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Much of this problem set is standard exam material.

Problem Set 1

Einstein, Debye, Drude, and Free Electron Models

1.1. Einstein Solid
(a) Classical Einstein Solid (or “Boltzmann® Solid):
Consider a single harmonic oscillator in three dimensions with Hamiltonian
2
p k
" 2m + Ex

= Calculate the classical partition function

_ dx e—BH®X)
(2Tr.=, [ xe

The classical calculation
has never been on

an exam (although it

is examinable)

Note: in this problem p and x are three dimensional vectors (they should appear bold to

indicate this unless your printer is defective).
= Using the partition function, calculate the heat capacity 3kg.

r> Conclude that if you can consider a solid to consist of N atoms all in harmonic wells, then
the heat eapacity should be 3Nkg = 3R, in agreement with the law of Dulong and Petit.

(b) Quantum Einstein Solid: Now consider the same Hamiltonian quantum mechanically.

t= Calculate the quantum partition function

7 = Ze—ﬁﬁj The quantum Einstein
i model could be on an exam

where the sum over j is a sum over all Eigenstates.
= Explain the relationship with Bose statistics.
t= Find an expression for the heat capacity.

(although it rarely is)

t- Show that the high temperature limit agrees with the law of Dulong of Petit.

t> Sketch the heat capacity as a function of temperature.



1.2. Debye Theory:

Debye theory is (a)} State the assumptions of the Debye model of heat capacity of a solid.

very frequently & Derive t',hc Debye hcat.1cz1pa.city as a function of t-L“IIl[.‘rL“l’ELtl}I‘C (you will have to leave the
syarminsdl final result in terms of an integral that cannot be done analytically).

t From the final result, obtain the high and low temperature limits of the heat capacity
analytically.

You may find the following integral to be useful

i T SR e 3 —=ns _ = 1 _ =
Jru d‘ch—l_zn:l o TE _ﬁzn:l ni T 15

By integrating by parts this can also be written as ft}x d::-fefTE:Jf = %

(b) The following table gives the heat capacity C for potassium iodide (KI) as a function of
temperature.

C(JK " mol Y85 x 1077|186 x 107*[1.2 x 107 [59 x 107'] 1.1 | 28 | 6.3

T(K) II 0.1 1.0 ] 2] 10 15 20

> Discuss, with reference to the Debye theory, and make an estimate of the Debye temper-
ature.



1.3. Drude Theory of Transport in Metals

Drude theory does
show up on exams
-- particularly in the
context of
semiconductors

AC Drude theory is
likely to be too hard
for an exam

(a) Assume a scattering time 7 and use Drude theory to derive an expression for the conduc-
tivity of a metal.

(b) Define the resistivity matrix p as E = fi;'

&> Use Drude theory to derive an expression for the matrix p for a metal in a magnetic field.

(You might find it convenient to assume B parallel to the Z axis. The under-tilde notation
means that the quantity p is a matrix.)

&> Invert this matrix to obtain an expression for the conductivity matrix g.

(c) Define the Hall coefficient.

&> Estimate the magnitude of the Hall voltage for a specimen of sodium in the form of a
rod of rectangular cross section 5mm by 5mm carrying a current of 1A in a magnetic field
of 1T. The density of sodium atoms is roughly 1 gram/em?®, and sodium has atomic mass of
roughly 23. You may assume that there is one free electron per sodium atom (Sodium has
valence one).

> What practical difficulties would there be in measuring the Hall voltage and resistivity
of such a specimen (and how might these difficulties be addressed).

(d) What properties of metals does Drude theory not explain well?

e)* Consider now an applied AC field E ~ ¢! which induces an AC current j ~ e™t.
J

Modify the above calculation (in the presence of a magnetic field) to obtain an expression for
the complex AC conductivity matrix g(w). For simplicity in this case you may assume that
the metal is very clean, meaning that 7 — oo, and you may assume that £ 1 B. You might
again find it convenient to assume B parallel to the Z axis. (This problem might look hard,
but if you think about it for a bit, it isn’t really much harder than what you did above!)

> At what frequency is there a divergence in the conductivity?
> What does this divergence mean? (When 7 is finite, the divergence is cut off).

&> Explain how could one use this divergence (known as the cyclotron resonance) to measure
the mass of the electron. ( In fact, in real metals, the measured mass of the electron is
generally not equal to the well known value m, = 9.1095 x 1073 kg. This is a result of band
structure in metals, which we will explain later in the course. )

ETC.... SEE MY WEBSITE



Sample Exams with Solutions:

One on my website
One in back of book

Solutions to 2011 exam on
web — with all the past papers



PAST PAPERS (1996- present)

Go to my website
for commentary



Which Past Paper Questions are on the Syllabus Now?

