of a neutron star is not.

A medium whose energy momentum tensor is most definitely not of the form (2.17) is the
electromagnetic field in a vacuum. What does its energy-momentum tensor look like? We know
that e.m. energy is proportional to |E|2 and |B|2 so it should involve a product of the Maxwell
field tensor F (2.11) with itself. So a prime candidate is a multiple of the matrix product F ·F.
Now the trace Tµµ of the energy-momentum tensor of a dust cloud is (n0/m0)pµp

µ = −n0m0c
2

and thus proportional to the rest-mass of the constituent particles. The e.m. field is made up
of photons, which have zero rest mass. So it is a reasonable guess that the energy-momentum
tensor of the e.m. field has vanishing trace. If we assume that its trace does vanish, then it
must be a multiple of

Tµ
ν = −[FµγF

γν + 1
4
(FδγF

δγδνµ)]. (2.19)

T is an up-down tensor because it is constructed from tensors in the proper way. (Hence the
importance of showing that δνµ is a tensor!) The first term in (2.19) is the matrix product of
Fµγ with F γν . The second is the invariant m = B2 − E2/c2 evaluated above [eq. (2.15)]. By
construction T is traceless.

A little slog shows that in terms of E and B the tensor T is

Tµ
ν =




− 1
2 (B

2 + E2/c2) −Nx −Ny −Nz
Nx
Ny Pij
Nz


 , (2.20)

where N ≡ E×B/c and

Pij ≡ 1
2δij

(
B2 +

E2

c2

)
−
(
BiBj +

EiEj
c2

)
(i, j = 1, 2, 3). (2.21)
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We recognize −T00 as the energy density in the e.m. field, and Ti
0 as the Poynting vector, which

gives the energy flux. The 3× 3 matrix Pij was already known to Clerk-Maxwell; it describes
the flux of the three kinds of momentum: Pix = flux of x-momentum etc. The down-up form
of T is not symmetric. But if we premultiply by ηλµ to raise the first index, we find

Tλν =

(
1
2
(B2 + 1

c2
E2) N

N Pij

)
(2.22)

In g.r. T is what the e.m. field uses to generate a gravitational field.

Digression: A concrete example of T Suppose we have a plane e.m. wave running
along î polarized parallel to ĵ. Then

E = (0, E, 0) cos(ωt− kx)

B = (0, 0, B) cos(ωt− kx).

E and B are related by −∂B/∂t = ∇×E ⇒ B = kE/ω = E/c. Hence

N = (E2/c2, 0, 0) cos2(ωt− kx).

The first term in our expression (2.21) is non-zero only on the diagonal. The second term is
non-zero only in the yy and zz slots and there cancels the first term. So P is

Pij =




1 0 0
0 0 0
0 0 0


 E2

c2
cos2(ωt− kx),

and finally

Tµν =




1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0



E2

c2
cos2(ωt− kx). (2.23)

The stress tensor P has only an entry in the xx slot because our wave is engaged in the business
of carrying x-type momentum in the x-direction; the wave would push back a mirror placed
in a plane x = constant. Clearly the Poynting vector is also directed along the x axis, which
accounts for the off-diagonal units in T. In proper relativistic units the wave employs unit
energy density (“capital employed”) to carry unit fluxes of energy and momentum (“turnover”).
Notice that the wave’s phase is the scalar −k · x.

We can use this example of the energy momentum tensor of a plane e.m. wave to caculate
the energy-momentum tensor of a blackbody radiation field—which is interesting cosmologi-
cally, since in the beginning there was only heat. Any radiation field can be decomposed into
plane waves, so we have that the T of a blackbody field is the sum4 of contributions δT that
in appropriately oriented axes may be written in the form (2.23). Now the trace Tµµ of the
T given by (2.23) is zero, and the trace of a tensor is a scalar. So the trace δTµµ of every

contributor to the energy-momentum tensor T̃ of a black-body radiation field is zero, from
which it follows that T̃µµ = 0. Furthermore, in the radiation-field’s rest frame there is no net

transport of energy, so in this frame T̃’s mixed space-time components T i0 vanish. On the
other hand, the momentum flux doesn’t vanish even in the radiation’s rest frame; momentum
is a signed quantity, so equal numbers of particles moving at the same speed to right and left
both contribute positively to the momentum flux. But in the rest frame the only net flux across

4 Recall from problems about waves on strings that the energies of normal modes add even though the
kinetic and potential energies of the waves are proportional to the square of the amplitude.
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a surface x = constant is of x-type momentum, so P must be diagonal. Furthermore, in this
frame the three space axes are equivalent, so T̃ must be of the form

T̃µν =




1 0 0 0
0 1

3 0 0
0 0 1

3 0
0 0 0 1

3



σ

c
T 4

(
where T is temperature and σ is
the Stephan-Boltzmann constant

)
. (2.24)

The constant σT 4/c has been chosen so that T̃00 agrees with the usual expression for the energy
density in a cavity at temperature T .

We may use (2.23) to find the Tµν of an arbitrary plane wave by rotating our coordinate
system so that the old x-axis lies along an arbitrary unit vector n̂. The Λ matrix of such a
rotation is

Λµν =

(
1 

 Rij

)
,

where  ≡ (0, 0, 0) and R is a rotation matrix such that

R ·




1
0
0


 = n̂ (the x-axis is rotated into n̂).

Hence

ΛµνT
νγ =




1 1 0 0
nx nx 0 0
ny ny 0 0
nz nz 0 0



E2

c2
cos2(k · x). (2.25)

To transform the second index of T we transpose the matrix (2.25) and again premultiply by
Λµν :

T ′µν = ΛµγΛ
ν
δT

γδ = Λνδ(Λ
µ
γT

γδ)

=

(
1 

 R

)



1 nx ny nz
1 nx ny nz
0 0 0 0
0 0 0 0



E2

c2
cos2(k · x)

=




1 nx ny nz
nx nxnx nynx nznx
ny nxny nyny nzny
nz nxnz nynz nznz



E2

c2
cos2(k · x).

Multiplying this matrix through by k2 = ω2/c2 we get

T ′µν = kµkν(E/ω)2 cos2(k · x), (2.26)

where kµ is the null up vector whose spatial part runs along k ≡ ω
c n̂. From this little exercise

we learn the following: Since kµkν is already a tensor, Tµν can be a tensor only if the coefficient
(E/ω)2 cos2(k ·x) is a scalar. The argument of the cosine is itself a scalar, so E2/ω2 must also
be a scalar. Consequently, different observers of the same e.m. wave measure field strengths
proportional to the perceived frequencies of the wave.

Exercise (4):

The Earth’s velocity changes by about 60 km s−1 each six months. When pointed to a
particular galaxy at angle θ from the direction of the Earth’s motion, a telescope detects
I(ω)dΩdω photons per unit time with frequencies in (ω + dω, ω) and wavevectors in the
solid angle dΩ. Use equation (2.25) to show that six months later the telescope measures
(ω′/ω)2I(ω) photons per unit frequency, time and steradian, where ω′ = γ(1 + β cos θ)ω

(β ≃ 2 × 10−4, γ = 1/
√

1− β2). [Hint: you’ll probably want to prove the relations
(i) I(ω)d lnωdΩ = I ′(ω′)d lnω′dΩ′, (ii) cos θ′ = (cos θ + β)/(1 + β cos θ) and (iii) dΩ′ =
dΩ/[γ2(1 + β cos θ)2].

]
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2.5 Geometrical Interpretation of 2nd Rank Tensors

10-tuples From matrix algebra we know that any symmetric (or even Hermitian) matrix
M can be diagonalized by moving to coordinates in which the axial directions coincide with
M’s eigenvectors: if B is the unitary matrix formed by lining up in columns the properly
normalized eigenvectors, then M′ ≡ B† · M · B is diagonal with M’s eigenvalues λi for its
non-zero elements. Hence the quadratic form Q ≡ x′ · M′ · x′ is just λ1x

′2
1 + λ2x

′2
2 + . . ..

Consequently the equation Q = constant defines either an ellipsoid (if all the λi have the same
sign) or a hyperboloid.

In the case of a symmetric spacetime tensor we consider the quadratic form Q =
xαM

αβxβ = xαMαβx
β . It is easy to see that in the case M = η this defines a hyperboloid:

Surfaces of constant x · η · x

The hyperboloids obtained when Q < 0 are called mass shells because they contain all
the points reachable by the momentum vector of a particle of given rest mass. The singular
hyperboloid Q = 0 is the light cone.

In the case in which M is the energy momentum tensor T̃ of a black-body radiation
field, equation (2.24) shows that Q = constant defines an ellipsoid with axes in the ratios
1 :

√
3 :

√
3 :

√
3, i.e. a 4-sphere that has been squashed along the t-axis.

Algebraically a 10-tuple M is a machine for turning one vector into another: b = M · a.
How is the ellipsoid/hyperboloid of M related to this machine? Consider the gradient with
respect to a of the quadratic form Q(a) = aαM

αβaβ ; we have

∂Q

∂aγ
=Mγβaβ + aαM

αγ = 2Mγβaβ (by the symmetry of M)

= 2bγ .

(2.27)

Thus the output vector b is half the gradient of the ellipsoid/hyperboloid represented by Q at
the position of the input vector a:
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What are the physical interpretations of the input and output vectors appropriate to an energy-
momentum tensor T? Every 3-dimensional element dV of 4-dimensional spacetime may be
characterized by the 4-vector dV whose magnitude gives dV ’s volume and whose direction is
normal to every vector contained in dV . If dV is a cell with sides parallel to the vectors u, v
and w, then we have

dV α = ǫαβγδuβvγwδ, (2.28)

where the Levi-Civita symbol ǫαβγδ is the object which changes sign on every exchange of
indices and has ǫ0123 = 1; in particular it vanishes if any two indices are the same (see Appendix
A). Now suppose that u, v and w join events that all occur at one instant on an observer O’s
clock. Then TαβdV

β is the amount of energy-momentum at that instant in the cell formed by
u, v and w. If on the other hand u and v join simultaneous events while w joins two events
that happen one after another at the same place (from O’s point of view), then TαβdV

β is the
amount of energy-momentum that flows across the surface spanned by u and v in the time
represented by w.

Exercise (5):

Show that in n-dimensional space a totally antisymmetric tensor Aα1,α2,...,αn−1
= −Aα2,α1,...,αn−1

etc, has n independent components and can therefore be represented by a vector. Exlain
the relevance of this remark to equation (2.28).

6-tuples We have seen that 6-tuples of the form (uαvβ −uβvα) correspond to elements of
area. However, not all six-tuples have such a simple geometrical interpretation. To see show
this we use our friend ǫαβγδ to form the dual F of the Maxwell field tensor F

F
αβ ≡ 1

2
ǫαβγδFγδ

=




0 −Bx −By −Bz
Bx 0 Ez/c −Ey/c
By −Ez/c 0 Ex/c
Bz Ey/c −Ex/c 0


 ,

(2.29)

and then contract F with its dual:

f ≡ F
αβ
Fαβ

= (each element of F
αβ

)× (corresponding element of Fαβ)

=
4

c
E ·B.

(2.30)

Thus in general f 6= 0. On the other hand, when we contract a 6-tuple of the form Sαβ =
uαvβ − uβvα with its dual we obtain

s = 1
2ǫ
αβγδ(uαvβ − uβvα)(uγvδ − uδvγ)

= 2det(u,v,u,v) = 0.
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Hence the Maxwell field tensor can be represented as an area element only in the special case
E ·B = 0 (as in a radiation field).

The horrid truth is that a generic Maxwell field tensor describes a geometrical entity that
has no close analogue in three dimensions. Its simplest representation is in terms of two surface
elements; one of these may be taken to be defined by two space-like vectors and to describe
the magnetic flux, while the other element involves one space-like and one time-like vector
and describes E. But this decomposition is no more unique than are the three orthogonal
projections of a widget produced in a drawing office; they merely serve to describe to lower-
dimensional beings a single higher-dimensional entity.

One useful way of thinking of F is as a machine which tells us how much “electromagnetic
flux” Φ is passing through any 2-surface:

Φ(u,v) ≡ Fαβu
αvβ = 1

2FαβS
αβ where Sαβ ≡ (uαvβ − uβvα). (2.31)

Exercise (6):

Show that in the case u = δx êx and v = δy êy we have Φ = Bzδxδy, and that in the case
u = δz êz and v = δct êct we have Φ = Ezδzδt.

2.5 Derivatives of Tensors

Derivatives with respect to any system of coordinates can be expressed in terms of derivatives
w.r.t. any other system by use of the chain rule:

∂

∂x′µ
=

∂xν

∂x′µ
∂

∂xν
. (2.32)

If the primed and unprimed systems are linked by a Lorentz transformation,

x′
ν
= Λνµx

µ, (2.33)

we have on multiplying by Λν
κ and summing over ν,

Λν
κx′

ν
= Λν

κΛνµx
µ = xκ,

where the last step follows by (2.10). Differentiating we get

∂xκ

∂x′ν
= Λν

κ. (2.34)

Thus
∂

∂x′µ
= Λµ

ν ∂

∂xν
, (2.35)

and we see that ∂/∂xµ transforms like a down vector.

Notes:

(i)
∂

∂xµ
operates on scalars to produce vectors: Gµ ≡ ∂φ

∂xµ
≡ φ,µ

∂

∂xµ
operates on vectors to produce 2nd rank tensors:

Gνµ ≡ ∂Aν
∂xµ

≡ Aν ,µ

∂

∂xµ
operates on tensors to produce higher-rank tensors:

Gλνµ ≡ ∂Bλν
∂xµ

≡ Bλν ,µ
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The operand’s indices can be either up or down: Gνµ = Aν ,µ.

(ii) If we contract the tensor produced by operating on a vector, we get a scalar, the 4-
divergence ψ = Aµ,µ.

(iii) We can reduce the number of indices on a higher-rank tensor by contraction: Aµ = Gµν ,ν .

(iv) The 4-analogue of taking the curl of a vector is to antisymmetrize the tensor formed by
operating on a vector: Fµν = (Aν ,µ−Aµ,ν ). If Aν = φ,ν , then Fµν = 0 because partial
derivatives commute.

Example:

In e.m. the usual vector potential A and the electrostatic potential φ form the four com-
ponents of an up vector

Aµ = (φ/c,Ax, Ay, Az) [⇒ Aµ = (−φ/c,Ax, Ay, Az)]. (2.36)

Our old friend the Maxwell field tensor F is then

Fµν = −(Aµ,ν −Aν ,µ ). (2.37)

Thus F12 =
∂Ay
∂x

− ∂Ax
∂y

= Bz and F01 =
Ȧx
c

+
1

c

∂φ

∂x
= −Ex/c.

