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Problem 1 Bose Vertex Operators

In lecture we needed the following identity

〈Vα1(z1)Vα2(z2) . . . VαN
(zN)〉 =

∏
i<j

(zi − zj)
αiαj (1)

where ∑
i

αi = 0 (2)

where the vertex operators are defined by

Vα(z) =: eiαφ(z) : (3)

with φ a chiral bose field and colons meaning normal ordering.
(a) To get to this result, let us first show that for a bose operator a, such that

[a, a†] = 1, we have

eαaeβa† = eβa†eαaeαβ (4)

(b) Thus derive
〈VA1VA2 . . . VAN

〉 = e
∑

i<j〈AiAj〉 (5)

where
Ai = uia

† + via (6)

and
VAi

=: eAi := euia
†
evia (7)

with the colons meaning normal ordering (all daggers moved to the left).
(c) Show that Eq. 5 remains true for any operators Ai that are sums of different

bose modes ak, i.e., if

Ai =
∑

k

[ui(k)a†k + vi(k)ak] (8)

Set Ai = iαiφ(zi) such that VAi
= Vα(zi). If φ is a free massless chiral bose filed which

can be written as the sum of fourier modes of bose operators such that

〈φ(z)φ(w)〉 = − ln(z − w) (9)
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conclude that Eq. 1 holds.
Note: This result is not quite correct, as it fails to find the constraint Eq. 2

properly. The reason it fails is a subtlety which involves how one separates a bose
field into two chiral components. (More detailed calculations that get this part right
are given in the Big Yellow CFT book (P. Di Francesco, P. Mathieu, and D. Senechal)
and in a different language in A. Tsvelik’s book.)

There is, however, a quick way to see that the constraint must be true. Note that
the lagrangian of a massless chiral bose field is

L =
1

2π
∂xφ(∂x + v∂t)φ (10)

which clearly must be invariant under the global transformation φ → φ + b.
(d)Show that the correlator Eq. 1 (with Eq. 3) cannot be invariant under this

transformation unless Eq. 2 is satisfied, or unless the value of the correlator is zero.

. . . . . . . . .
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Problem 2 Z4 Quantum Hall State

In this problem we intend to construct a quantum hall state from the the Z4 parafermion
conformal field theory (Details of the CFT can be found in A. B. Zamolodchikov and
V. A. Fateev, Soviet Physics JETP 62, 216 (1985), but we will not need too many of
the details here).

The wavefunction we construct is known as the Z4 Read-Rezayi wavefunction (N.
Read and E. Rezayi, Phys. Rev. B 59, 8084 (1999) ).

The Z4 parafermion conformal field theory has 10 fields with corresponding con-
formal weights (scaling dimension)

field 1 ψ1 ψ2 ψ3 σ+ σ− ε ρ χ+ χ−
weight h 0 3

4
1 3

4
1
16

1
16

1
3

1
12

9
16

9
16

and the fusion table is given by

× 1 ψ1 ψ2 ψ3 σ+ σ− ε ρ χ+ χ−
1 1 ψ1 ψ2 ψ3 σ+ σ− ε ρ χ+ χ−
ψ1 ψ1 ψ2 ψ3 1 χ− σ+ ρ ε σ− χ+

ψ2 ψ2 ψ3 1 ψ1 χ+ χ− ε ρ σ+ σ−
ψ3 ψ3 1 ψ1 ψ2 σ− χ+ ρ ε χ− σ+

σ+ σ+ χ− χ+ σ− ψ1 + ρ 1 + ε σ+ + χ+ σ− + χ− ψ3 + ρ ψ2 + ε
σ− σ− σ+ χ− χ+ 1 + ε ψ3 + ρ σ− + χ− σ+ + χ+ ψ2 + ε ψ1 + ρ
ε ε ρ ε ρ σ+ + χ+ σ− + χ− 1 + ψ2 + ε ψ1 + ψ3 + ρ σ+ + χ+ σ− + χ−
ρ ρ ε ρ ε σ− + χ− σ+ + χ+ ψ1 + ψ3 + ρ 1 + ψ2 + ε σ− + χ− σ+ + χ+