Condensed Matter Papers 2011 and thereafter. All on Syllabus

B Paper 2010

Q1. On Syllabus. End of part d is tricky and was not really covered, but could be deduced by a
perceptive student.

Q 2,3,4,5. On Syllabus.

Q6. Mostly not on syllabus. The students should be able to deduce the density of states of a 2d
electron gas.

Q7,8 Not on syllabus

ETC I1!
SEE MY WEBSITE!

B Paper 2009.

Q1. On syllabus. This question is solved in great detail in my lecture notes (note also there is an error in
the height of data point e of the plot. Discussed in the book)

Q2,3. Onsyllabus.



STATISTICAL ANALYSIS
OF PAST PAPERS (2004-present)
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Topic  Subtopic

Year =

05

06

07

08

09

10

11

12

13

14

Something About Phonons
Define Phonon
Phonon Density of States
In 2d
In 1d / diatomic
How would you measure phonons (light/neutrons)
Why is there a degeneracy of modes at...
Debye Specific Heat
Derivation in 3d
Derivation In 2d
Derivation In 1d
How many/ what kind of (acoustic/optical/transverse/longitudinal) phonon mod
Describe Motion of acoustic/optical modes
Some Sort of Harmonic Chain
Diatomic with Two Masses
Monatomic
Alternating Sprint Constants
Second or Further Neighbor interactions
rmonatomic limit of diatomic
Sketch Dispersions / monotomic diatomic

Something about the Free Electron Gas
Derive Specific Heat of Fermi Gas
Define Fermi Energy / Fermi Surface
Density of States of Free Electron Gas
Definition of
Derivation In 3d
Derivation In 2d
Derivation In 1d
Estimate a Fermi Energy / Relationship of N to Ef

# of Times
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Topic

Subtopic

Year =

05

06

07

08

09

10

11

12

13

14

Something About Diffraction / Crystal Structure
Derive Structure Factor / Scattering Amplitude
Calculate Interplanar distances

Diffraction

Derive Systematic Absences

When two atoms scatter same; H not scattering
Analyze a Powder Diffraction Pattern

Predict Diffraction Data

Write Down Structure Factor for X

Identify a unit cell doubling

Plan View

primitive vs conventional unit cell

Identify Lattice/Basis

Calculate Reciprocal Lattice

Wigner Seitz /Brillouin Zone Construction
Contrast neutron/xray

Describe equipment for neutron/xray

#of Times
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Topic

Subtopic

Year =

05

06

07

08

09

10

11

12

13

14

Something about Band Structure/Semiconductor Physics
Mearly Free Electron Model (NFEM)

Derive Gaps of NFEM at zone boundary

Draw Dispersion

Describe Effective Mass

Monovalent / Divalent - Metal/Insulator

Gaps open when doubling unit cell

Draw a fermi surface in 2d/3d for weak/strong potential

Tight Binding Band

Describe Density of States
Describe opening of gap

Define Effective Mass

Define Chemical Potential / Doping
Define Mobility

Define Conductivity

Define Hole

signs of velocity, energy, current, ...

Law of Mass Action / formula for n(T,mu)

Derivation
Use to calculate some density/mu when doped

Temperature dependence of semiconductors

Estimate band gap / doping from data
How this would be measured

How chemical potential changes with doping
Density of States (1d, 2d, 3d)
Optical Properties of Semiconductors

Direct /Indirect Gap
States bound to donors

Drude Theory

Derive Hall Coefficient

Derive Conductivity/ Mobility
Extract mobility/density from experimental data

# of Times

=
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Relationship of ] to Tc

What causes domains
Domain Relation to Hysteresis
Derive 5Size of Bloch Wall

Topic Subtopic Year = 05 |06 |07 |08 |09 |10 |11 12| 13| 14
# of Times
Something about magnetism g9 1] 1
Define Para/Diamagnetism 5 1 1
Estimate Larmor Diamagnetism 1
General Curie Law Derivation 1 1
Curie Law Derivation for 5pin 1/2 4 1
Derive Pauli Paramagnetism 1
Adiabatic Demagnetization 1
What is exchange J 2
Molecular (mean) field 6 1
3
1
2
1




The syllabus

VI: Condensed-matter physics

Free electron model of metals, Fermi energy and Fermi surface.
Drude theory, conductivity and Hall effect (one carrier only).