Derivatives with respect to proper time The history of a particle defines a curve in
space-time. Let λ be a parameter which labels points on the curve in a continuous way. Then
the coordinates xµ of points on the curve are continuous functions xµ(λ). For δλ≪ 1 the small
up vector

δxµ ≡ dxµ

dλ
δλ

almost joins two points on the curve. Hence it is time-like and δxµδxµ < 0. For any two points
A and B on the curve, we define

τ ≡ 1

c

∫ B

A

√
−dxµ

dλ

dxµ
dλ

dλ (2.38)

to be the proper time difference between A and B along the curve. If the curve is a straight
line, we may transform to the coordinate system in which xµ = (ct, 0, 0, 0) at all points on the
curve, and then

τ =
1

c

∫ B

A

√
−dct

dλ

d(−ct)
dλ

dλ = [tB − tA]. (2.39)

Hence the name. We regard the coordinates xµ of events along the trajectory as functions
xµ(τ) of the proper time. Differentiating w.r.t. τ and multiplying through by the rest mass m0

we obtain a 4-vector, the momentum

pµ ≡ m0
dxµ

dτ
. (2.40)

From the zeroth component of this equation we have dt = γdτ ; the hearts of passengers on a
fast train appear to beat slowly to a medic on the station platform.
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2.6 Laws of e.m. and Mechanics in Tensor Form

The relativistic generalization of Newton’s second law is

m0
d2xµ

dτ2
=

d

dτ

(
m0

dxµ

dτ

)
=

dpµ

dτ
= fµ, (2.41)

where f is the 4-force. The last three components of f are just the Newtonian force components
fi. With µ = 0 equation (2.41) states that the zeroth component of f is to 1/c times the rate
of change of the particle’s energy cp0; hence physically f0 is 1/c times the rate of working of
the force w. In summary

fµ = (w/c, fx, fy, fz). (2.42)

Raising the indices in (2.37) and forming the divergence, we get four equations

Fµν ,ν =




1

c

∂Ex
∂x

+
1

c

∂Ey
∂y

+
1

c

∂Ez
∂z

∂Bz/∂y − ∂By/∂z − 1
c2
∂Ex/∂t

−∂Bz/∂x+ ∂Bx/∂z − 1
c2
∂Ey/∂t

∂By/∂x− ∂Bx/∂y − 1
c2 ∂Ez/∂t


 =

( 1
c∇ ·E

∇×B− 1

c2
∂E

∂t

)
. (2.43)

The zeroth component is by Poisson’s equation equal to ρ/(cǫ0) = cµ0ρ, where ρ is the charge
density. By Ampere’s law, the last three of these equations are equal to µ0j, where j is the
current density. Hence if we form a 4-vector

jµ = (cρ, jx, jy , jz), (2.44)

we may write four of Maxwell’s equations as

Fµν ,ν = µ0j
µ. (2.45)

It is straightforward to verify that Maxwell’s other four equations can be written

Fµν ,λ+Fλµ,ν +Fνλ,µ= 0 (µ 6= ν 6= λ). (2.46)

Exercises (7):

(i) Show that when λ, µ and ν equal 1, 2 and 3 respectively, (2.46) becomes ∇ ·B = 0.

(ii) Show that with equation (2.29) equation (2.46) may also be written F
µν
,ν = 0.

Charge conservation is expressed as

µ0j
µ,µ= Fµν ,νµ= 0, (2.47)

where the last step follows by the antisymmetry of F.

The natural definition of the 4-current associated with a particle of charge q is

Jµ = q
dxµ

dτ
. (2.48)

Since the force exerted on a charged particle by an e.m. field has to be linear in q, the fields
represented by Fµν , and the particle’s velocity vector, a suitable 4-vector to try as the force is

fµ = FµνJν . (2.49)

Tentatively inserting this into (2.41) and multiplying through by dτ/dt = 1/γ to obtain the
acceleration as measured in the laboratory frame, we get

dpµ

dt
= qFµν

dxν

dt
. (2.50)

It is straightforward to check that the last three components of this vector are

d

dt

(
m0γ

dxi
dt

)
= q(v×B+E)i,

while the zeroth component is
d(m0cγ)

dt
=
q

c
E · v,

or, in words, “the rate of change of the particle’s energy mc2 is equal to the rate of working of
the Lorentz force.”
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Mass-energy conservation Consider the flux of mass-energy into and out of some small
region W of spacetime. To the past and future W is bounded by the 3-dimensional sets of
events that occur in some physical container (an empty beer can?) at the times t0 and t1 > t0
in the can’s rest frame. In spacetime these sets are represented by 4-vectors V

(0)
µ and V

(1)
µ . We

orientate V
(0)
µ so that it points into the past, while V

(1)
µ looks to the future. Since the contents

of the can may not be uniform, we decompose both V(0) and V(1) into a large number of small
pieces dV, each centred on a different position within the can. The balance of W ’s boundary
comprises the 3-dimensional set of events that occur on the can’s surface at times between t0
and t1. We represent this part of W ’s boundary by elements dV

(s)
µ (x), each of which points

out of the can.

Let T(x) be the energy-mometum density in the can. Then the energy-momentum in the

can at t0 is pµ(0) = −
∫
can,t0

TµνdV
(0)
ν , while that present at t1 is pµ(1) =

∫
can,t1

TµνdV
(1)
ν .

If energy-momentum is to be conserved, the difference between these two vectors must rep-
resent the energy-mometum that flows into the can between t0 and t1. Thus the first law of
thermodynamics requires that

∫∫∫

can,t1

TµνdV (1)
ν +

∫∫∫

can,t0

TµνdV (0)
ν = −

∫∫∫

surface

t0<t<t1

TµνdV (s)
ν .

Thus in a natural notation we have

∮
TµνdVν = 0. (2.51)

Furthermore, the usual proof of Gauss’s theorem generalizes easily to the statement that for
any sufficiently differentiable tensor Gµν we have

∫

τ

Gµν ,ν d4x =

∮

∂τ

GµνdVν , (2.52)

where ∂τ denotes the three-dimensional boundary of the four-dimensional region τ . Thus an
alternative expression of the conservation of energy-momentum is

Tµν ,ν = 0. (2.53)

It is interesting to see how this works out in practice. Consider the case of a dust of
particles, for which T is given by (2.17). Thus

Tµν ,ν =
∂

∂xν
(
n0m0v

µvν
)

= n0m0
dxν

dτ

∂vµ

∂xν
+m0v

µ ∂(n0v
ν)

∂xν
.

(2.54)

The first term vanishes because dp/dτ = 0 for a free particle and the divergence in the second
vanishes because particles are conserved.
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Exercises (8):

(i) By calculating the divergence of (2.19) demonstrate the conservation in vacuo of electro-
magnetic energy-momentum.

(ii) Show that when dp/dτ is given by (2.50) with qF 6= 0, the sum of the energy-momentum
tensors of the dust and the field is conserved, although the individual divergences do not
vanish.

2.7 Summary

The special theory of relativity requires that any physical quantity must be a number that
describes some geometrical entity in spacetime. Such an entity must be an n-tuple, where n =
1, 4, 6, 10, . . .. Physical laws must be expressed as equations connecting the n-tuples associated
with different physical quantities. These equations must be constructed in accordance with the
rules of tensor calculus, which permit only:

(i) the multiplication of n-tuples to form either higher-rank n-tuples (as inHµν = xµpν−xνpµ)
or lower-rank n-tuples (as in fµ = FµνJν), or

(ii) the addition of n-tuples of the same rank.

In particular, both sides of every acceptable equation always form valid n-tuples of the same
kind.

Rest-mass, electric charge and total spin are scalars (1-tuples). The most important 4-
vectors (4-tuples) include any particle’s energy-momentum p, e.m. current J or acceleration
dp/dτ , and the potential A of the e.m. field. Important 6-tuples include any particle’s angular
momentum H and the Maxwell field tensor F. The key 10-tuples are the metric tensor η that
enables us to distinguish future and past and to assign magnitudes to n-tuples, and density of
the energy-momentum T due to either particles or fields.

In 4-vector notation the key equation of mechanics and e.m. are

v =
dx

dτ
; p = m0v ; J = qv

f = F · J ;
dp

dτ
= f

Fµν = −(Aµ,ν −Aν ,µ ) ; Fµν ,ν = µ0j
µ ; F

µν
,ν = 0,

where F
µν ≡ 1

2ǫ
µνγδFγδ. The energy-monentum tensors of a zero-pressure gas and of the e.m.

field are

T = n0m0vv (dust)

T = 1
4
trace(F · F)I− F · F (e.m. field).

3 Newton’s Theory & the Principle of Equivalence

3.1 Newton’s Theory

According to Newton, every body attracts every other body with a force that is proportional
to the product of the masses of the two bodies and inversely proportional to the square of the
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distance between them. Hence the force on a unit mass at x that is generated by a distribution
of matter of density ρ(x′) is

f(x) = G

∫
x′ − x

|x′ − x|3 ρ(x
′) d3x′, (3.1)

where G = 6.672(4)×10−11 m3 kg−1 sec−2 is Newton’s constant. If we define the gravitational
potential Φ(x) by

Φ(x) = −G
∫

ρ(x′)

|x′ − x| d
3x′,

and notice that

∇x

(
1

|x′ − x|

)
=

x′ − x

|x′ − x|3 ,

we find that we may write f as

f(x) = ∇x

∫
Gρ(x′)

|x′ − x| d
3x′

= −∇Φ.

(3.2)

If we take the divergence of equation (3.1), we find

∇ · f(x) = G

∫
∇x ·

(
x′ − x

|x′ − x|3
)
ρ(x′) d3x′. (3.3)

But

∇x ·
(

x′ − x

|x′ − x|3
)

= −4πδ(x′ − x) (where δ is the Dirac δ-function) (3.4)

as one may show, on the one hand by evaluating the derivative at x 6= x′, and on the other
hand by using the divergence theorem to integrate the left side through a small sphere centred
on x = x′. Combining equations (3.2), (3.3) and (3.4) we obtain Poisson’s equation

4πGρ = ∇2Φ = −∇ · f. (3.5)

Elegant though it is, this equation cannot represent the whole truth about gravitational
physics since it is not constructed according to the rules of tensor calculus summarized in §2.7;
if the right side of equation (3.5) is to form an n-tuple, it must form a scalar since it has only
one component. On the other hand, since mass is just a manifestation of energy, we expect the
quantity ρ appearing on the left side of equation (3.5) to represent energy density, and this we
know to form the 00-component of the 10-tuple T. So we either have to think of some scalar
thing to put on the left in the place of ρ, or we have to augment Φ with a whole bunch of extra
potentials, its companions in some new 10-tuple g, and somehow extend the single equation
(3.5) to a set of ten equations from which the whole set of potentials can be determined.

Consideration of the predicament of a physicist who knows about relativity and electro-
statics but not about magnetism will clarify this point. This person looks at the electrostatic
form of Poisson’s equation

∇2φ = −q/ǫ0, where q is charge density,

and thinks

“ q isn’t a scalar because of the Lorentz-Fitzgerald contraction (in fact, q is the 0th compo-
nent of the current density j),5 so φ can’t be a scalar either. Seems I’ll have to augment

5 See equation (2.44).
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φ with three other potentials, say Ax, Ay and Az. Then that ∇2 won’t do either, because
it’s no kind of n-tuple. I’ll replace it with the d’Alembertian, which is a scalar. Then I’ll
have (

∇2 − 1

c2
∂2

∂t2

)
φ = − q

ǫ0
and

(
∇2 − 1

c2
∂2

∂t2

)
Ai = − ji

ǫ0
. ”

By this point our friend would be well on the way to a Nobel prize.

We shall see that the natural generalization of this argument to the case of gravity yields

(
∇2 − 1

c2
∂2

∂t2

)
g = constant ×T.

However, Einstein showed that the way forward is not to tinker thus with Newtonian gravity,
but to assign to the gravitational force a unique position as the force generated by the very
dynamics of spacetime itself. The stimulus for this remarkable intellectual leap was the modern
form of Galileo’s famous observation that all bodies fall at the same speed.

3.2 The Principle of Equivalence

Inertial & gravitational mass As conventionally stated Newton’s laws of motion are
part definition and part empirical law. The purely empirical content can be summed up by the
statements:

(i) the more carefully one isolates a body from external influences, the more nearly does its
velocity v remain constant;

(ii) when several otherwise isolated bodies α = 1, . . . , N interact with one another, it is possible
to assign a number mα to each body such that the quantity p ≡ ∑

αmαvα remains
constant.

We call mα the inertial mass of body α. When bodies are interacting, and therefore have
changing individual momenta pα ≡ mαvα, it is convenient to imagine that they are acting on
one another with a quantity “force”, fα ≡ dpα/dt. By statement (ii),

∑
α fα = 0.

Again according to Newton, the gravitational force between bodies α and β is

fαβ = F
xα − xβ

|xα − xβ |3
,

where the constant F = GMαMβ is proportional to the product of two numbers Mα and Mβ

characteristic of the bodies—we call these masses gravitational masses of the bodies. If we
place two bodies β and γ at the same distance from α, their accelerations will be in the ratio

|dvβ/dt|
|dvγ/dt|

=
Mβmγ

mβMγ
=

Γβ
Γγ
, where Γν ≡ Mν

mν
.

Thus β and γ will fall towards α at the same rate only if Γβ = Γγ . Newton followed Galileo in
thinking that all bodies fall at the same rate, and therefore assumed (with a suitable choice of
G) that Γ = 1 for all particles. But in the 17th century the experimental basis of this step was
not strong.

3.3 Dicke–Eötvös Experiments

The most straightforward way to check whether Γ is the same for all masses is to compare the
periods of pendulums made of different materials but having the same lengths. However, the
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impossibility of eliminating frictional resistance to the motion of a pendulum severely restricts
the accuracy that can be attained in experiments of this kind.

In 1890 a Hungarian, Baron Roland v. Eötvös carried out a much more sensitive test of
the proportionality of inertial and gravitational mass. A modified form of this experiment was
repeated with greater accuracy by Robert Dicke and his students in Princeton in the 1960’s.

Fig. 3 shows a schematic apparatus for the Dicke experiment. Two balls of approximately
equal weight are attached to the ends of a short rod. This is attached to a wire so that it
can execute torsional oscillations about a vertical axis. For simplicity we assume that that a
new moon is nearly eclipsing the Sun at the time of the experiment, which begins at dusk.
Then the acceleration of the balls on account of the Earth’s spin lies in the plane of the paper,
while that due to the Earth’s rotation about the Sun and Moon is perpendicular to the paper.
Hence we may forget about the spin of the Earth as we balance the books as regards forces
perpendicular to the paper. The bar is aligned North-South and released. If Γ is identical for
both balls and equal to Γ for the Earth as a whole, the gravitational force towards the Sun
and Moon exactly equals the acceleration due to their instantaneous motion transverse to the
Earth-Sun line, and there is no tendency for the wire to twist. But if Γ is abnormally large for
one of the balls, say that to the South, this ball will start to fall towards the Sun faster than
the other ball, and the rod will start to twist in the direction indicated. Consequently, the
bar (which has a period of about one hour) will oscillate about an equilibrium position that is
skewed with respect to the N-S line.
Figure 9truecm. 3

Schematic of the Dicke experiment to determine Γ.

During the evening, the torque on the wire due to the extra gravitational force on the
southern ball diminishes. After midnight the torque starts to grow again, but with reversed
sign. By dawn its displacement of the centre of oscillation is exactly opposite to that operating
at dusk. By looking for a component in the motion of the bar with period 24 hrs and the
expected phase with respect to solar time, Dicke and his collaborators were able to establish
the limit |Γ− 1| < 10−11.

What material should be used for the balls? Various things were tried but it is most
interesting to compare heavy with light atoms, for example aluminium with gold, because:

(i) the nuclei of such atoms have very different proton/neutron numbers (Al = 13/14, Au =
79/118).

(ii) such atoms have very different contributions to their mass from:

(a) electrostatic energy [35 (Ze)
2r−1/mc2 ≃ 0.003 (Al) or 0.008 (Au)];

(b) overall binding energy [Mass defect/mc2 = 0.0089 (Al) or 0.0084 (Au)];

(c) virtual positrons [me+/mc
2 ≃ 3×10−7 (Al) or 2×10−6 (Au); see p. 33 of Gravitation

& Relativity by M. G. Bowler for details].

Hence from these experiments we may conclude that |Γ − 1| ≪ 1 for all forms of mass-
energy, with the exceptions of energy associated with weak and gravitational interactions.6

Extrapolating wildly from these experiments we hypothesize:

Strong Principle of Equivalence: No experiment could distinguish between a homoge-
neous gravitational field and an accelerating frame of reference. In particular, in any frame
which falls freely through such a field all the laws of physics are the same as if no field were
present.

