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Problem 0 About the Lowest Landau Level

If you have never before actually solved the problem of an electron in two dimensions
in a magnetic field, it is worth doing. Even if you have done it before, it is worth
doing again. (If you have done it many times, it might not be worth doing yet again).

Consider a two dimensional plane with a perpendicular magnetic field ~B. Work
in symmetric gauge ~A = 1

2
~r × ~B.

(a) (This is the hard part, see below for hints if you need them.) Show that the
single electron Hamiltonian can be rewritten as

H = ~ωc(a†a +
1

2
) (1)

where ωc = eB/mc and

a =
√

2`

(
∂̄ +

1

4`2
z

)
(2)

with z = x+ iy and ∂̄ = ∂/∂z̄ with the overbar meaning complex conjugation. Here
` is the magnetic length ` =

√
~c/eB.

(b) Confirm that
[a, a†] = 1 (3)

and therefore that the energy spectrum is that of the harmonic oscillator

En = ~ωc(n+
1

2
) (4)

(c) Once you obtain Eq. 1, show that any wavefunction

ψ = f(z)e−|z|
2/4`2 (5)

with f any analytic function is an eigenstate with energy E0 = 1
2
~ωc. Show that an

orthogonal basis of wavefunctions in the lowest Landau level (i.e., with eigenenergy
E0) is given by

ψm = Nmz
me−|z|

2/4`2 (6)



Problem 0 2

where Nm is a normalization constant. Show that the maximum amplitude of the
wavefunction ψm is a ring of radius |z| = `

√
2m and calculate roughly how the

amplitude of the wavefunction decays as the radius is changed away from this value.
(d) Defining further

b =
√

2`

(
∂ +

1

4`2
z̄

)
(7)

with ∂ = ∂/∂z, Show that the operator b also has canonical commutations

[b, b†] = 1 (8)

but both b and b† commute with a and a†. Conclude that applying b or b† to a
wavefunction does not change the energy of the wavefunction, but applying b† to a
wavefunction generates a new wavefunction orthogonal to the original wavefunction.

(e) show that the ẑ component of angular momentum (angular momentum per-
pendicular to the plane) is given by

L = ẑ · (~r × ~p) = ~(b†b − a†a ) (9)

Conclude that applying b or b† to a wavefunction changes its angular momentum, but
not its energy.

0.1 Hints to part a

First, define the antisymmetric tensor εij, so that the vector potential may be written
as Ai = 1

2
Bεijrj. We have variables pi and ri that have canonical commutations (four

scalar variables total). It is useful to work with a new basis of variables. Consider
the coordinates

π
(α)
i = pi + α

~
2`2

εijri (10)

=
~
`2
εijξj (11)

defined for α = ±1. Here α = +1 gives the canonical momentum. Show that[
π

(α)
i , π

(β)
j

]
= iαεijδαβ

~2

`2
(12)

The Hamiltonian

H =
1

2m
(pi +

e

c
Ai)(pi +

e

c
Ai) (13)

can then be rewritten as

H =
1

2m
π

(+1)
i π

(+1)
i (14)

with a sum on i = x̂, ŷ implied. Finally use

a = (−π(+1)
y + iπ(+1)

x )
`√
2~

(15)

b = (π(−1)
y + iπ(−1)

x )
`√
2~

(16)
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to confirm that a and b are given by Eqs. 2 and 7 respectively. Finally confirm Eq.
1 by rewriting Eq. 14 using Eqs. 15 and 16.

A typical Place to get confused is the definition of ∂. Note that

∂z = ∂̄z̄ = 1 (17)

∂̄z = ∂z̄ = 0 (18)

. . . . . . . . .

Problem 1 Quantum Hall Conductivity vs Conductance

Figure 1: A 2DEG of arbitrary shape with contacts 1,2,3,4 attached on its perimeter
in clockwise order

Consider a two dimensional electron gas (2DEG) of arbitrary shape in the plane
with four contacts (1,2,3,4) attached at its perimeter in a clockwise order as shown
in Fig. 1. The conductivity tensor σij relates the electric field to the current via

ji = σijEj (19)

where indices i and j take values x̂ and ŷ (and sum over j is implied). Assume that
this is a quantized hall system with quantized hall conductance s. In other words,
assume that

σ =

(
0 s
−s 0

)
(20)

Show that the following two statements are true independent of the shape of the
sample.

(a) Suppose current I is run from contact 1 to contact 2, show that the voltage
measured between contact 3 and 4 is zero.

(b) Suppose current I is run from contact 1 to contact 3, show that the voltage
measured between contact 2 and 4 is V = I/s.

Note: The physical measurements proposed here measure the conductance of the
sample, the microscopic quantity σ is the conductivity.

. . . . . . . . .
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Problem 2 Laughlin Plasma Analogy

Consider the Laughlin wavefunction for N electrons at positions zi

Ψ0
m = N

∏
1≤i<j≤N

(zi − zj)m
∏

1≤i≤N

e−|z|
2/4`2 (21)

with N a normalization constant. The probability of finding particles at positions
{z1, . . . , zN} is given by |Ψm(z1, . . . zN)|2.

Consider now N classical particles at temperature β = 1
kbT

in a plane interacting

with logarithmic interactions v(~ri − ~rj) such that

βv(~ri − ~rj) = −2m log(|~ri − ~rj|) (22)

in the presence of a background potential u such that

βu(|~r|) = |~r|2/(2`2) (23)

Note that this log interaction is “Coulombic” in 2d (i.e., ∇2v(~r) ∝ δ(~r)).
(a) Show that the probability that these classical particles will take positions

{~r1, . . . , ~rN} is given by |Ψ0
m(z1, . . . zN)|2 where zj = xj + iyj is the complex repre-

sentation of position ~ri. Argue that the mean particle density is constant up to a
radius of roughly `

√
Nm. (Hint: Note that u is a neutralizing background. What

configuration of charge would fully screen this background?)
(b) Now consider the same Laughlin wavefunction, but now with M quasiholes

inserted at positions w1, . . . , wM .

Ψm = N (w1, . . . , wM)

[ ∏
1≤i≤N

∏
1≤α≤M

(zi − wα)

]
Ψ0
m (24)

where N is a normalization constant which may now depend on the positions of the
quasiholes. Using the plasma analogy, show that the w − z factor may be obtained
by adding additional logarithmically interacting charges at positions wi,with 1/m of
the charge of each of the z particles

(c) Note that in this wavefunction the z’s are physical parameters (and the wave-
function must be single-valued in z’s), but the w’s are just parameters of the wave-
function – and so the function N could be arbitrary — and is only fixed by normal-
ization. Argue using the plasma analogy that in order for the wavefunction to remain
normalized (with respect to integration over the z’s) as the w’s are varied, we must
have

|N (w1, . . . , wM)| = K
∏

1≤α<γ≤M

|wα − wγ|1/m
∏

1≤α≤M

e−|wα|
2/(4m`2) (25)

with K a constant. (Hint: a plasma will screen a charge).

. . . . . . . . .
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