Lattice vibrations: law of Dulong and Petit; phonons; dispersion
relation with two atomic types: acoustic and optical branches;
Einstein and Debye models of heat capacity.

Structure and types of condensed matter. Bonding of atoms: ionic,
covalent, van der Waals, metallic [Non examinable: hydrogen].
Elasticity and thermal expansion.

Crystals. Bravais lattices, lattice planes, Miller indices and unit
cells (conventional and primitive). Reciprocal lattice: Bragg
and Laue formulation of diffraction; Brillouin zone; neutron and
X-ray scattering.

ons in periodic potentials; tight binding model; band s
ture; Fermm surface; semiconductors and insulators. Semiconduc-
tors: Doping; law of mass action; direct and indirect band gap;
concepts of holes and effective mass; mobility and Hall effect in

semiconductor [Non examinable: p-n junction, MOSFET].

Magnetism: Para- dia-, ferro-,antiferro-, and ferrimagnetism;
application of Hund’s rules to determination of magnetic ground
states of isolated 1ons; Local Moment vs Itinerant magnetism.
Mean field theory. Domains, domain motion, hysteresis.




Syllabus Notes:

Electrons in periodic potentials; tight binding model; band struc-
ture; Fermi surface; semiconductors and insulators. Semiconduc-
— tors: Doping: law of mass action; direct and indirect band gap;
concepts of holes and effective mass; mobility and Hall effect in
semiconductor [Non examinable: p-n junction, MOSFET].

Magnetism: Para- dia-, ferro-,antiferro-, and fermmagnetism;
application of Hund s rules to determination of magnetic ground
states of 1solated 1ons; Local Moment vs ltinerant magnetism.
Mean field theory. Domains, domain motion, hysteresis

No Quantum Well

Qq%
<h; Hubbard Model?



General Exam Advice



The Long and Short of it...
Give correct length answers!
Time Limit = 2 hours (0:10+1:50)

Don’t ramble about
something that is not asked!



3. Explain what is meant by the tollowing terms in relation to the electronic bandstructure:
Fermi energy, chemical potential, Fermi surface and effective mass.

Explain how a weak periodic potential in a (one-dimensional) cryvstal can lead to the

tormation of a band gap. Sketch and describe qualitatively how the band gap and effective

masses close to the Brillouin zone boundaries change as the magnitude of the periodic
potential is increased.

A fictitious metal crystallises into a simple cubic lattice with lattice constant a and one atom
per lattice point. The potential in the cryvstal is weakly modulated with the periodicity
of the lattice. Sketch the first Brillouin zone for this crystal. The metal is monovalent
(that is, it has only one valence electron per unit cell). Describe the shape and dimensions
of the Fermi surtace it the modulation is extremely weak. What it it is somewhat weak
(compared to the Fermi energy). but not extremely weak? A second metal has an identical
unit cell, but is divalent (two valence electrons per unit cell). Give a qualitative description
and sketch of the Fermi surtace for this divalent metal. Discuss what happens in both the
monovalent and divalent cases as the periodic potential becomes extremely strong.

From Collection (2008 Exam)

4]



From 2001 Exam

5. Explain briefly the origin of the electronic band gap in a typical electrical
insulator.

The periodic potential V{z) experienced by an electron in a one-dimensional
crystal mayv be given in the form

.i,-"rliﬂ'.'} — Fﬂ + 1‘_,.-'G E—EGI! + F—G E‘l‘lc:l"

where & is the reciprocal lattice vector, and V| = |V_g|. Explain why a suitable
wavelunction for an electron in such a potential may be written to a first approximation

as
t.'ll{:r‘] — AEikr_l_BEi[k—{';]:l'l

By substituting 1) into the Schridinger equation and comparing coefficients in
e** and el %7 ghow that the energy of an electron of mass m and wavevector k at
the zone boundary is given by

21,2

E=1+ + Ve

2m

Discuss the significance of each of the three terms on the right-hand side of this equation
in terms of band theory.

Using this result explain why diamond is a good electrical insulator, whereas
silicon and germanium, which have the same structure type as diamond, are
semiconductors.  (In the diamond structure there are two tetravalent atoms in the
hasis. )

‘

6]

3

[10]
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From:

Report on B6 (Condensed-Matter Physics) 2014

An additional general comment is that often our students do not know how to answer a physics
question: what one generally receives is a stream of formulae with no words, definitions, or
linking sentences whatsoever. One has to guess what is in the mind of the undergraduate. I

believe it is worth tutors passing on the message to students that such a stream of consciousness
does not attract full marks. |

Be Clear In What You Are Doing!