Real gravitational fields are never homogeneous, so they can be distinguished from an
accelerating frame of reference. For example, consider a star-warrior who regains consciousness
in a closed cabin some time after being taken prisoner. He reaches for his watch and knocks

6 These contribute negligibly to the masses of atoms. However, since weak interactions are known to be
intimately connected with electromagnetism, it is extremely unlikely that the value of Γ associated with weak-
interaction energy differs from that associated with e.m. energy.
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it to the floor. Fortunately it falls only slowly, so it continues to tick. Is he in a (possibly
elastic) accelerating spaceship, or is he on an asteroid? By now fully alert he determines that
plumb bobs on either side of the cabin point towards a spot some ten miles away. He instantly
concludes that he is either on an asteroid or that opposite sides of his cabin are accelerating
away from one another. Moments later he verifies that his bobs have not moved apart. Hence
he must be in the gravitational field of an asteroid.

Exercise (9):

What would he have concluded if he had found that his bobs pointed away from a spot
thirty yards distant?

This example shows that a gravitational field is generally not equivalent to an accelerating
frame of reference. From the Principle of Equivalence we merely conclude that physics in
an accelerating frame of reference must look like physics in a particular type of gravitational
field. However, this observation suggests a strategy for discovering how things behave in a
strong gravitational field: we first work out the equations governing motion in the absence of
a gravitational field (which we understand) when referred to a non-inertial frame of reference.
This is a purely mathematical exercise. The equations we derive will contain terms associated
with pseudo-forces generated by our accelerating frame of reference. Since there is really no
gravitational field present, these pseudo-force terms will be restricted in form. The plan is
to obtain equations for physics in the presence of a true gravitational field by lifting these
restrictions.

4 Tensors in General Relativity

We start by discovering what the laws of e.m. and mechanics look like in a non-inertial frame.
Let x′

µ
be such a non-inertial frame and xµ an inertial frame. Then each primed coordinate is

a smooth function x′
µ
(xν) of the four inertial coordinates. Let xµ(τ) be an arbitrary trajectory

through space-time and ψ(xµ) an arbitrary scalar function of the inertial coordinates xµ. Then
the rate of change of ψ as perceived by an observer who moves along the trajectory xµ(τ) is

dψ

dτ
=

dxµ

dτ

∂ψ

∂xµ
≡ vµ

∂ψ

∂xµ
,

where we have defined the observer’s 4-velocity vµ ≡ dxµ/dτ . Since by the chain rule

∂

∂xµ
=
∂x′

ν

∂xµ
∂

∂x′ν
(4.1)

we have
dψ

dτ
= vµ

∂x′
ν

∂xµ
∂ψ

∂x′ν
.

If we define the observer’s 4-velocity in the non-inertial primed frame to be

v′
ν ≡ ∂x′

ν

∂xµ
vµ, (4.2)

then we may write
dψ

dτ
= v′

ν ∂ψ

∂x′ν
.

A natural extension of this argument leads us to define the primed components of any up
vector Aµ as given in terms of the un-primed components by

A′ν ≡ ∂x′
ν

∂xµ
Aµ. (4.3)
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Note that if the primed frame were inertial, we would have x′
ν
= xν0 + Λνµx

µ (xν0 a constant
4-vector), so that ∂x′

ν
/∂xµ = Λνµ and the transformation (4.3) would reduce to a standard

Lorentz transformation of an up vector.

If vµ and uµ are two up vectors, all inertial observers will agree on the value of the scalar

s ≡ ηµνu
µvν . (4.4)

How can we recover this number from the primed components v′
µ
and u′

µ
? First we express

vµ in terms of v′µ. We use the chain rule to express dx′µ as

dx′
µ
=
∂x′

µ

∂xν
dxν . (4.5)

Dividing by dx′
κ
and proceeding to the limit dx′

κ → 0 at fixed values of all the other coordi-
nates, we get

δµκ =
∂x′µ

∂x′κ
=
∂x′µ

∂xν
∂xν

∂x′κ
. (4.6)

Thus the matrix ∂xν/∂x′
κ
is the inverse of the matrix ∂x′

µ
/∂xν . Premultiplying equation

(4.2) by this matrix we solve for vµ:

vµ =
∂xµ

∂x′ν
v′
ν
. (4.7)

Using this relation to eliminate the unprimed components from (4.4) we get

s =
(
ηµν

∂xµ

∂x′κ
∂xν

∂x′λ

)
u′
κ
v′
λ
.

If we define

g′κλ ≡ ηµν
∂xµ

∂x′κ
∂xν

∂x′λ
, (4.8)

we have
s = g′κλu

′κv′
λ
. (4.9)

Like ηκλ the general metric tensor g′κλ is symmetric; g′κλ = g′λκ. However, it is not
necessarily diagonal. It is called the metric tensor because it allows us to calculate the lengths
of vectors such as v′

λ
.

We may use g′κλ to lower indices;

v′κ ≡ g′κλv
′λ. (4.10)

Let g′
µν

be the tensor which raises indices. Then in order that the operations of raising and
lowering be mutual inverses we require that for all v′

µ

δµλv
′λ = v′

µ
= g′

µκ
g′κλv

′λ.

i.e. that g′
µκ
g′κλ = δµλ and hence that g′

µκ
is the inverse of g′κλ.

Exercise (10):

Show that this definition of g′
µκ

is equivalent to the definition

g′
κλ

=
∂x′

κ

∂xµ
∂x′

λ

∂xν
ηµν . (4.11)

Similarly, if for any tensors F and G we define

F ′κλ ≡ ∂x′
κ

∂xµ
∂x′

λ

∂xν
Fµν and G′

κλ ≡ ∂xµ

∂x′κ
∂xν

∂x′λ
Gµν , (4.12)

we ensure that the primed observer will be able to calculate the scalar quantities Fµνvµuν and
Gµνv

µuν from primed quantities. The generalization to tensors of arbitrary rank is obvious.
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Exercise (11):

Show that if x′
µ
and x′′

µ
are two non-inertial frames, the transformation rules

v′′
µ
=
∂x′′

µ

∂x′ν
v′
ν

; v′′µ =
∂x′

ν

∂x′′µ
v′ν (4.13a)

F ′′µν =
∂x′′

µ

∂x′κ
∂x′′

ν

∂x′λ
F ′κλ etc (4.13b)

apply.

[Hint: divide (4.5) by dx′′
κ
to obtain a relation equivalent to

∂x′′
µ

∂xκ
∂xκ

∂x′ν
=
∂x′′

µ

∂x′ν
]
.

Notice that there is an easy way to figure out whether to multiply by ∂xµ/∂x′
ν
or by

∂x′
µ
/∂xν when transforming an object Gµ... or Gµ...: If the prime are up on the left, put them

up on the right by using ∂x′
µ
/∂xν ; if the unprimes are up on the left put them on top on

the right with ∂xµ/∂x′ν . The other kind of index in the equation will “cancel out” just as in
ordinary multiplication of fractions. These rules extend in the obvious way to down vectors.

4.2 Equation of Motion in a Non-Inertial Frame

We have given a prescription for transforming the 4-velocity vµ ≡ dxµ/dτ along a trajectory
into a non-inertial frame. We may similarly transform the acceleration aµ ≡ d2xµ/dτ2 into a
non-inertial frame:

a′
µ
=
∂x′

µ

∂xν
d2xν

dτ2
. (4.14)

How is v′
µ
related to a′

µ
? Rearranging (4.14) we have

a′
µ
=

d

dτ

(∂x′µ
∂xν

dxν

dτ

)
− d

dτ

(∂x′µ
∂xν

)dxν
dτ

=
dv′

µ

dτ
− ∂2x′

µ

∂xκ∂xλ
dxκ

dτ

dxλ

dτ
,

or using (4.7) to express dxµ/dτ in terms of v′µ

dv′
µ

dτ
= a′

µ
+
( ∂2x′

µ

∂xκ∂xλ
∂xκ

∂x′α
∂xλ

∂x′β

)
v′
α
v′
β
. (4.15)

If we define the Christoffel symbol by

Γ′µ
αβ ≡ − ∂2x′

µ

∂xκ∂xλ
∂xκ

∂x′α
∂xλ

∂x′β
, (4.16)

then (4.15) may be rewritten
dv′

µ

dτ
= a′

µ − Γ′µ
αβv

′αv′
β
. (4.17)

By the relativistic law of motion (2.41), a′
µ
is equal to the 4-force per unit mass generated by,

for example, an e.m. field. Hence in a non-inertial frame the rate of change of the 4-velocity
v′
µ
is equal to the regular 4-force per unit mass plus a pseudo-force given by the second term

on the right of (4.17). This term is made up by contracting a quantity with three loose indices
with the square of the 4-velocity. From (4.16) we see that Γ′µ

αβ = Γ′µ
βα is symmetric in its

lower indices. Γ′ cannot be a tensor since all its components are zero in an inertial frame, so
if it transformed like a third-rank tensor, all its components would be zero in any coordinate
system.
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The principle of equivalence suggests that gravitational forces will take the same form as
pseudo-forces. Thus Γ should play the same role for the gravitational field as F does for the
e.m. field. To make this analogy clearer we equate in equation (4.17) the acceleration a′ with
the e.m. force per unit mass f ′/m0 on a particle of charge q and mass m0 [equations (2.48) and
(2.49)]:

dv′
µ

dτ
=

q

m0
F ′µ

νv
′ν − Γ′µ

αβv
′αv′

β
.

This equations shows that F′ and Γ′ make contributions to the rate of change of the 4-velocity
which differ mainly in the number of copies of v′ that attach to them; F′ uses one copy of v′

because photons are spin-one particles, while Γ′ employs two copies of v′ because gravitons
are spin-two objects. (Or would be if anyone could figure out how to quantise g.r.) The
other significant difference between the e.m. and pseudo-force terms in (4.17) is that the latter
contains no factor q/m0 – from the Dicke–Eötvös experiments we know that all bodies have
unit gravitational “charge-to-mass ratio”.

Just as F is a kind of gradient of A, we should be able to express Γ′ in terms of derivatives
of the gravitational potential. Indeed, we next show that g′ is the relativistic generalization of
Newton’s Φ by writing Γ′ in terms of g’s derivatives.

An application of the chain rule enables us to simplify the definition (4.16) of Γ′µ
αβ slightly:

Γ′µ
αβ = − ∂

∂x′α

(∂x′µ
∂xλ

) ∂xλ
∂x′β

= −
[ ∂

∂x′α

(∂x′µ

∂x′β

)
− ∂x′

µ

∂xλ
∂2xλ

∂x′α∂x′β

]

=
∂2xλ

∂x′α∂x′β
∂x′

µ

∂xλ
.

(4.18)

Even though Γ′ is not a tensor, we may define7

Γ′
µ,αβ ≡ g′µνΓ

′ν
αβ . (4.19)

By (4.18), (4.6) and (4.8), this is

Γ′
µ,αβ =

∂2xγ

∂x′α∂x′β
∂xδ

∂x′µ
ηγδ. (4.20)

This may be expressed in terms of derivatives of the metric tensor as follows. Differentiating
(4.8) we get

∂g′µα

∂x′β
=

∂

∂x′β

( ∂xγ
∂x′µ

∂xδ

∂x′α
ηγδ

)

=
( ∂2xγ

∂x′β∂x′µ
∂xδ

∂x′α
+
∂xγ

∂x′µ
∂2xδ

∂x′β∂x′α

)
ηγδ.

(4.21a)

The cyclic interchange of indices β → α→ µ→ β yields successively

∂g′αβ
∂x′µ

=
( ∂2xγ

∂x′µ∂x′α
∂xδ

∂x′β
+
∂xγ

∂x′α
∂2xδ

∂x′µ∂x′β

)
ηγδ. (4.21b)

∂g′βµ
∂x′α

=
( ∂2xγ

∂x′α∂x′β
∂xδ

∂x′µ
+
∂xγ

∂x′β
∂2xδ

∂x′α∂x′µ

)
ηγδ (4.21c)

If we now add (4.21a,c), subtract (4.21b) and exploit the symmetry of ηγδ, we obtain the
desired expression for Γ′ in terms of ∂x/∂g:

Γ′
µ,αβ = 1

2

(∂g′µα
∂x′β

+
∂g′βµ
∂x′α

−
∂g′αβ
∂x′µ

)
. (4.22)

7 The comma amid Γ’s subscripts should not be confused with the commas which indicate derivation; the
latter are rather larger.
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Clearly,

Γ′µ
αβ = 1

2g
′µν
(∂g′να
∂x′β

+
∂g′βν
∂x′α

−
∂g′αβ
∂x′ν

)
. (4.23)

Notice the pattern of these important formulae: the three terms in (. . .) are just the first
derivative of g with the indices cyclically permuted. The minus assign attaches to the term
which groups the indices in the same way as Γ.

4.3 Covariant Differentiation

Before we can use (4.18) to calculate the trajectory of a charged particle in a crazy coordinate
system we need to know how to calculate Fµν by taking derivatives of the e.m. potential Aν . So
our next task is to find the rules for taking derivatives of vector fields in non-inertial coordinates.

The metric tensor g′µν enables us to calculate the length s of any curve x′µ(λ) in space-time:

s ≡
∫ b

a

√∣∣∣gµν
dx′µ

dλ

dx′ν

dλ

∣∣∣dλ. (4.24)

If the curve is time-like, s is just c times the elapse ∆τ of time on the watch of the observer
whose trajectory x′

µ
(λ) is. If there is an inertial frame in which all the points on the curve

have the same value of x0, s coincides with the length of the curve as measured with metre
rules etc by an observer who is stationary in that priviledged frame. We shall call s the affine
parameter along the curve and use it to characterize points on the curve; hence we write
x′
µ
(s).

We shall sometimes need to compare vectors at different points on the curve. In an inertial
frame this is easy: two vectors are the same iff all their components are the same. But in passing
from an inertial to a non-inertial frame by equations (4.3), we change the components of vectors
in a position-dependent way. So two vectors that are equal in the sense that in an inertial frame
all their components are equal, can have different components in a non-inertial frame. We need
a way of diagnosing this condition of hidden equality.

Suppose that in an inertial frame we have a vector field A(x). By (4.3) this gives rise to
a vector field A′(x′) in a non-inertial frame. As we go along a curve x(s) the rate of change in
the vector of the field is

Ȧ ≡ d

ds
A =

dx′κ

ds

∂A

∂x′κ
. (4.25)

Using (4.7) move the A on the right into the primed system, we get

Ȧµ =
dx′

κ

ds

∂

∂x′κ

( ∂xµ
∂x′α

A′α
)

=
dx′

κ

ds

( ∂xµ
∂x′α

∂A′α

∂x′κ
+

∂2xµ

∂x′κ∂x′α
A′α

)
.

Finally, premultiplying by ∂x′
ν
/∂xµ and using (4.18) we get

Ȧ′ν ≡ ∂x′
ν

∂xµ
Ȧµ =

dx′
κ

ds

(∂A′ν

∂x′κ
+ Γ′ν

καA
′α
)
. (4.26)

(Notice that Ȧ′ν , the νth component of the vector Ȧ, is defined by this equation. It must not
be confused with the rate of change with s of the νth component of A′.) If we define a new
type of derivative, the covariant derivative by

A′ν
;κ ≡ ∇κA

′ν ≡ ∂A′ν

∂x′κ
+ Γ′ν

καA
′α, (4.27)
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then equation (4.26) can be written

Ȧ′ν =
dx′

κ

ds
∇κA

′ν . (4.28)

The second term in the definition (4.27) of the covariant derivative has the following
physical interpretation. For each value of κ, say κ = 1, we have a matrix Γ′ν

1α. When we
multiply this matrix by δx1 we obtain the Lorentz transformation matrix Λ which tells us
by how much the speed and orientation of the frame used at x differs from that used at
(x0, x1 + δx1, x2, x3).8

If A is really the same all along the curve, and only seems to change because we are using
a non-inertial coordinate system, we have Ȧ′ν = 0, and thus that the “gradient” ∇κA

′ν of A′ν

either vanishes or is “perpendicular” to the direction dx′
κ
/ds in which we are moving.