χ+ χ+ σ− σ+ χ− ψ3 + ρ ψ2 + ε σ+ + χ+ σ− + χ− ψ1 + ρ 1 + ε
χ− χ− χ+ σ− σ+ ψ2 + ε ψ1 + ρ σ− + χ− σ+ + χ+ 1 + ε ψ3 + ρ

If I have not made any mistake in typing this table, the fusion rules should be
associative

(a× b)× c = a× (b× c) (11)

Note of interest: These fusion rules may look mysterious, but in fact they are very
closely related to the fusion rules of SU(2) appropriately truncated (i.e., this is the
SU(2)4 WZW model). We can write each field as a young tableau with no more than
2 (for SU(2)) columns and no more than 4− 1 = 3 rows

field 1 ψ1 ψ2 ψ3 σ+ σ− ε ρ χ+ χ−

tableau empty

The fusion rules are just a slight modification of the usual young tableau manip-
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ulations for SU(2) where columns are removed if they have 4 boxes. (See the big
yellow book for details).

Using the techniques discussed in lecture:

(a) Use the operator product expansion (dimension counting) to find the singu-
larity as two ψ1 fields come close together. I.e, find the exponent α in the relation

lim
z′→z

ψ1(z
′)ψ1(z) ∼ (z′ − z)α ψ2(z) (12)

(b) Construct all possible “electron” fields by making a product of the ψ1 field
and a chiral bose vertex operator of the form

ψe(z) = ψ1(z)eiβφ(z) (13)

that give a single-valued and nonsingular wavefunction for the electron. (See Eq. 1,
but ignore the sum condition Eq. 2) I.e., find all acceptable values of β. Consider
both the case where the “electron” is a boson or a fermion. What filling fractions
do these correspond to? (There are multiple allowable solutions for both bosons
and fermions). Consider among the bosonic solution, the one solution of the highest
density. The ground state wavefunction in this case is the highest density zero energy
state of a 5-point delta function interaction. Show that the wavefunction does not
vanish when 4 particles come to the same point, but does indeed vanish as 5 particles
come to the same point.

(c) Given a choice of the electron field, construct all possible quasihole operators
from all fields ϕ in the above table

φqh(w) = ϕ(w)eiκφ(w) (14)

For each case, fix the values of κ by insisting that the wavefunction remain single-
valued in the electron coordinates. Determine the quasihole with the lowest possible
(nonzero) electric charge. What is this charge?

(d) Two such quasiholes can fuse together in two possible fusion channels. What
is the monodromy in each of these channels. I.e, what phase is accumulated when
the two quasiholes are transported around each other (assuming the Berry matrix is
zero – which is a statement about wavefunctions being properly orthonormal – which
we usually assume is true).

(e) Draw a Bratteli diagram (a tree) describing the possible fusion channels for
many of these elementary particles. Label the number of paths in the diagram for up
to 10 quasiholes. If there are 8 quasiparticles and the number of electrons is divisible
by 4, what is the degeneracy of the ground state? If there are 4 quasiparticles and
the number of electrons is 4m + 2 what is the degeneracy of the ground state?

(f) Construct a 5 by 5 transfer matrix and show how to calculate the ground
state degeneracy in the presence of any number of quasiholes. Finding the largest
eigenvalue of this matrix allows you to calculate the “quantum dimension” d which
is the scaling

Degeneracy ∼ d[Number of Quasiholes] (15)
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in the limit of large number of quasiholes. While diagonalizing a 5 by 5 matrix
seems horrid, this one can be solved in several easy ways (look for a trick or a nice
factorization of the characteristic polynomial).

(g) Consider instead constructing a wavefunction from the ψ2 field

ψe(z) = ψ2(z)eiβφ(z) (16)

What filling fraction does this correspond to (for bosons or fermions). In the highest
density case, what are the properties of this wavefunction (how does it vanish as how
many many electrons come to the same point).

. . . . . . . . .
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