( particularly in “Show X” questions )




SECOND PUBLIC EXAMINATION

Honour School of Physics Part B: 3 and 4 Year Courses

Honour School of Physics and Philosophy Part B

B6. CONDENSED-MATTER PHYSICS

TRINITY TERM 2014



1. State what you understand by the terms lattice, basis, structure, primitive unit
cell and conventional unit cell. [5]

Lattice = an infinite set of points defined by integer sums of a set of
linearly independent primitive lattice vectors.

Basis = description of objects in the unit cell with respect to a reference
lattice point in the unit cell.

Primitive Unit Cell = A unit cell containing exactly one lattice point

Conventional Unit Cell = A non primitive unit cell which is convenient to work with —
usually meaning that it has orthogonal axes.

Structure = ?7?7?
= A particular periodic arrangement of atoms

= Lattice + Basis



1. State what you understand by the terms lattice, basis, structure, primitive unit
cell and conventional unit cell

Write down the coordinates of the lattice points in both the body-centred cubic
and face-centred cubic conventional unit cells in terms of their conventional lattice
vectors. How many lattice points are there in each of these two conventional cells?



1. State what you understand by the terms lattice, basis, structure, primitive unit
cell and conventional unit cell. [5]

Write down the coordinates of the lattice points in both the body-centred cubic

and face-centred cubic conventional unit cells in terms of their conventional lattice
vectors. How many lattice points are there in each of these two conventional cells?

BCC FCC




1. State what you understand by the terms lattice, basis, structure, primitive unit
cell and conventional unit cell.

Write down the coordinates of the lattice points in both the body-centred cubic
and face-centred cubic conventional unit cells in terms of their conventional lattice
vectors. How many lattice points are there in each of these two conventional cells?

Without proof, write down an expression for the geometrical structure factor for the X-
ray reflections from planes with Miller indices (hkl) of a erystal which contains N atoms
in the unit cell. Use your expression to determine the rules governing the reflections that
are allowed by the lattice for both face-centred cubic and body-centred cubic lattices.

In each case determine what fraction of all possible permutations of Miller indices give
rise to allowed reflections

The uniaxial compression of a face-centred cubic crystal, such that the length of
the lattice constant along one of its principal axes is reduced, the other two remaining
fixed, is known as compression along the Bain path. Show by means of a diagram, or
otherwise, that when a face-centred cubic crystal is compressed along the Bain path
to the point where its volume is reduced to 1;’\/5._’ of the original volume, it becomes
body-centred cubic.

[5]

[8]



FCC

a
a
a/2
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. ......... . ......... .
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Unlabeled points at height 0 and a Unlabeled points at height 0 and a/\/z_



1. State what you understand by the terms lattice, basis, structure, primitive unit
cell and conventional unit cell

Write down the coordinates of the lattice points in both the body-centred cubic
and face-centred cubic conventional unit cells in terms of their conventional lattice
vectors. How many lattice points are there in each of these two conventional cells?

Without proof, write down an expression for the geometrical structure factor for the X-
ray reflections from planes with Miller indices (hkl) of a erystal which contains N atoms
in the unit cell. Use your expression to determine the rules governing the reflections that
are allowed by the lattice for both face-centred cubic and body-centred cubic lattices.

In each case determine what fraction of all possible permutations of Miller indices give
rise to allowed reflections, and comment on these fractions.

The uniaxial compression of a face-centred cubic crystal, such that the length of
the lattice constant along one of its principal axes is reduced, the other two remaining
fixed, is known as compression along the Bain path. Show by means of a diagram, or
otherwise, that when a face-centred cubic crystal is compressed along the Bain path

to the point where its volume is reduced to 1;’\/5._’ of the original volume, it becomes
body-centred cubic.

Using the rules for allowed X-ray reflections, state whether X-ray reflections from
the (100), (110), (200), and (111) planes are allowed by the lattice for a face-centred
cubic erystal. This erystal is compressed in the z-direction along the Bain path to the
point where the lattice becomes body-centred cubic. Consider each of the above four
planes to pass through the same set of atoms as the crystal is compressed. What are the
Miller indices for each of the planes when written in terms of the lattice co-ordinates
referenced to this new body-centred cubic unit cell? Determine which, if any, of the
reflections are still allowed, and comment on your results.