How does ∇ operate on down vectors? Consider

d

ds
(A′µB′

µ) =
dx′

κ

ds

∂

∂x′κ
(A′µB′

µ)

=
dx′

κ

ds

[(∂A′µ

∂x′κ

)
B′

µ +A′µ
(∂B′µ

∂x′κ

)]

=
dx′

κ

ds

[(
∇κA

′µ
)
B′
µ − Γ′µ

καA
′αB′

µ +A′µ
∂B′

µ

∂x′κ

]

=
dx′

κ

ds

[(
∇κA

′µ
)
B′
µ +A′µ

∂B′
µ

∂x′κ
− Γ′α

κµA
′µB′

α

]
.

This suggests that we define

∇κB
′
µ ≡

∂B′
µ

∂x′κ
− Γ′α

κµB
′
α (4.29)

for then we will have ∇κ(A
′
µB

′µ) = B′µ∇κA
′
µ+A

′
µ∇κB

′µ and ∇ will operate on such products
like any other derivative operator.

The same argument applied to quantities like G′
µνA

′µB′ν leads to the rules

G′
µν;κ ≡ ∇κG

′
µν ≡

∂G′
µν

∂x′κ
− Γ′α

κµGαν − Γ′α
κνGµα (4.30a)

G′µν
;κ ≡ ∇κG

′µν ≡ ∂G′µν

∂x′κ
+ Γ′µ

καG
αν + Γ′ν

καG
µα. (4.30b)

Notice that each index requires a Γ-symbol, with a plus or a minus sign according as the index
is up or down.

In the same spirit we define the operation of ∇ on scalars to be identical with partial
differentiation:

∇κψ =
∂ψ

∂x′κ

What action does∇ have on the metric tensor? Suppose thatA andB are two vector fields
that everywhere have the same components in an inertial frame. Then ∇κA

′µ = ∇κB
′µ = 0.

Also AµBµ = g′µνA
′µB′ν is everywhere the same. Hence for all curves x′(s)

0 =
d

ds

(
g′µνA

′µB′ν
)
.

8 In “gauge field theories” this idea is generalized to define covariant derivatives for objects ψ that live in
spaces other than space-time. In the simplest case ψ lives in the two-dimensional space of complex numbers,
for which the analogue of a Lorentz transformation is mutiplication by another complex number, say iqA1. The
covariant derivative is now Dµ ≡ ∂µ + iqAµ. If ψ is the wavefunction of a spin-zero particle of charge q, Aµ
proves to be the regular e.m. potential.
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Replacing d/ds with (dx′
κ
/ds)∇κ and differentiating each item in the bracket, we get

0 =
dx′κ

ds

{(
∇κg

′
µν

)
A′µB′ν + g′µν

[(
∇κA

′µ
)
B′ν +A′µ

(
∇κB

′ν
)]}

=
dx′

κ

ds
A′µB′ν∇κg

′
µν .

Since dx′
κ
/ds, A′µ and B′ν are all arbitrary, it follows that

∇κg
′
µν = 0. (4.31)

In words, the covariant derivative of the metric tensor is always zero.

If xµ(s) is a straight line, all components of the “tangent vector” dxµ/ds are constant in
an inertial frame. Hence in any coordinate system the tangent vector x′

µ
(s) of a straight line

satisfies the o.d.e.

0 =
dx′

κ

ds
∇κ

dx′
µ

ds
. (4.32)

Substituting for ∇κ this becomes

0 =
dx′κ

ds

( ∂

∂x′κ
dx′µ

ds
+ Γ′µ

κα

dx′α

ds

)

=
d2x′

µ

ds2
+ Γ′µ

κα

dx′
κ

ds

dx′
α

ds
(x′

µ
(s) a straight line.)

(4.33)

Exercise (12):

Obtain (4.33) by extremizing the integral (4.24) with respect to variations of the path
x′
µ
(s); a straight line is the least distance between two points.

In terms of covariant derivatives, Newton’s law of motion (2.41) and the Maxwell equations
(2.46) become

m0v
′κ∇κv

′µ = f ′µ, (4.34a)

F ′µν
;ν = µ0j

′µ. (4.34b)

The other laws of e.m. (2.37) (2.46) remain unchanged because the Christoffel symbols intro-
duced in going over from partial to covariant derivatives magically cancel.

Exercise (13):

Prove that A′
µ;ν −A′

ν;µ = A′
µ,ν −A′

ν ,µ.

4.4 Summary

The rules for transforming between non-inertial frames are the same as those for making regular
Lorentz transformation with the substitutions

Λµ
ν → ∂x′ν

∂x′′µ
; Λµν → ∂x′′µ

∂x′ν
. Thus A′′

µ =
∂x′ν

∂x′′µ
A′
ν .

The Minkowski metric η is replaced by the metric tensor g, which remains symmetric but is
no longer its own inverse; consequently the up-up and down-down forms of g are in general
distinct.
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In a non-inertial frame x the partial derivative operator ∂µ ≡ ∂/∂xµ should be replaced
with the covariant derivative operator ∇µ:

∇µψ = ∂µψ

Aν;µ ≡ ∇µA
ν = ∂µA

ν + ΓνµαA
α ; ∇µB

νλ = ∂µB
νλ + ΓνµαB

αλ + ΓλµαB
να

∇µAν = ∂µAν − ΓαµνAα ; ∇µBνλ = ∂µBνλ − ΓαµνBαλ − ΓαµνBνα

The Christoffel symbol Γ is

Γµαβ = 1
2g
µν
(∂gνα
∂xβ

+
∂gβν
∂xα

− ∂gαβ
∂xν

)
.

The covariant derivative of g always vanishes: ∇g = 0

5 Gravity, Geometry & the Einstein Field Equations

Now that we have completed our programme for discovering what physics looks like in a non-
inertial frame, it is a good idea to take a rest from all these acres of indices and summarise the
physical content of our formulae.

We have defined quantities g′µν , p
′
µ, F

′
µν , j

′
µ, Γ

′µ
αβ etc which enable us to use a non-inertial

coordinate system x′ to find the space-time trajectory of a charged particle in an e.m. field.
We defined these quantities in terms of the momenta, e.m. field tensor etc in an underlying
inertial coordinate system x and the coordinate transformation x′(x) that couples the inertial
and non-inertial systems. But we have found formulae (4.13) and (4.23) which enable us to
calculate the values g′′µν etc of all needful quantities in a second non-inertial coordinate system
without reference back to the inertial system x.

Since we shall no longer need to refer constantly to an inertial system, we now drop the
convention that the unprimed system x is inertial; from here on all systems are to be assumed

to be non-inertial unless explicitly specified as inertial.

The principle of equivalence suggests that a gravitational field will look very much like
a pseudo-force in an accelerating frame of reference. The Christoffel symbol Γ generates the
pseudo-force associated with an accelerating frame, so when a gravitational field is present Γ
will play the role of the Newtonian force f. We have identified the metric g as the relativistic
generalization of the Newtonian potential Φ on the ground that Γ can be written in terms of
derivatives of g just as f = −∇Φ.

In Newton’s theory f and Φ are related to the density ρ of gravitating matter via Poisson’s
equation (3.5). The relativistic generalization of (3.5) should be a second-order p.d.e. in g, or
equivalently, a first-order p.d.e. in Γ. What is this equation?

Since we can make Γ as large as we like simply by choosing a perverse coordinate system,
it is clear that the trick in finding suitable field equations is to find a differential operator
on Γ which differentiates away all the contribution to Γ that is caused by mere perversity of
the coordinate system. The key to finding this operator proves to be an examination of the
geometrical relationships between the lengths of lines and the magnitudes of angles between
lines.
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We have seen that the metric tensor enables us to define the length of any curve in space-
time, and in particular to determine through (4.33) which curves x′(s) are straight. Now
suppose we draw a straight line in a portion of space in which there is no gravitational field
and then draw a unit circle around some point on this line. Then no matter what coordinate
system we use for the calculations, we shall find that the length s of the circumference is
exactly π = 3.14159 . . . times the length of the circle’s diameter. How come? By changing the
coordinate system we can change g at any given point to almost any value [see (4.8)]. So how
come that when we evaluate the integral (4.24) over two completely different sets of points, we
always get answers in the same ratio? It must be that g at one point is not independent of g
at neighbouring points: g must satisfy some differential equation. Einstein’s idea, and it was
pure magic, was that it is this differential equation which tells us that there is no gravitational
field present, only a perverse coordinate system. Let us find this differential equation.

There are many geometrical relationships in addition to the one just discussed which g
must furnish if there is no gravitational field present. For example, there are 180◦ in a triangle.
But the key to the equation we are seeking turns out to be something slightly odd. It is to
consider what happens when we slide a vector around a closed curve while being careful not
to rotate the vector. If we do this on a table, the vector (a pencil, say) will be back in its old
configuration at the end of the experiment:

But on a sphere things go differently:

In fact, on a sphere of radius r, the angle through which a pencil rotates on being “parallel-
transported” around a curve is equal to the area enclosed by this curve divided by r2.

5.1 The curvature tensor
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If we parallel-transport a vector A around a closed curve x(s) in space-time, we have that at
each point on the curve ẋ · ∇A = 0 (this is just a statement of the invariance along the curve
of A’s components in an inertial frame)

0 =
dxα

ds
∇αA

µ =
dxα

ds

(∂Aµ
∂xα

+ ΓµαβA
β
)
. (5.1)

Consequently, the total change in each component Aµ on going around is

∆Aµ =

∮
∂Aµ

∂xα
dxα

ds
ds = −

∮
ΓµαβA

β dx
α

ds
ds. (5.2)

In this integral both Γµαβ and Aβ are functions of s through x(s). However, if we consider only
infinitesimal loops we may expand each component of Γ and A in power series about some
point, say X, on the loop:

Γµαβ(x) = Γµαβ(X) + (xν −Xν)
∂Γµαβ
∂xν

+ · · ·

Aµ(x) = Aµ(X) + (xν −Xν)
∂Aµ

∂xν
+ · · ·

(5.3)

Multiplying these two expansions together and substituting the result into (5.2), we get

∆Aµ = −
∮ {[

ΓµαβA
β
]
X
+
[
Γµαβ

∂Aβ

∂xν
+Aβ

∂Γµαβ
∂xν

]
X

(xν −Xν) + · · ·
}dxα

ds
ds.

Since the first square bracket is constant, it can be taken outside the integral sign. Integrating
its coefficient dxα/ds around our closed contour we then obtain zero. The second square bracket
may also be taken outside the integral sign. Then eliminating ∂Aβ/∂xν with (5.1) we obtain

∆Aµ =
[
ΓµαβΓ

β
νγA

γ −
∂Γµαβ
∂xν

Aβ
]
X

∮
(xν −Xν)dxα + · · ·

=
[
ΓµαβΓ

β
νγ −

∂Γµαγ
∂xν

]
X

Aγ
∮
xν dxα + · · ·

(5.4)

The integrals in (5.4) for which ν = α vanish because each such integral is simply the change
in 1

2 (x
α)2 on going around the loop. Furthermore, when α 6= ν, the integral

∮
xνdxα is equal

in magnitude and opposite in sign to the integral
∮
xαdxν as this picture of the (xα, xν) plane

shows:

We define the directed area enclosed by the loop to be the antisymmetric tensor

∆Sνα ≡
∮
xν dxα. (5.5)
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This done we may write

∆Aµ =
[
ΓµαβΓ

β
νγ −

∂Γµαγ
∂xν

]
X

Aγ∆Sνα + . . . (5.6)

In the absence of a gravitational field, ∆Aµ = 0 for any Aµ. Furthermore, by an ap-
propriate choice of loop ∆Sνα can be set equal to any given antisymmetric tensor.9 So it is
tempting to conclude that the square bracket in the last equation vanishes. However, when we
contract an antisymmetric tensor with a tensor of mixed symmetry, only the antisymmetric
portion of the mixed tensor contributes to the sums. Hence from the vanishing of ∆Aµ for
arbitrary Aµ and ∆Sνα we can infer only the vanishing of the portion of the square bracket
that is antisymmetric on exchange of ν and α. We therefore define the curvature tensor as
minus twice this part of the square bracket in (5.6)

Rµγαν ≡
∂Γµαγ
∂xν

−
∂Γµνγ
∂xα

+ ΓµνβΓ
β
αγ − ΓµαβΓ

β
νγ , (5.7)

and rewrite (5.6) as
∆Aµ = − 1

2
RµγανA

γ∆Sνα + · · · (5.8)

Since ∆Aµ is the difference between two vectors that are based at the same point, it is itself a
vector. Furthermore, both Aγ and ∆Sνα are tensors. Hence Rµγαν must also be a tensor as its
name implies. In the absence of a gravitational field we have

Rµγαν = 0. (5.9)

This is the relativistic generalization of Laplace’s equation ∇2Φ = 0. As promised, it is first-
order in Γ and second-order in g. Notice that it is non-linear in both these quantities; this is
highly significant (and very inconvenient!).

5.2 Derivation of the Field Equations

If we are to upgrade (5.9) into the relativistic genelarization of Poisson’s equation (3.5), we
must replace the zero on the right with something that involves the density of mass-energy. We
have seen [equations (2.22) and (2.17)] that the mass-energy density forms one component of a
symmetric second-rank tensor T. If we want a covariant theory of gravity we are going to have
to allow the mass-energy density to bring along all its friends in T into the field equations. So
consider replacing the zero in (5.9) with

constant × Tαβ .

This has only two indices, whereas the left of (5.9) has four indices. Hence we must either use
g (which is the only generally available tensor) to add two more indices on the right, or we
must contract away two indices on the left. It is not hard to see that these two courses are
equivalent. We do it the second way.

Which two indices should we contract? Well, from the defining expression (5.7) one may
show that Rµναβ has the following symmetries:

Rµναβ = Rαβµν ; Rµνβα = −Rµναβ = Rνµαβ . (5.10)

In words; R is symmetric on interchange of the first pair of indices with the second pair, and
antisymmetric under interchange of the indices within each of these pairs. Thus we get zero
if we contract within any pair, and the same answer (to within a sign) if we contract between
pairs. It is conventional to define the Ricci tensor by

Rαβ ≡ Rµαµβ . (5.11)

Exercise (14):

Show that Rµναβ has 18 independent indices.

9 This is a lie, as the discussion of 6-tuples in §2.5 shows. However, the argument can be fixed up by adding
the changes ∆A around two non-coplanar paths.
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Note:

In terms of Γ, Rαβ is by (5.7)

Rαβ =
∂Γµµα
∂xβ

−
∂Γµαβ
∂xµ

+ ΓλαµΓ
µ
βλ − ΓµλµΓ

λ
αβ . (5.12a)

Furthermore, by (4.23)

Γµαµ = Γµµα = 1
2g
µν ∂gµν
∂xα

. (5.12b)

While Rαβ has the right number of indices to go on the left of our field equations, the law
we seek is not Rαβ = Tαβ because mass-energy conservation is expressed by the vanishing of
the covariant divergence of T [generalization to non-inertial coordinates of eq. (2.53)]. Hence
whatever goes on the left of our field equations must have zero divergence. Unfortunately, the
divergence of Rαβ is not always zero. However, it turns out that (see Appendix B)

Rα
β
;β = 1

2R;α, (5.13)

where the Ricci scalar R is defined by

R ≡ Rβ
β . (5.14)

From (5.13) it follows that a tensor made out of Rµναβ which has zero divergence is

Gαβ ≡ (Rαβ − 1
2
gαβR). (5.15)

G is called the Einstein tensor because the p.d.e.’s which describe the generation of a grav-
itational field by matter are

Gαβ = −8πG

c4
Tαβ . (5.16)

Here G is Newton’s gravitational constant, as we shall shortly show. An alternative, and often
handier, form of (5.16) is obtained by contracting both sides of the equation to obtain

Gα
α = (Rα

α − 1
2δ
α
αR) = −R = −8πG

c4
Tα

α.

