Problem Set 5

Magnetism and Mean Field Theory

5.1

9.2,

1 General Magnetism

(a) Explain qualitatively why some atoms are paramagnetic and others are diamagnetic with
reference to the electronic structure of these materials.

(b) Use Hund’s rules and the Aufbau principle to determine L, S, and J for the following
isolated atoms:

(i) Sulfer (S) atomic number = 16
(ii) Vanadium (V), atomic number = 23
(iii) Zirconium (Zr), atomic number = 40

(¢) Define the terms Ferromagnetism, Antiferromagnetism, Ferrimagnetism, and Itinerant
Ferromagnetism.

> Write down an example of a Hamiltonian which would have each one of these as its ground
state.

(d) The wavefunction of an electron bound to an impurity in n-type silicon is hydrogenic in
form. Estimate the impurity contribution to the diamagnetic susceptibility of a Si crystal
containing 10%° m =2 donors given that the electron effective mass m* = 0.4m,. and the
relative permitivity is €, = 12.

> Make sure you know the derivation of the formula you usel!

I Weiss Mean Field Theory of the Ferromagnet Consider the spin-1/2, ferromagnetic
Heisenberg Hamiltonian on the cubic lattice

’Hz—%zsi-sj—i-guBBZSi (1)

<i,j> %

Here, J > 0, with the sum indicated with < 7,7 > means summing over ¢ and j being
neighboring sites of the cubic lattice, and B is the externally applied magnetic field, which
we will assume is in the % direction for simplicity. The factor of 1/2 out front is included so
that each pair of spins is counted only once. Each site ¢ is assumed to have a spin S; of spin
S =1/2. Here up is the conventional Bohr magneton defined to be positive. The fact that
the final term has a + sign out front is from the fact that the electron charge is negative,
therefore the magnetic moment opposes the spin direction. If one were to assume that these
were nuclear spins the sign would be reversed (and the magnitude would be much smaller
due to the larger nuclear mass).

(a) Focus your attention on one particular spin S;, and write down an effective Hamiltonian
for this spin, treating all other variables S; with j # i as expectations (S;) rather than
operators.

(b) Calculate (S;) in terms of the temperature and the fixed variables (S;) to obtain a mean-
field self-consistency equation.

> Write the magnetization M = M| in terms of (S) and the density of spins.

(¢) At high temperature, find the susceptibility x = dM/dH = podM/dB in this approxi-
mation.

(d) Find the critical temperature in this approximation.
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> Write the susceptibility in terms of this critical temperature.

(e) Show graphically that in zero external field (B = 0), below the critical temperature, there
are solutions of the self consistency equation with M # 0.

(f) Repeat parts (a)-(d) but now assuming there is an S = 1 spin on each site (meaning that
S, takes the values —1,0,+1).

Bragg-Williams Approximation

This problem provides a different approach to obtaining the Weiss mean-field equations. For
simplicity we will again assume spin 1/2 variables on each site.

Assume there are N lattice sites in the system. Let the average spin value be (S;) = s.
Thus the probability the probability of a spin being an up spin is Py = 1/2 + s whereas the
probability of any spin being a down spin is P, = 1/2 — s. The total number of up spins or
down spins is then NP and NP respectively where there are N total lattice sites in the
system.

(a) Consider first a case where sites do not interact with each other. In the micro-canonical
ensemble, we can count the number of configurations (microstates) which have the given
number of spin ups and spin downs (determined by s). Using S = k,In{ calculate the
entropy of the system in the large NV limit.

(b) Assuming all sites have independent probabilities Py and Py of pointing up and down re-
spectively, calculate the probability that two neighboring sites will point in the same direction
and the probability that two neighboring sites will point in opposite directions.

> Use this result to calculate an approximation to the expectation of the Hamiltonian.
Note: This is not an exact result, as in reality, sites that are next to each other will have a
tendency to have the same spin because that will lower their energies, but we have ignored
this effect here.