5
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a (2000 X X (110)
Allowed Allowed
reflection reflection

(true recip lat vec)

Unlabeled points at height 0 and a Unlabeled points at height 0 and a/\2



a
d
a/2 (100)
......... .. e e e e e
not allowed
reflection
(0]
......... .. e e e e e
a/2

Unlabeled points at height 0 and a

(1/2,1/2,0)

not allowed
reflection
a/2\2 BCC

Unlabeled points at height 0 and a/\/2



(110)

N o X (010)

not allowed
not allowed oflection
eflection ® fORBCC

a/2\2

.
Unlabeled points at height 0 and a Unlabeled points at height 0 and a/\2



(111) (011)
§ Allowed
Allowed : ‘ reflection
reflection 6 o for BCC

for FCC a/2\2 g a/2\2

Unlabeled points at height 0 and a Unlabeled points at height 0 and a/\2



1. State what you understand by the terms lattice, basis, structure, primitive unit
cell and conventional unit cell

Write down the coordinates of the lattice points in both the body-centred cubic
and face-centred cubic conventional unit cells in terms of their conventional lattice
vectors. How many lattice points are there in each of these two conventional cells?

Without proof, write down an expression for the geometrical structure factor for the X-
ray reflections from planes with Miller indices (hkl) of a erystal which contains N atoms
in the unit cell. Use your expression to determine the rules governing the reflections that
are allowed by the lattice for both face-centred cubic and body-centred cubic lattices.

In each case determine what fraction of all possible permutations of Miller indices give
rise to allowed reflections, and comment on these fractions.

The uniaxial compression of a face-centred cubic crystal, such that the length of
the lattice constant along one of its principal axes is reduced, the other two remaining
fixed, is known as compression along the Bain path. Show by means of a diagram, or
otherwise, that when a face-centred cubic crystal is compressed along the Bain path

to the point where its volume is reduced to 1;’\/5._’ of the original volume, it becomes
body-centred cubic.

Using the rules for allowed X-ray reflections, state whether X-ray reflections from
the (100), (110), (200), and (111) planes are allowed by the lattice for a face-centred
cubic erystal. This erystal is compressed in the z-direction along the Bain path to the
point where the lattice becomes body-centred cubic. Consider each of the above four
planes to pass through the same set of atoms as the crystal is compressed. What are the
Miller indices for each of the planes when written in terms of the lattice co-ordinates
referenced to this new body-centred cubic unit cell? Determine which, if any, of the
reflections are still allowed, and comment on your results.

5
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2. Derive expressions for the Fermi Temperature, T, and Debye Temperature, #p,
of a monovalent metal containing n atoms per unit volume, and within which the speed
of sound averaged over polarisations is ¢. Show that for a face-centred cubic metal with

lattice spacing a the ratio of the two temperatures is given by
T A
4F — (ﬁﬂ,ﬂ)lfﬂ (_) :
ﬁD )

where A = h/(2m.c).

The effective speed of sound in copper (which is a face-centred cnbic monovalent
metal) is 2700m s !, and the ratio Tr/fp is 240. Calculate Tg, fp, and a.

A metal is at a temperature of order #. Within the metal, an electron with the
Fermi wave vector, kg, scatters from a phonon of wave vector kpy and loses energy. Its
new wave vector is k'. Explain why the magnitude of the new wave vector is very close
to that of the original wave vector, i.e. |k'| = (1 —d)|kg|, where § < 1. Assuming the
phonon obeys the dispersion relation wyy, = ckpy show that

L(E)LHA
20 \ kg J kp

What does the length A represent?



3. State what you understand by the terms intrinsic semiconductor, extrinsic semi-
conductor, mobility, and effective mass.
Explain what is meant by a hole in semiconductor physics, and why it is a useful
concept. Give arguments that determine the sign of (i) the effective mass, (ii) the charge
associated with the hole.

For the majority of intrinsic semiconductors, the mobility of the electrons is
greater than that of the holes. Give a simple argument that explains why this is the
case. For pure germanium at room temperature the mobilities of the electrons and holes
are (.36 and 0.18m? V= s~ ! respectively, and the electrical resistivity is 0.5 Q m. What
is the number density of electrons and holes?

A monovalent face-centred-cubic metal with lattice parameter (.36 nm has a re-
sistivity of 1.7x107% Q@ m. Caleulate the mobility of the electrons, and comment on the

value compared with the mobility of the electrons in germaninm.

The two ends of a piece of intrinsic germanium with cross-sectional area 1mm?

and length 1em are connected to the terminals of a 2V battery by means of wires
made from the above-mentioned metal. The wires have cross-sectional area of 0.5 mm?,
Determine the drift velocity of the carriers in the germanium, and of the carriers in the

metal.

[4]