Substituting this value of R into (5.16) we get

Rαβ = −8πG

c4
(
Tαβ − 1

2g
αβTγ

γ
)
. (5.17)

Equations (5.16) and (5.17) are the relativistic equivalents of Poisson’s equation ∇2Φ = 4πGρ.
As expected, these equations are second-order in the ten potentials gµν and involve all the
energy-density’s friends in T.

There is a close analogy between (5.17) and its e.m. counterpart Fµν ;ν = µ0j
µ as may be

seen by substituting for R from (5.12)

∂Γµµα
∂xβ

−
∂Γµαβ
∂xµ

+ ΓλαµΓ
µ
βλ − ΓµλµΓ

λ
αβ = −8πG

c4
(
Tαβ − 1

2gαβTγ
γ
)
. (5.18)

Worse still, the relationship (4.23) between Γ and the tensor potential g is a good deal more
complex than the corresponding e.m. relation Fµν = Aν ,µ−Aµ,ν . So it is hardly surprising
that not many exact solutions of the Einstein equations are known! But we shall be able to
deduce some extremely interesting solutions nevertheless.
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5.3 The Newtonian Limit

If the gravitational field is very weak, we can find a nearly inertial coordinate system. In this
system

gαβ = ηαβ + hαβ where |hαβ | ≪ 1. (5.19)

We neglect squares and higher powers of h. By (4.23) we then have

Γµαβ = 1
2η
µν
(∂hνα
∂xβ

+
∂hνβ
∂xα

− ∂hαβ
∂xν

)
. (5.20)

Consider the equation of motion (4.17) to which this gives rise for a non-relativistic free
particle (a′

µ
= 0). The motion is governed by a gravitational force

fµ = −Γµαβv
αvβ , (5.21)

where v is the particle’s 4-velocity. Since the zeroth component v0 = γc of the 4-velocity of a
non-relativistic particle is very much larger than any of v’s spatial components, we expect the
dominant term in the implied sum of (5.21) to be that for which α = β = 0. Thus we expect

fµ ≃ −γ2c2Γµ00. (5.22)

A typical spatial component of the equations of motion is then

dvj

dt
= −γ2c2Γj00 ≃ −c2 1

2

(
2
∂hj0
∂x0

− ∂h00
∂xj

)
.

If the field is stationary in our chosen coordinate system (and we are free to boost until it is),
then ∂hj0/∂x

0 = 0 and to leading order in v/c

dvj

dt
=

∂

∂xj
(
1
2
c2h00

)
. (5.23)

If this is to agree with Newton’s theory, we require

Φ = − 1
2
c2h00, (5.24)

where Φ is the Newtonian gravitational potential.

We now check whether Einstein’s field equations (5.17) reduce in the same weak-field limit
to Poisson’s equation for Φ. We expect the source of Φ to be the energy density ρ = T 00/c2,
where T is the energy-momentum tensor, so we concentrate on the 00-component of (5.17).

From (5.12a,b), (5.19) and (5.20), Rαβ is to first order in h

Rαβ = 1
2η
µν
( ∂2hµν
∂xα∂xβ

− ∂2hαν
∂xµ∂xβ

− ∂2hνβ
∂xµ∂xα

+
∂2hαβ
∂xν∂xµ

)
. (5.25)

In particular, for a time-independent field

R00 = R00 = 1
2∇

2h00 = − 1

c2
∇2Φ.

If the only contributor to the energy-momentum tensor is a dust of stationary particles, T is
given by (2.17) with v = (c, 0, 0, 0). Hence T γγ = −n0m0c

2, where m0 is the rest mass of each
particle and n0 is the number-density of particles. Thus the 00-component of (5.17) is

R00 = − 1

c2
∇2Φ = −4πG

c2
n0m0

as expected.
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5.4 Gravitational Redshift

The analysis at the end of the last section shows that in a weak gravitational field g00 ≃
η00 − 2Φ/c2 is closely related to the Newtonian gravitational potential. This conclusion has
interesting physical consequences. Consider an observer at rest in a weak gravitational field.
We choose spatial coordinates so that the field and the observer are stationary. Let the observer
be at potential Φo and observe a stationary atom at potential Φa. Setting λ = x0 in (4.24)
and differentiating both sides of this equation we find that the observer’s proper time elapses
at a rate

dτo
dt

=

√
−gµν

dxµ

dx0
dxν

dx0

=
√−g00 ≃

√
1 + 2

Φo
c2

≃ 1− |Φo|
c2

(because Φo < 0).

(5.26)

Similarly, the atom’s proper time elapses at a rate

dτa
dt

= 1− |Φa|
c2

. (5.27)

If the atom is emitting e.m. radiation of frequency ν, then during an interval ∆τo on the
observer’s clock it will emit (ν∆τo) × (dτa/dτo) wave fronts. Of course, these wavefronts will
take some time (as measured by either clock) to reach the observer, but because our situation
is static the delay before each front reaches the observer is always the same. Hence the fronts
will be received in time ∆τo on the observer’s clock and the observer measures frequency

(dτa
dτo

)
ν =

1− |Φa|/c2
1− |Φo|/c2

ν ≃
(
1− |Φa − Φo|

c2

)
ν. (5.28)

In words: radiation that comes up out of a gravitational well is redshifted.

Exercise (15):

Consider a machine which lowers boxes full of excited atoms on ropes down a well, deexcites
the atoms at the bottom, pulls the atoms back up and then reexcites the atoms with the
photons released at the bottom and beamed up to the top. Show that this machine will
violate energy conservation unless the photons’ frequencies at top and bottom of the well
satisfy (5.28).

5.5 Summary

The curvature tensor Rµναβ tells us by how much a vector changes on being parallel transported
around a small circuit. Hence we detect the use of a crazy coordinate system for flat space-time
by seeing if the curvature tensor R = 0. If R 6= 0 there is a true gravitational field.

The presence of matter at x is signalled by Rαβ(x) ≡ Rµαµβ(x) 6= 0.
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Formally, there is a far-reaching analogy between g.r. and e.m.:

Parallelism of e.m. and g.r.
Aµ ↔ gµν

Fµν = −(Aµ,ν −Aν ,µ ) ↔ Γµ,αβ = 1
2 (gµα,β +gµβ ,α−gαβ ,µ )

fµ =
q

m0
Fµαv

α ↔ fµ = −Γµαβv
αvβ

Fµν ,ν = µ0j
µ ↔ eq. (5.18)

Fµν ,ρ+F
νρ,µ+F

ρµ,ν = 0 ↔ Rκλµν;ρ +Rκλνρ;µ +Rκλρµ;ν = 0

(Bianchi identity)

The parallel between Newton’s theory and g.r. is less tight: Φ ↔ g, f ↔ Γ, ∇2Φ ↔ Rαβ .

In a weak gravitational field we can have g ≃ η with −2Φ/c2 as an estimate of (g00−η00).
The gravitational redshift follows immediately from this estimate.

6 The Schwarzschild Solution

Now that we have the field equations (5.17) it is natural to seek the solution g that describes
the gravitational field in the solar system. A useful step in this direction would be to find the
metric associated with a point mass in an otherwise empty universe.

The way we derive most solutions to Einstein’s equations is at root the same as that by
which we are accustomed to solve other partial differential equations, for example Maxwell’s
equations. If we want to find the electrostatic potential inside a charged spherical surface,
we start by looking for potentials of the special form Φ(r, θ, φ) = R(r)Θ(θ)eimφ. We are not
initially certain that such solutions exist, but we try the idea out anyway in the knowledge
that if there are no such solutions we shall derive inconsistent conditions on R and Θ and thus
discover our mistake, but if no inconsistencies arise, we shall get a valid solution and it will not
matter that we found it by leaping into the dark.

Proceeding in this spirit towards the metric outside a point mass, we first argue that we
should be able to find coordinates in which the metric is diagonal. To see why this is so, suppose
we are given a metric tensor g for some two-dimensional space. Then from simple matrix algebra
we know that at any point in the space we can find two mutually perpendicular directions, the
eigenvectors u and v of g, such that g would be a diagonal matrix if our coordinate directions
coincided with u and v. Now imagine marking the directions u, v as small crosses on a grid
of points in the space. Since g is a smoothly varying function of position, the orientation of
neighbouring crosses will be similar. Hence we may draw smooth curves through neighbouring
crosses, thus covering the space with a curvilinear grid. Finally, if we are able to label each
curve of this doubly infinite family of curves with numbers (a, b), these numbers will constitute
a valid coordinate system for the space and g will be diagonal in this coordinate system.

If we start from the metric tensor of a 4-space, the situation is fundamentally the same as
in our two-dimensional example; the only difference is that there are now four special directions
at each point. So it is reasonable to conjecture that we can find coordinates in which the metric
of any simple spacetime is everywhere diagonal.

Furthermore, since the gravitational field we seek to describe is time-independent, we
should be able to choose coordinates in such a way that none of the metric coefficients depends
on time. Also the gravitational field will be spherically symmetric, so there must be closed
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2-surfaces on which the geometry is that of a sphere. If we label these surfaces with the
coordinates (r, t) and indicate position on each surface with the angle variables (θ, φ), we have

ds2 ≡ gµνdx
µdxν

= −D(r)c2dt2 +A(r)(dθ2 + sin2 θdφ2) +B(r)dr2.
(6.1)

We next fix the meaning of r by determining that the sphere with labels (r, t) should have area
4πr2. This yields

ds2 = −D(r)c2dt2 + r2(dθ2 + sin2 θdφ2) +B(r)dr2. (6.2)

The metric now takes the form

gµν =

t
r
θ
φ




−c2D 0 0 0
0 B 0 0
0 0 r2 0
0 0 0 r2 sin2 θ


 . (6.3)

gµν is simply

gµν =

t
r
θ
φ




−(c2D)−1 0 0 0
0 B−1 0 0
0 0 r−2 0
0 0 0 r−2 sin−2 θ


 . (6.4)

Exercise (16):

By making an appropriate coordinate transformation x′(x) show that when, as here, one
uses t rather than ct for the 0th coordinate, the 4-vector of a photon becomes kµ =
(ω/c2,k).

Since the metric is diagonal with coefficients which depend only on r and θ, we have from
(4.22) that the only non-zero Christoffel symbols are those with at least two indices the same
and at least one equal to either r or θ. Specifically,

Γr,rr =
1
2
B′ Γr,θθ = −r Γr,φφ = −r sin2 θ Γr,tt =

1
2
c2D′

Γθ,φφ = −r2 sin θ cos θ
Γθ,θr = Γθ,rθ = r Γt,tr = Γt,rt = − 1

2c
2D′

Γφ,φr = Γφ,rφ = r sin2 θ Γφ,φθ = Γφ,θφ = r2 sin θ cos θ.

We raise the first index of each symbol by multiplying by the appropriate element of gµν to
yield

Γrrr =
B′

2B
Γrθθ = − r

B
Γrφφ = −r sin

2 θ

B
Γrtt =

c2D′

2B

Γθφφ = − sin θ cos θ Γθθr = Γθrθ =
1

r

Γφφr = Γφrφ =
1

r
Γφφθ = Γφθφ = cot θ

Γttr = Γtrt =
D′

2D

(6.5)

Hence

Γµrµ =
B′

2B
+

2

r
+
D′

2D
, Γµθµ = cot θ, Γµφµ = 0, Γµtµ = 0. (6.6)
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By hard slog and (5.12) one can now obtain

Rtt = −c
2D′′

2B
+
c2D′

4B

(B′

B
+
D′

D

)
− c2D′

rB
(6.7a)

Rrr =
D′′

2D
− D′

4D

(B′

B
+
D′

D

)
− B′

rB
(6.7b)

Rθθ = −1 +
r

2B

(
− B′

B
+
D′

D

)
+

1

B
(6.7c)

Rφφ = sin2 θRθθ (6.7d)

Rµν = 0 µ 6= ν. (6.7e)

We require Rµν = 0 everywhere except at r = 0 (where these expressions fail anyway). Multi-
plying (6.7a) by B/c2D and adding the result to (6.7b) yields

B′

B
= −D

′

D
⇒ BD = constant. (6.8)

As r → ∞ the metric should become that of flat spacetime for which B = D = 1 Thus

B(r) =
1

D(r)
∀ r > 0. (6.9)

By (6.7c) the equation Rθθ = 0 now becomes

0 = Rθθ = −1 + rD′ +D ⇒ D = 1 + constant/r. (6.10)

By (5.24) we know that as r → ∞ and the field becomes weak, D → 1 + 2Φ/c2 = 1 − rs/r,
where M is the mass at the centre and the Schwarzschild radius rs is defined by

rs ≡
2GM

c2
. (6.11)

Hence we may identify the constant in (6.11) as −rs, giving

D = 1− rs
r
. (6.12)

Collecting everything together we have the Schwarzschild metric

gµν =

t
r
θ
φ




−c2(1− rs/r)
(1− rs/r)

−1

r2

r2 sin2 θ


 . (6.13)

The metric (6.13) deviates markedly from the metric associated with spherical polar coordinates
(which has gtt = −c2 and grr = 1) for values of r up to a few times larger than rs. If M has
the same mass as the Sun, M⊙ = 1.99 × 1030 kg, we find rs = 2.95 km.

6.1 Equations of Motion

Now that we know what B and D are we can immediately write down the equations of motion
(4.17) of a particle moving in the field of a point mass. It is straightforward to check that a
possible solution to the θ-equation of motion is θ = π

2
; that is, that the particle may move

always in the equatorial plane of the coordinate system. We shall assume that our coordinate
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system has been oriented to ensure θ = π
2 . We now set a′

µ
= 0 and v′

µ
= dxµ/dτ in (4.17) to

find with (6.5) and (6.9) for the t equation of motion

0 =
d2t

dτ2
+
D′

D

dr

dτ

dt

dτ
=

d2t

dτ2
+

d lnD

dτ

dt

dτ
.

This is a first-order linear differential equation for y ≡ dt/dτ . The integrating factor is D,
so dτ/dt = constant × D. The equation simply says that a freely-falling particle suffers a
gravitational time dilation in that its proper time elapses at a fraction D = 1− rs/r of the rate
of elapse of the proper time t of an observer at infinity. We evaluate the constant by observing
that for a stationary particle at infinity τ = t, so at any radius r

dτ

dt
= D. (6.14)

Similarly, (4.17) and (6.5) yield the φ equation of motion as

0 =
d2φ

dτ2
+

2

r

dφ

dτ

dr

dτ
⇒ d

dτ

(
r2

dφ

dτ

)
= 0.

Hence the angular momentum

L ≡ r2
dφ

dτ
(6.15)

is conserved.

With θ = π
2 the r-equation of motion is

0 =
d2r

dτ2
+ 1

2

c2D′

B

( dt
dτ

)2
+ 1

2

B′

B

(dr
dτ

)2
− r

B

(dφ
dτ

)2
.

With (6.9), (6.14) and (6.15) this becomes

0 =
d2r

dτ2
− DL2

r3
+
c2

2

D′

D
− 1

2

D′

D

(dr
dτ

)2
. (6.16)

We shall see that in Newton’s theory slightly modified forms of the first, second and third terms
occur. The third last represents a new, speed dependent force.

Exercise (17):

From (6.15) show that the angular frequency of a circular orbit as seen by an observer at
infinity is

dφ

dt
=

√
GM

r3

exactly as in Newton’s theory.

If we multiply (6.16) by
1

D

dr

dτ
, we may integrate it to an energy equation

1

2D

(dr
dτ

)2
− c2

2D
+
L2

2r2
= constant ≡ E − 1

2c
2. (6.17)

The first and third terms on the left of equation (6.17) represent kinetic energy of radial and
tangential motion respectively. To first order in rs/r the second term on the left is 1

2
c2 plus

the Newtonian potential energy −GM/r.
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6.2 The Perihelion of Mercury

When Einstein introduced g.r. in 1916, the only significant discrepancy between Newtonian
dynamics and solar system observations was the rate of advance of the perihelion of Mercury.
One of g.r.’s early triumphs was to account for this discrepancy. We start by reviewing Newton’s
results for motion in the gravitational field of a point mass.

Newtonian motion around a point mass The equation of motion of a particle in
the Newtonian field of a mass M located at the origin is r̈ = −GMr/r3 = − 1

2
c2rsr/r

3. On

crossing this equation through by r we obtain L̇ = 0 where L is the angular momentum vector
L ≡ r× ṙ. From the constancy of L we deduce that the motion is confined to the plane L·r = 0
perpendicular to the angular momentum vector L. Let r and φ be polar coordinates for this
plane. Conservation of angular momentum requires r2φ̇ = L, while the equation of motion of
r is r̈ − rφ̇2 = − 1

2
c2rs/r

2. Eliminating φ̇ in favour of L the latter reads

0 =
d2r

dt2
+
c2rs
2r2

− L2

r3
. (6.18)

This is the Newtonian analogue of (6.16): to see this recall thatD = 1−rs/r andD′/D ≃ rs/r
2.

We obtain the shape of Newtonian orbits by eliminating t from (6.18) through the sub-
stitution dt = (r2/L)dφ, and eliminating r in favour of a new variable u ≡ 1/r. We then
find

d2u

dφ2
+ u =

c2rs
2L2

. (6.19)

This is just the equation of motion of a simple harmonic oscillator. So the orbit is given by

r(φ) =
1

u
=

1

A cos(φ− φ0) +
1
2c

2rs/L2
, (6.20)

where A and φ0 are suitable constants of integration. This is actually the equation of an ellipse
with one focus at the origin. But the most important point is that since the right side of (6.20)
is periodic in φ with period 2π, r(φ + 2π) = r(φ) for any φ and thus (6.20) defines a closed

curve. Consequently, a planet in undisturbed orbit around the Sun would always come closest
to the Sun (in the jargon, “move through perihelion”) at the same value of φ. Actually the
perihelia of all the planets precess, that is, they move very slowly around the plane of the
planet’s orbit.

The planet with the most rapidly precessing perihelion is Mercury because it is the planet
with the shortest year. Its perihelion precesses by 576 seconds of arc (576′′) per century. Most
of this precession is caused by the gravitational field of Jupiter.10 In the late 19th century Bessel
showed that disturbance of Mercury’s orbit by all the planets gives rise to a net precession of
532′′ per century. Thus Bessel was able to account for all but 44′′ per century of Mercury’s
precession. Since Mercury’s year is 0.24 siderial years long, 44′′ per century corresponds to
0.106′′ per Mercury year.

Relativistic precession Working from (6.16) in close analogy with the our Newtonian
calculation, we eliminate τ between (6.15) and (6.16) to obtain

0 =
L

r2
d

dφ

( L
r2

dr

dφ

)
+ 1

2c
2D

′

D
− 1

2

D′

D

L2

r4

( dr
dφ

)2
− DL2

r3
.

10 One may understand how Jupiter causes Mercury’s perihelion to precess by imagining Jupiter’s mass to
be uniformly distributed in an annulus centred on Jupiter’s orbit. This material pulls Mercury outwards. Hence
Mercury’s net acceleration towards the Sun falls off with r more steeply than as r−2. This in turn slightly
depresses the frequency at which Mercury’s radius oscillates around its mean value, and these radial oscillations
gradually get out of phase with the overall rotation about the Sun.
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We define u ≡ 1/r, substitute for D and divide through by −L2u2 to obtain

d2u

dφ2
+ u(1− rsu) =

1
2

c2rs
(1− rsu)L2

[
1−

(L
c

du

dφ

)2]
. (6.21)

The Newtonian equivalent of (6.21) is equation (6.19). Clearly the former is much harder
to solve than (6.19) since on the left where we had 1 we now have (1− rsu), and on the right
the constant 1

2c
2rs/L

2 has been replaced by a complicated function of u. But it is immediately
apparent that solutions to (6.21) are unlikely to be periodic with period 2π and thus we do not
expect relativistic orbits around a point mass to be closed. Let us calculated the angle between
successive perihelia and compare it with Bessel’s discrepancy of 0.106′′.

We first obtain the “energy equation” associated with (6.21) by multiplying through by
2

(1− rsu)

du

dφ
and integrating:

1

(1− rsu)

(du
dφ

)2
+ u2 =

c2

L2(1− rsu)
+K, (6.22)

where K is a constant. The angle ∆φ between apo- and perihelion is therefore

∆φ =

∫ u2

u1

du√
c2/L2 +K(1− rsu)− u2(1− rsu)

, (6.23)

where u1 and u2 are the smallest and largest values of u along the orbit. The denominator in
(6.23) involves a cubic in u. Two roots of the cubic are u1 and u2, so if the third root is u3 the
cubic may be written

H(u− u1)(u2 − u)(1 − u/u3), (6.24)

where H is a constant to be determined. Comparing coefficients of u2 and u3 in (6.24) and the
denominator of (6.23) we find

u2 : −H
(
1 +

u1 + u2
u3

)
= −1 u3 :

H

u3
= rs,

so

u3 =
1

rs
− (u1 + u2) ≃

1

rs
and H = 1− rs(u1 + u2). (6.25)

Thus u3 ≫ max(u1, u2) and with equations (6.24) and (6.25) we can rewrite equation (6.23) as

∆φ =
1√
H

∫ u2

u1

du√
(u− u1)(u2 − u)

(
1 + 1

2

u

u3
+ · · ·

)

≃ [1 + 1
2rs(u1 + u2)]

∫ u2

u1

du√
(u− u1)(u2 − u)

(1 + 1
2urs)

≃ π[1 + 3
2
rs

1
2
(u2 + u1)].

(6.26)

For Mercury 1
2 (u1 + u2) ≃ 1/rMerc = 1/(5.83 × 107 km), so the perihelion of Mercury should

advance in one Mercury year by

3π
rs

rMerc
≃ 0.0983′′

in excellent agreement with Bessel’s discrepancy.

6.3 Deflection of Light by the Sun
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Naive treatment A simple back-of-the-envelope argument based on the Strong Principle
of Equivalence shows that light must be deflected by the Sun and allows us to obtain a quick
order-of-magnitude estimate of the magnitude of this effect: the S. P. of E. implies that the
path of a photon beam must be approached by a particle beam in the limit as the particles’
speed v → c. So let’s calculate the deflection of fast (but non-relativistic) particles by the Sun.

Since the beam is fast, its deflection will be small, and we can estimate the net gravitational
impulse delivered to each particle by integrating the gravitational force along a straight line.
We neglect variations in the particle’s speed parallel to this line, so z ≃ vt. Hence after a fly-by
to within distance b of the Sun, the particle has a component of velocity perpendicular to the
original line of magnitude

v⊥ ≃ 1

m

∫ ∞

−∞

F⊥ dt = 2

∫ ∞

0

GM⊙

r2
b

r

dz

v
=
c2rs(⊙)

bv

∫ ∞

0

dζ

(1 + ζ2)3/2
,

where Pythagoras’ useful result has been pressed into service. The substitution ζ = sinh θ
enables one to show that the integral equals 1. So the beam is deflected through the small
angle

θdefl ≃ v⊥
v

≃ rsc
2

v2b
.

In the limit v → c, this tends to rs/b ≃ 0.875′′ for b = R⊙. This is just a little too small to be
measured with confidence through the haze of the Earth’s atmosphere. Fortunately a proper
calculation shows that our neglect of relativity has cost us a factor of 2, and Murphy’s law
notwithstanding, the true deflection is larger than our naive estimate predicts.

Relativistic treatment The definition (4.24) of the affine parameter s fails when applied
to a trajectory xµ(λ) of a photon. Instead we define s by requiring that

dxµ

ds
= kµ(s), (6.27)

where kµ is the wavevector (ω/c2,k) of the photon.11 The equation of motion of the photon is
kµ∇µk

ν = 0, so
dxµ

ds
∇µ

dxν

ds
= 0.

More generally, if
τ ≡ αs, (6.28)

where α is any constant, we have
dxµ

dτ
∇µ

dxν

dτ
= 0,

which is identical with the equation (4.33) that governs the motion of material particles in a
gravitational field. We may make the analogy with particles of finite rest mass complete and
use the expressions we already have to hand to calculate the deflection of light by the Sun, by
choosing the constant α such that (6.14) is satisfied. Since by (6.27) dt/ds = ω/c2, we must
set

α =
dt

ds

dτ

dt
=
ω(1− rsu)

c2
. (6.29)

11 See Exercise (17).
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Exercise (18):

Use the photon’s zeroth equation of motion
dxµ

ds

(
∂ω/c2

∂xµ
+ Γtµνk

ν

)
= 0 to show that

d(ωD)/ds = 0 and that α is a constant.

With α thus determined, we may take over the formulae of the last subsection wholesale. In
particular, by (6.23) the increment in φ as a photon passes by the Sun is

∆φ = 2

∫ u0

0

du√
c2/L2 +K(1− rsu)− u2(1− rsu)

, (6.30)

where u0 is the value of u at closest approach and by (6.15) and (6.27) we have

L =
(
r2

dφ

dτ

)
r→∞

=
(r2
α

dφ

dr

dr

ds

)
r→∞

. (6.31)

With φ and b as in the figure, at early times r = b cscφ and kµ = (ω/c2, k, 0, 0). Hence by
(6.27)

dr

ds

∣∣∣
r→∞

= −k and
(
r2

dφ

dr

)
r→∞

= −b. (6.32)

Equation (6.31) with (6.29) and (6.32) now gives

L =
bkc2

ω
= bc. (6.33)

The constant K in (6.30) is determined by evaluating (6.22) as r → ∞. We have

(du
dφ

)2
u→0

=
c2

L2
+K.

Using on the left the fact that as u→ 0, u→ sinφ/b, we find

K =
1

b2
− c2

L2
= 0 (6.34)

by (6.33). Thus (6.30) may be written

∆φ = 2

∫ u0

0

du√
b−2 − u2(1− rsu)

. (6.35)

Since u0 is a root of the denominator, this becomes

∆φ = 2

∫ u0

0

du√
u20 − rsu30 − u2 + rsu3

= 2

∫ u0

0

du√
(u20 − u2)[1− rs(u30 − u3)/(u20 − u2)]

= 2

∫ u0

0

du√
u20 − u2

(
1 + 1

2
rs
u20 + uu0 + u2

u0 + u
+ · · ·

)

≃ 2

∫ u0

0

du√
u20 − u2

[
1 + 1

2rs

(
u+

u20
u0 + u

)]

= π − rs

[√
u20 − u2 +

√
u0 − u

u0 + u

]u0

0

= π + 2rsu0.

(6.36)

The increment ∆φ over the Newtonian value π is 4
6π
u0rMerc times Mercury’s perihelion advance

per Mercury year. If u0 ≃ 1/R⊙, ∆φ− π = 1.75′′. In 1919 Eddington led an expedition to S.
America to photograph bright stars around the Sun at a total eclipse. The expedition obtained
∆φ− π = 1.98 ± 0.16′′.
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6.4 Gravitational Lenses

Consider lines of sight past a star with the mass of the Sun but at such a distance that the
disk of the star subtends an angle of less than an arcsecond. Then as lines of sight that graze
the “top” and “bottom” of the star are bent by ≈ 1.75′′ we should be able to see objects that
lie behind the star by looking either above or below the star:

The gravitational field is clearly acting as a kind of lens. It can make lensed objects much
bigger and brighter than they really are.

While we have not seen lensing by a single star, there are now a handful of known cases of
lensing by galaxies. The images are typically separated by a few arcseconds and have almost
identical spectra.12 Because galaxies have extended mass distributions one can often see more
than two images. In fact, arcs of brightness are seen in some clusters of galaxies which are
thought to be vast smeared-out images of background objects; in these cases it is as if one were
observing a street light through a bubbly bathroom window.

6.5 Modern Solar-System Tests

In the last 30 years two developments have led to a big improvement in the exactitude with
which g.r. can be tested in the solar system. These are (i) radar ranging to planets and (ii)
ranging with radar and lasers to space probes.

Ranging to planets The earliest work involved bouncing radar signals off the inner
planets. One measures the delay before the first signals return. This gives ∆τ

If one claims to know the orbits of Mercury & the Earth and g in the intervening space, one
can calculate ∆τ(t). This is a complex function of the parameters (“orbital elements”) defining
the planetary orbits. There are two important difficulties:

(i) The reflecting planetary surface is not a smooth mirror. Hence the returning pulse has
a complex shape. One looks for the leading edge of the pulse and tries to use frequency
information:

12 We don’t expect the spectra to be absolutely identical because the underlying object is always variable
and one image typically shows the object at an earlier time than the other.
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(ii) The most interesting lines of sight pass close to the Sun. Free electrons near the Sun cause
the refractive index to differ from unity.

Ranging to planetary probes Since a satellite is too small to give a detectable radar
reflection, one programmes the satellite to respond to a pulse from Earth by emitting a similar
pulse after a known small delay. With this technique one does not have to worry about planetary
topography. By sending signals at several frequencies one can eliminate the effect of dispersion
by free electrons along the line of sight.

Analysis of these data has to proceed via a computer program which adjusts orbital ele-
ments, the masses of the planets and asteriods, the oblateness of the Sun, the orientation of
an inertial coordinate system etc. until the fit of the predicted ∆τ ’s to the observed ∆τ ’s is
optimized. One finds that the agreement with g.r. is excellent.

The quality of the fit is normally judged by calculating predictions from the metric13

ds2 = −
[
1− α

rs
ρ

+ 1
2
β
(rs
ρ

)2]
c2 dt2 +

(
1 + γ

rs
ρ

)
[dρ2 + ρ2(dθ2 + sin2 θdφ2)], (6.37)

where α, β and γ are dimensionless parameters to be determined by fitting the calculated to
the observed ∆τ ’s. If we identify ρ with

ρ ≡ 1
2

[
r − 1

2rs +
√
r(r − rs)

]
, (6.38)

this metric agrees with the Schwarzschild metric (6.13) up to order rs/r in space and (rs/r)
2

in time when α = β = γ = 1. (In the equations of motion the tt-component of gµν is multiplied
by the largest components of vµ.) Hence if Einstein was right, the observations should lead to
α ≃ 1 etc. Data from missions to Mercury & Mars give

α− 1 = (2.1 ± 1.9)× 10−4

β − 1 = (−2.9± 3.1) × 10−3

γ − 1 = (−0.7± 1.7) × 10−3

J2 = (−1.4± 1.5) × 10−6

where J2 is a parameter describing the oblateness of the Sun.

It is interesting that the precision of these measurements is such that

(i) they determine the interial frame of reference as accurately as can be done by looking right
across the Universe at quasars with redshift z = 2 (see below);

(ii) they furnish the best estimates of the mass of the asteroid Ceres (the old value proved to
be in error by 15%);

(iii) Dirac speculated that Newton’s “constant” might decrease as the Universe expands. These
measurements yield Ġ/G = (0.2 ± 0.4) × 10−11 yr−1.

13 This may be thought of as generated by expanding the functions B and D of (6.2) in powers of rs/r.
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6.6 The Schwarzschild Singularity

For r = rs ≡ 2GM/c2, the component gtt of the Schwarzschild metric (6.13) vanishes. Hence
the trajectory r = rs is null rather than time-like. Furthermore, since gtt changes sign at r = rs,
the trajectory r = constant < rs is space-like. Consequently an explorer who penetrates to
r < rs is doomed: no matter how hard he fires his rockets, his trajectory must remain time-like.
Hence he cannot pass from the condition dr/dτ < 0 through the condition dr/dτ = 0 as he
must if he is to escape. He is carried down to r = 0 as surely as you and I are carried into next
year.

It is interesting to investigate this predicament more closely. Suppose for simplicity that
our explorer’s angular momentum L is zero and that at t = τ = 0 he is falling towards the
centre at radius r0 with the speed he would have picked up had he fallen all the way from rest
at infinity. Then evaluating (6.17) at infinity we find that the constant E is zero. Hence by
(6.17) the elapse of time on his watch as he falls to rs is

∆τ =

∫ rs

r0

dτ

dr
dr =

1

c

∫ r0

rs

dr√
1−D

=
1

c
√
rs

∫ r0

rs

√
r dr =

2

3c
√
rs

(
r
3/2
0 − r3/2s

)
,

(6.39)

which is perfectly finite. Furthermore, he clearly reaches r = rs with dr/dτ < 0. Hence he
would be well advised to fire his rockets before he reaches rs.

Why does grr diverge at r = rs? Is this divergence caused by gravity or our choice of
coordinates? It is straightforward, if tedious, to check that no components of the curvature
tensor Rµναβ diverge at rs. So our explorer can endure the tidal forces he experiences if he is
stocky enough. The reason grr diverges at rs turns out to be that Schwarzschild’s coordinate
system assigns to all events that occur at rs the time coordinate t = ∞. As a specific example,
let us calculate the time coordinate at which our explorer crosses r = rs:

t =

∫ τ

0

dt

dτ
dτ =

∫ rs

r0

dt

dτ

dτ

dr
dr.

With (6.14) and (6.39) this becomes

t =

∫ rs

r0

dr

D
√
1−D

=
1√
rs

∫ rs

r0

r3/2dr

r − rs
= ∞. (6.40)

Thus no matter when our explorer sets off, an observer who uses Schwarzschild’s coordinates
always assigns t = ∞ to the event at which the explorer crosses r = rs. We should not be
surprised that such a foolish convention leads to a singular metric; if we choose coordinates qi
in ordinary space in such a way that all points on the edge of a ruler are assigned the same
three numbers qi, an expression for the length of the ruler in terms of the coordinates of the
ruler’s ends is going to involve multiplication by some awfully big numbers!

To bring this problem under control we need to choose a new coordinate system. In 1960
M. Kruskal showed that when new coordinates (r′, t′) are defined through

r′
2 − t′

2
= r2s

( r
rs

− 1
)
er/rs

t′ = r′
cosh(ct/rs)− 1

sinh(ct/rs)
= r′ tanh

( ct

2rs

) (6.41a)

the metric takes the non-singular form

ds2 = r2(dθ2 + sin2 θdφ2) + 4(dr′
2 − dt′

2
)
rs
r
e−r/rs . (6.41b)
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The lines r′ = constant are always timelike. Radially directed photons move along the 45◦

lines dr′ = ±dt′ in the (r′, t′) plane. In particular, the null line r = rs becomes r′ = t′. If we
plot curves of constant r and t in the (r′, t′) plane, we get a picture like this

It is now obvious that Schwarzschild’s coordinates (r, t) break down as r′ = t′ is approached.
To first order in ct/rs (6.41a) becomes t′ ≃ 1

2ctr
′/rs, so t

′ may be considered a stretched form
of t at r = ∞. Near r = rs, t

′ ≃ r′ and by (6.41a) all events correspond to large t as expected.

The region t′ > r′ corresponds to r < rs. At r = 0, corresponding to t′
2 − r′

2
= r2s , there is a

bona-fide singularity in the gravitational field.

The Schwarzschild radius rs corresponding to the mass of the Sun is 2.96 km. The black
holes that probably power quasars and other very active galactic nuclei are likely to have
Schwarzschild radii between the radius of the Sun and that of the Earth’s orbit.

Exercise (19):

Show that a cubic light-year of water (supposed incompressible) would be contained within
its Schwarzschild radius.

6.7 Summary

The metric outside a point mass can be written to look like that of ordinary spherical polar
coordinates with 1 → (1−rs/r) in the tt slot and 1 → 1/(1−rs/r) in the rr slot. The singularity
of these corrction factors when r = rs = 2GM/c2 is not physically interesting. However the
geometry of spacetime is singular at r = 0 and r = rs is special in that an “outward” running
photon on this sphere would actually not move away from the centre.

The Schwarzschild metric accounts for the last 10% of the precession of Mercury’s perihe-
lion and for the measured bending of light by the Sun. The magnitude of both these effects is
of order n× rs/r, where n ∼ 4 and r is the smallest distance of the the test body from the Sun.
Detailed studies of the Solar System’s dynamics show that any errors in the g.r.’s corrections
to Newtonian dynamics are smaller that ∼ 0.1%. There is evidence that many distant galaxies
are multiply imaged by gravitational lenses just as g.r. predicts.

7 Cosmology

7.1 Empirical Basis
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Between 1920 and 1928 it became clear that the Universe is populated by countless galaxies
like the Milky Way, and that these are receeding from one another with velocities that are
proportional to separation. If we follow the trajectories of these galaxies back in time, we
find that some 1010 yr ago the mean density of the Universe must have been extremely high.
Indeed, a naive extrapolation leads to the conclusion that a finite time in the past any density
was reached, no matter how great.

In 1946 G. Gamow at Cornell, and 20 years later R. Dicke in Princeton, argued that
the large abundance (about 25% by weight) of He in the present Universe could have been
generated some minutes after the formation of the Universe if a black-body radiation field fills
the present Universe. The first estimate of the current temperature of this radiation field was
25K, but this later fell to ≈ 3K. In 1964 A. Penzias & R. Wilson at Bell Labs discovered
this cosmic background serendipitously. This triumph of the big-bang theory quickly killed all
interest in attempts to construct a steady-state cosmology.

It is now known that the spectrum of the cosmic background is accurately Planckian
with T = 2.7 ± 0.1K. An observer who moves with respect to the centre of our Galaxy at
≈ 400 km s−1 in a certain direction would see the same spectrum in all directions, to within
at least a few parts in 10, 000. At any point in the Universe a natural standard of rest is
defined as that of an observer whose cosmic background is isotropic. Such observers are called
fundamental observers. Any two fundamental observers receed from one another with a
speed v ≈ D × (25 ± 8) km s−1, where D is their separation in millions of light years. A more
suggestive way of expressing this result is v = D/τ , where 20Gyr ∼> τ ∼> 10Gyr.

As the Universe expands, the photons of the cosmic background are doppler shifted to
lower frequencies and the temperature characterizing their distribution falls.

7.2 Friedmann Metrics

The first step towards finding a solution of Einstein’s equations to describe the expanding
Universe is to choose a good coordinate system. The cosmic radiation background is a great
help in this: we may say that two events occur at the same place if they occur on the world-line
of a single fundamental observer. Similarly, two events that occur at different places may be
said to occur simultaneously if the background temperature measured by fundamental observers
local to those events are the same. With this natural division into space and time we would
expect ds2 to be of the form

ds2 = −c2dt2 + gijdx
idxj , (7.1)

g is the metric of a 3-space of simultaneous events.

The structure of g is strongly restricted by the fact that fundamental observers observe
the cosmic background to be highly isotropic: the photons they receive were last scattered at
a point several thousands of millions of light years away, at a time when the mean density of
the Universe was about 109 times its present value. In fact, until these photons collide with an
observer’s telescope they have been flying freely through space since the Universe was a mere
10−4 of its present age. Consequently, when a fundamental observer compares the temperature
he sees in the forward and backward directions, he is comparing physical conditions in the
early Universe at points that are now separated by thousands of millions of light years. Since
these conditions are found to be identical to within a few parts in 10,000 we conclude that
the Universe is extremely homogeneous on any time-slice t = constant. Hence the geometry of
such a space, which is described by g, should be extremely homogeneous too.

A theorem in differential geometry states that any homogeneous and isotropic 3-space
must be a scaled version of one of three basic models:

(i) Flat space Obviously this admits spherical polar coordinates in which the line element
can be written

ds2 = dr2 + r2(dθ2 + sin2 θdφ2). (7.2)
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Constructing the unit n-sphere

1-sphere:
2-sphere:
3-sphere:
n-sphere:

(x1, x2) = (sinφ, cosφ)

(x1, x2, x3) = (sinφ sin θ, cosφ sin θ, cos θ)

(x1, x2, x3, x4) = (sinφ sin θ sin η, cos φ sin θ sin η, cos θ sin η, cos η)

(x1, . . . , xn+1) = (sin θ1 sin θ2 . . . sin θn, . . . , cos θn−1 sin θn, cos θn)

(ii) The 3-sphere Suppose we parametrize the coordinates of points x in a 4-dimensional
Euclidean space (nothing to do with spacetime) by

(x1, x2, x3, x4) = a(sinψ sin θ cosφ, sinψ sin θ sinφ, sinψ cos θ, cosψ).

Then it is easy to show that
∑
µ x

2
µ = a2. Hence as we vary the three angles (ψ, θ, φ) the point

x moves over a 3-sphere. The small vector ∆(φ) that joins two points whose coordinates differ
only by a small change δφ in φ is

∆(φ) =
∂x

∂φ
δφ

= a(− sinψ sin θ sinφ, sinψ sin θ cosφ, 0, 0) δφ.

Similarly,
∆(θ) = a(sinψ cos θ cosφ, sinψ cos θ sinφ,− sinψ sin θ, 0) δθ

∆(ψ) = a(cosψ sin θ cosφ, cosψ sin θ sinφ, cosψ cos θ,− sinψ) δψ.

It is straightforward to check that these three small vectors are mutually perpendicular. Hence
when we move by an arbitrary small amounts (δψ, δθ, δφ) over the sphere, the distance traversed
δs is given by

δs2 = |∆(ψ)|2 + |∆(θ)|2 + |∆(φ)|2

= a2(δψ2 + sin2 ψδθ2 + sin2 ψ sin2 θδφ2).
(7.3)

If we introduce a new coordinate in place of ψ

r ≡ a sinψ ⇒ dr2 = (a2 − r2) dψ2, (7.4)

and define the curvature K of the sphere as

K ≡ 1

a2
, (7.5)

then (7.3) becomes

ds2 =
dr2

1−Kr2
+ r2(dθ2 + sin2 θ dφ2). (7.6)
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Notice that the 2-sphere with area 4πr2 has radius aψ > r. Thus within the 3-sphere the
areas of the members of a nested sequence of 2-spheres increase more slowly than they would
in Euclidean space. (Similarly, for concentric small cicles on a two sphere circumference/2π
increases more slowly than radius.)

(iii) Hyperbolic space If we set K = 0, the line element (7.6) of the 3-sphere becomes
the line-element (7.2) of flat Euclidean space. The line element of the only other homogeneous,
isotropic 3-space is given by (7.6) with K set equal to a negative number. This space is caled
hyperbolic space. It is harder to visualize than the 3-sphere because it cannot be embedded
in Euclidean 4-space. The characteristic property of hyperbolic space is that in it a 2-sphere
with area 4πr2 has radius

R =

∫ r

0

dr√
1 + |K|r2

=
1√
|K|

sinh−1
(
r
√
|K|
)
< r.

That is, in this space the areas of a sequence of nested 2-spheres increase faster than in Eu-
clidean space.

In summary, a spatial section of simultaneous events must form either a 3-sphere, flat
space or hyperbolic space. In each case the line element may be expressed in the form (7.6)
with an appropriate value of K.

We want to use coordinates on these spatial sections such that the coordinates of each
fundamental observer are constant. These are called comoving coordinates. Since funda-
mental observers are receeding from one another, it follows that our desired coordinates cannot
at all times coincide with those in which the line element takes the form (7.6). However, if at
one time, for example now, the comoving coordinates (r, θ, φ) are such that the line element
is of this form, then at an earlier time, when fundamental observers were closer to one an-
other, the separation δs between neighbouring observers was some fraction a(t) of their current
separation. Hence at all times the metric of spacetime can be written

ds2 = −dt2 + a2
[

dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (7.7)

where K is the curvature of the current time-slice t = t0 and a(t0) = 1.

Equations (4.22) yield for the Γ’s that involve the time index:

Γttα = Γt,tα = 0 Γtij = − 1

c2
Γt,ij =

ȧ

a

gij
c2

Γitt = Γi,tt = 0 Γitj = gikΓk,tj =
ȧ

a
δij .

(7.8)

7.3 The Cosmological Redshift

We know that the Universe is expanding because we observe the frequencies of spectral lines
from distant galaxies to be shifted towards lower frequencies. It turns out that the magnitude
of this spectral shift is related in a remarkably simple way to the scale of the Universe when
the light by which we see galaxies set out towards us.

The redshift z is defined by

1 + z ≡ ωemit

ωobserve
.

If we elevate our status to that of a fundamental observer, and suppose that the atoms that
emit the radiation we receive were stationary with respect to a local fundamental observer,
then the 4-momenta of photons have zeroth component ωemit/c

2 on emission and ωobs/c
2 on



52 7 Cosmology

observation. By direct analogy with the deflection of light by the Sun we may follow the
decrease of ω by integrating the zeroth component of

kµ∇µk
ν = 0. (7.9)

As in §6.3 we write kµ = dxµ/ds [eq. (6.27)], and multiply (7.9) through by ds/dt to get

0 =
ds

dt

dxµ

ds

[
∂ω/c2

∂xµ
+ Γtµγk

γ

]

=
dω/c2

dt
+

ds

dt
Γtµγk

µkγ .

With (6.27) and (7.8) this becomes for a radially propogating photon

dω

dt
= − ȧ

a

(
grrk

rkr
)c2
ω

= − ȧ
a
ω,

where we have used the null property of kµ in the form grrk
rkr + gtt(ω/c

2)2 = 0. Integrating
we get

1 + z =
ωemit

ωobs
=

a(tobs)

a(temit)
.

In words, 1+z gives the factor by which the Universe has expanded since the photons we receive
were emitted. Notice that this result has been obtained without using Einstein’s equations to
determine the dynamics of the Universe.

7.4 Field Equations for Friedmann Cosmologies

Let’s now go back to equations (7.8) and the job of calculating the Christoffel symbols of the
Friedmann metric (7.7). Since each Γijk is unaffected by a position-independent scaling of g,
these Γ’s can be obtained from the expressions (6.5) for the spatial Γ’s of the Schwarzschild
solution with B = 1/(1 −Kr2):

Γrrr =
Kr

1−Kr2
Γrθθ = −r(1−Kr2) Γrφφ = −r sin2 θ(1−Kr2)

Γθφφ = − sin θ cos θ Γθθr = Γθrθ =
1

r

Γφφr = Γφrφ =
1

r
Γφφθ = Γφθφ = cot θ.

(7.10)

When using these results in (5.12) to calculate Rαβ it is helpful to isolate all terms that involve
a t index. One finds

Rit = Rti = 0 Rtt =
∂Γµtµ
∂t

+ ΓjtkΓ
k
tj = 3

ä

a

Rij = R̃ij −
∂Γtij
∂t

+ 2ΓtikΓ
k
jt − ΓtijΓ

k
tk

= R̃ij −
[
ä

a
+ 2

(
ȧ

a

)2]
gij
c2
,

where R̃ij is the Ricci tensor of the 3-space whose metric is gij . A tedious calculation yields14

R̃ij = −2K

a2
gij . (7.11)

14 Since the 3-space is homogeneous and isotropic, it is obvious that R̃ ∝ g. Hence it is only necessary to

calculate one non-zero component of R̃, say R̃rr.
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Hence

Rαβ =




3ä

a

−
[
2Kc2

a2
+
ä

a
+ 2

(
ȧ

a

)2]
grr
c2

−
[
2Kc2

a2
+
ä

a
+ 2

(
ȧ

a

)2]
gθθ
c2

−
[
2Kc2

a2
+
ä

a
+ 2

(
ȧ

a

)2]
gφφ
c2




. (7.12)

We now turn our attention to the right side of the Einstein equations (5.17). At the present
epoch the energy density contributed by the cosmic background is as(2.7)

4 ≃ 1.9×105e.v.m−3.
The rest mass energy density on the other hand is at least 10−27 kgm−3 = 5.6× 108 e.v.m−3,
so that the cosmic energy density is currently dominated by rest mass energy. In this case we
may adopt for T the formula (2.17) for dust. In our chosen frame of reference v = (0, 0, 0, c),
so we now have

Ttt = ρc2 ; Tαα = −ρc2 (dust), (7.13)

where ρ is the rest-mass density.

During the first few thousands of years of the Universe’s evolution rest-mass energy will
not have been dominant. To see this recall that when a box of volume V that contains radiation
is slowly expanded, the radiation behaves like an ideal gas with ratio of principal specific heats
γ = 4

3
. Hence the radiation’s energy density, which is three times its pressure, falls faster than

the rest-mass denergy density of any dust that is also uniformly distributed through the box:

Urad = 3Prad ∝ V −4/3 ∝ U
4/3
dust. Hence Urad/Udust ∝ 1/a and although the cosmic radiation

density is now at least a thousand times smaller than the rest-mass energy density, back when
a ∼< 10−4 the radiation density would have exceeded the matter density. Therefore we take T
to be of the general isotropic form [cf. (2.20)]

T βα =




−ρc2 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P


 ⇒ Tαα = 3P − ρc2. (7.14)

With T of the form (7.14) the tt-equation of the set (5.17) reads

3ä

ac2
= −8πG

c4
(3
2
P + 1

2
ρc2). (7.15a)

The rr-equation reads

−
[
2Kc2

a2
+
ä

a
+ 2

(
ȧ

a

)2]
grr
c2

= −8πG

c4
1
2 (ρc

2 − P )grr. (7.15b)

Eliminating ä between these equations yields

ȧ2 +Kc2 = 8
3
πGρa2. (7.16)

We also have the equation of mass-energy conservation T βα ;β = 0, which for α = t gives

0 =
∂T tt
∂t

− ΓγβtT
β
γ + ΓββγT

γ
t

= −ρ̇c2 − 3
ȧ

a
P + 3

ȧ

a
(−ρc2) ⇒ dρa3

da
= −3a2P

c2
.

(7.17)
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If P = 0 this states that the mass in each comoving volume is conserved, while if P = 1
3ρc

2,
we have that ρa4 is conserved. Since a(t0) = 1, we therefore have

ρ(t) =





ρ(t0)

a3(t)
(dust)

ρ(t0)

a4(t)
(radiation)

(7.18)

and (7.16) becomes

ȧ2 =





8πG

3a
ρ(t0)−Kc2 (dust)

8πG

3a2
ρ(t0)−Kc2 (radiation).

(7.19)

Currently the Universe is matter-dominated and expanding, so ȧ > 0. Equation (7.19)
states that it will expand for ever if K ≤ 0. But if K > 0 (the case in which spatial sections
are 3-spheres), the expansion will cease when

a =
8πGρ(t0)

3c2K
=

1

(7.5 × 1010 light yr)2K
× ρ(t0)

10−27 kgm−3
.

Thus our longevity hangs ultimately on how the radius of curvature of the Universe compares
with some tens of billions of light years.

Exercise (20):

Integrate (7.19) in the case of dust to show

c
√

|K|
am

t(a) =

{
θ − 1

2 sin 2θ when K > 0 [θ ≡ arcsin(
√
a/am)]

1
2 sinh 2θ − θ when K < 0 [θ ≡ arcsinh(

√
a/am)]

Sketch a(t) in the two cases.

The special case K = 0 divides a doom-laden future from one of ultimate boredom. In this
case the present density is given by

ρcrit(t0) =
3ȧ2

8πGa2

∣∣∣∣
t0

. (7.20)

The distance between nearby fundamental observers, ∆s ≃ a(t)∆r, increases at a rate
ȧ∆r = (ȧ/a)∆s. Thus (ȧ/a) is the quantity H in Hubble’s relation v = Hs. Its current value
lies near 75 km s−1 Mpc−1 in idiotic astronomical units; this translates to 2.43 × 10−18 s−1, so

ρcrit(t0) = 1.06 × 10−26 kgm−3. (7.21)

The best observational evidence suggests that the actual density is about a factor ten lower
than this: the future is more likely to be boring than otherwise. However, it is widely believed
on semi-philosophical grounds that ρ = ρcrit. Note that if ρ ≤ ρcrit, the Universe is spatially
infinite and contains infinite mass, while if ρ > ρcrit the total mass is finite.

Exercises (21):

(i) Show for a dust-dominated universe with K = 0 that a = (t/t0)
2/3. Hence estimate the

age of the Universe if ρ(t0) = ρcrit(t0).

(ii) Show for a radiation-dominated universe with K = 0 that a =
√
t/t0.

(iii) Show that in Newton’s theory the radial coordinate a(t) of a particle embedded in a
homogeneous spherical cloud of mutually gravitating particles which are initially receeding
from the origin with speeds proportional to radius, obeys (7.16). Identify the analogue of
K in this case.
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7.5 Inflation

In 1981 Alan Guth of M.I.T. pointed out15 that grand unified theories of particle physics, which
attempt to unite the strong, electromagnetic and weak forces, suggest that the cosmic scale
factor a(t) may for a period have grown exponentially rather than at the leisurely rate a ∝

√
t

expected of a conventional radiation-dominated early Universe. Exponential growth is caused
by the vacuum temporarily stumbling into a so-called “false vacuum” state. A false vacuum
differs from the usual vacuum in that it has a large energy density even at zero temperature:
ρ(T = 0) ≈ 1077 kgm−3. Obviously the zero-temperature vacuum must be Lorentz invariant,
so the energy-momentum tensor of this vacuum must be a multiple of the metric tensor. Thus

Tµν = −λgµν (λ a constant). (7.22)

In a locally freely-falling frame gµν = ηµν , so a positive energy density corresponds to λ > 0.
It follows that the false vacuum exerts a negative pressure; P = −λ.16 When we plug P =
−ρc2 = λ into (7.15a) we get

ä =
8πGλ

3c2
a ⇒ a(t) = a(0) exp

(√
8πGλ

3c2
t

)
. (7.23)

Grand unified theories suggest that the time constant associated with this exponential growth
is ≈ 10−34 s.

Exercise (22):

Let the present age of the Universe be tH and the distance over the current time-slice
t = tH to the most distant fundamental observer it is in principle possible to see be DH .
Show that if the Universe had inflated from t = 0 to the present day we would have
DH = ctH , while we would have DH = 2ctH if the Universe had been always flat and
radiation-dominated. The furthest fundamental observer we can see is said to be on the
particle horizon. [Hint: use 0 = grrdr

2 + gttdt
2.]

Guth’s inflationary conjecture has two very seductive properties:

(i) It offers an explanation of why the Universe is so homogeneous on a large scale by sug-
gesting that everything we see may have emerged from the explosive expansion of a single
causally-connected fluctuation in the preinflationary Universe.

(ii) It offers an explanation of why ρ(t0)/ρcrit(t0) ≃ 1: with the definition (7.20) of ρcrit the
cosmic energy equation (7.16) can be written

ρ(t)

ρcrit(t)
= 1 +

Kc2

ȧ2
. (7.24)

Whatever the initial value of K, after a sufficient number of e-folding times ȧ becomes
enormous and the deviation of each side of (7.24) from unity becomes extremely small.

The Universe’s inflationary episode is supposed to have begun when the cosmic temperature
dropped below the temperature at which it became thermodynamically favourable for the vac-
uum to move to a configuration of lower symmetry—an oft-quoted analogy is with a transition
to ferromagnetism at the Curie temperature. It is argued that the cosmic vacuum may have
been slow to accomplish this transition, just as water-vapour in a cloud chamber is slow to form
water droplets. The excess of the vacuum’s actual energy-density over its theoretical lowest-
energy state is presumed to be physically real (unlike the zero-point energy of the vacuum’s
normal modes) and to require representation on the right side of the Einstein equations. The
inflationary period is supposed to have ended when the vacuum made a phase transition into
the lower-energy configuration, releasing its former energy density as normal thermal radiation.

15 Phys. Rev., D23,347.
16 The physical origin of this negative pressure can be understood by imagining what happens when we

increase by dV the volume of a cylinder containing the false vacuum. The false vacuum’s mass increases by
ρvacdV , so its energy increases by ρvacc2dV . The latter increase must equal the work done on the piston,
−PdV . Thus the pressure of the false vacuum is P = −ρvacc2.
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7.6 Cosmic Strings

It is thought that when the vacuum changed its phase from a symmetric high-temperature
form to a less symmetrical low-temperature form, discontinuities may have arisen that would
have persisted to the present day. The general idea is illustrated by what happens when a
lump of iron cools in zero magnetic field through the Curie temperature Tc (at which iron
becomes ferromagnetic). At Tc groups of atoms here and there in the lump decide to align
their spins in some common direction. Since the direction is chosen at random, widely separated
groups choose different directions. So long as the groups remain isolated they can all grow by
convincing adjacent uncommited atoms to align with them. But eventually the swelling groups
touch each other – the lump has become a mass of interlocking domains. Between the domains
are regions of high B and therefore of large magnetic energy. So it is energetically desirable
for each domain boundary to shrink. But usually the boundary around one domain can shrink
only if the boundaries of adjacent domains grow. So the domains are effectively locked into
place.

When the Universe cools two-dimensional domain boundaries may form, but the most
important discontinuities are one-dimensional – strings. The complex field ψ associated with
charged particles such as electrons can give rise to a string like this.17 Imagine that it is decided
that the field shall everywhere have amplitude |ψ| = 1 and you are told to specify its phase
0 ≤ arg(ψ) ≤ 2π throughout space. You decide to set arg[ψ(x)] = φ(x), where φ is the usual
cylindrical-polar coordinate of the point x. This assignment works fine everywhere except
at your coordinate origin, r = 0. Here ∇ arg(ψ) diverges since any phase can be reached
arbitrarily close to r = 0. It is not hard to persuade oneself that by adjusting the values of ψ
in any finite volume you can move but not eliminate this singularity, which is associated with
a line of energy-momentum. This is a cosmic string.

What does the energy momentum tensor T look like in the narrow tube around r = 0 in
which T 6= 0? We’d expect T to be Lorentz invariant with respect to boosts parallel to the
string’s line. So the in the (t, z) plane T has to be proportional to the Minkowski metric. Also
it’s hard to see how the string could be carrying anything in the x or y directions. So

Tµν = −ρc2




−c2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 , (7.25)

where ρ is a constant.

Now consider the line element

ds2 = −c2dt2 + r20(dθ
2 + sin2 θdφ2) + dz2, (7.26)

where r0 is a constant. This is almost the line element ds2 = −c2dt2+dr2+ r2dφ2+dz2 of flat
spacetime in cylindrical polars; r0θ is a kind of radial variable. The only non-zero Christoffel
symbols generated by (7.26) are

Γθφφ = − 1
2
sin 2θ ; Γφφθ = Γφθφ = cot θ.

The only non-zero components of the Ricci tensor are

Rθθ = Rφφ = −r−2
0 .

17 The treatment here is a little oversimplified inasmuch as it neglects the fact that for electrons ψ is a Dirac
spinor rather than a scalar.
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Thus R = −2r−2
0 and the Einstein equations (5.16) read

Rβα − 1
2δ
β
αR =




r−2
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 r−2

0


 = −8πG

c4
T βα

=
8πGρ

c2




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 .

(7.27)

Hence with ρ > 0 (which corresponds to a positive energy density and tension in the string)
the metric (7.26) solves Einstein’s equations inside the string.

What we really need is the metric outside the string, where we live. Let the outer surface
of the string be θ = θm. Then the exterior metric is

ds2 = −c2dt2 + r20

( cos2 θ

cos2 θm
dθ2 + sin2 θdφ2

)
+ dz2. (7.28)

This metric obviously joins smoothly to the interior metric (7.26) on θ = θm. To show that it
is a vacuum solution of Einstein’s equations, we transform to a new coordinate set (t, r′, φ′, z),
where the t and z coordinates are the old ones and

r′ ≡ r0
sin θ

cos θm
; φ′ ≡ cos(θm)φ. (7.29)

The metric (7.28) now becomes

ds2 = −c2dt2 + dr′2 + r′2dφ′2 + dz2, (7.30)

which is just the cylindrical-polar metric of flat spacetime. But on a large scale the spacetime
outside the string is very odd because the range of φ′ is (0, 2π cos θm). [This follows from (7.29)
and the fact that φ is in (0, 2π)]. Consider for example a large circle r′ = a ≫ r0. The radius
of this circle is

R =

∫ a

0

√
gr′r′ dr

′ ≃ a, (7.31a)

while its circumference is

C =

∫ √
gφ′φ′ dφ′ = a2π cos(θm). (7.31b)

So the usual flat-space relation C = 2πR does not apply. Thinking about a cone may help to
clarify this strange state of affairs. At each point a cone is flat in the sense that it can be made
out of a piece of paper without stretching the paper (you can’t make a paper sphere as easily),
but circles distance a from the cone’s apex have a circumference smaller than 2πa.

How could we detect a cosmic string? Our best bet is to look for lines of gravitationally
lensed objects. To understand how a string lenses an object, think of the exterior space as a
piece of paper with a wedge of angle

θdef ≡ 2π(1 − cos θm) (7.32)

cut out and corresponding points along the cuts identified. Place the object to be lensed at
radius r′ = aq on the cut and yourself directly opposite at r′ = ao.
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Rays travel over the paper in straight lines, so you can see the object along two lines of
sight separated by 2αs, where

sin(π − 1
2
θdef)√

a2o + a2q + 2aoaq cos(π − 1
2θdef)

=
sinαs
aq

.

The largest possible value of αs is clearly
1
2θdef . It should be possible to detect a cosmic string

by looking for a line in the sky either side of which lie members of pairs of similar objects.

The mass per unit length µ of the string would follow immediately from θdef : from the
interior metric (7.26) it follows that the string’s cross-sectional area is

A =

∫ θm

0

r0dθ

∫ 2π

0

r0 sin θdφ = 2πr20(1− cos θm).

Hence using (7.27) we have that the string’s mass per unit length is µ = ρA = c2(1 −
cos θm)/(4G) = c2θdef/(8πG) idependently of the string’s physical width r0. There won’t be
room outside the string for the Universe as we know it unless µ < 1

4c
2/G = 3.37×1026 kgm−1.

Particle theorists think strings may exist with line densities of order a thousandth of this.

7.7 Summary

The cosmic microwave background defines a natural coordinate system for cosmology. On
large scales the Universe appears to be strikingly homogeneous and isotropic. This implies
that equal-time hypersurfaces must have the geometry of either (i) the 3-sphere, (ii) flat space,
or (iii) hyperbolic space according as the mean cosmic density ρ is greater than, equal to, or
less than ρcrit ≃ 10−26 kgm−3. It is widely believed that ρ = ρcrit although measurements
suggest a slightly smaller value.

The cosmic scale when the light we detect from a distant object was emitted can be
deduced from the redshift z of the object’s spectrum: 1 + z = ωemit/ωobs = a(tobs)/a(temit).
The most distant objects are seen at an epoch when a was smaller than now by more than a
factor 5.

The expansion of the Universe will cease only if ρ > ρcrit. At early times we always have
ρ ≃ ρcrit and the cosmic scale grows as a ∝ t2/3. If the wild speculations of high-energy
physicists are to be believed, very early on there may have been an inflationary phase in which
a ∝ eγt and the entire observable Universe grew out of a single quantum fluctuation.