(c) Putting together the results of (a) and (b) above, derive the approximation to the free
energy

1 1 1 1
F=FE-TS8=NkT (§+s)log(§+s)+(§—s)log(§—s) +gupB.,Ns — JNZs*/2

where Z is the number of neighbors each spin has, and we have assumed the external field
to be in the £ direction. (Again we assume the spin is electron spin so that the the energy

of a spin interacting with the external field is —l—gubg .S )

(d) Extremize this expression with respect to the variable s to obtain the same mean field
equations as above.

> Below the critical temperature note that there are three solutions of the mean field
equations.

> By examining the second derivative of F' with respect to s, show that the s = 0 solution
is actually a maximum of the free energy rather than a minimum.

> Sketch F'(s) both above and below the critical temperature for B = 0. At nonzero B?

Mean Field Theory for the Antiferromagnet

For this exercise we use the Molecular Field (Weiss Mean Field) approximation for the spin-
1/2 Antiferromagnetic model on a 3 dimensional cubic lattice. The full Hamiltonian is exactly
that of Eq. 1 above, except that now we have J < 0, so neighboring spins want to point in
opposite directions. (Compared to a Ferromagnet where J > 0 and neighboring spins want
to point in the same direction). For simplicity let us assume that the external field points in
the Z direction.
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At mean field level, the ordered ground state of this Hamiltonian will have alternating spins
pointing up and down respectively. Let us call the sublattices of alternating sites, sublattice
A and sublattice B respectively (i.e, A sites have lattice coordinates (¢, j, k) with i + j + k
odd whereas B sites have lattice coordinates with i + j + k even).

In Mean field theory the interaction between neighboring spins is replaced by an interaction
with an average spin. Let s4 = (5%) 4 be the average value of the spins on sub-lattice A, and
sp = (S*)p be the average value of the spins on sub-lattice B. (We assume that these are
also oriented in the +2 direction).

(a) Write the mean field Hamiltonian for a single site on sublattice A and the mean field
Hamiltonian for a single site on sublattice B.

(b) Derive the mean-field self consistency equations

SA %tanh(B[JZsB — gupB]/2)

sp = %tanh(ﬁ[JZsA — gupB]/2)

with = 1/(kyT'). Recall that J < 0.

(¢) Let B = 0. Reduce the two self-consistency equations to a single self consistency equation.
(Hint: Use symmetry to simplify! Try plotting s versus sg).

(d) Assume s4,p are small near the critical point and expand the self consistency equations.
Derive the critical temperature T, below which the system is antiferromagnetic (i.e., sa,p
become nonzero).

(e) How does one detect antiferromagnetism experimentally?

(f) In this mean-field approximation, the magnetic susceptibility can be written as

B . O0(sa+sB)
X = —(N/2)guopn élglo ~ 9B
(why the factor of 1/2 out front?).

> Derive this susceptibility for T' > T, and write it in terms of 7.

> Compare your result with the analogous result for a ferromagnet. (Problem 5.2.). In fact,
it was this type of measurement that first suggested the existence of antiferromagnets!

(g)* For T < T, show that

(N/4)po(gps)? (1 — (25)?)
FoT + ko To(1 — (25)?)

with s the staggered moment (ie, s(T) = |sa(T)| = |sp(T)|).
> Compare this low T result with that of part f.
> Give a sketch of the susceptibility at all 7.

Ground States and Spin Waves

(a) Consider the spin-1 Heisenberg Hamiltonian from Problem 5.2.. Let us take B to be in
the —Z direction, and assume a cubic lattice.

It will be useful to remember that

1 - - Z Q=
Si-8j = 5(S/S; +5;5]) +S7S;



(a.i) For J > 0, i.e., for the case of a ferromagnet, intuition tells us that the ground state of
this Hamiltonian should simply have all spins aligned. Consider such a state. Show that this
is an eigenstate of the Hamiltonian Eq. 1 and find its energy.

(a.iil) For J < 0, the case of an antiferromagnet, one might expect that, at least for B = 0
the state where spins on alternating sites point in opposite directions might be an eigenstate.
Unfortunately, this is not precisely true. Consider such a state of the system.

> Show that the state in question is not an eigenstate of the Hamiltonian.

Although the intuition of alternating spins on alternating sites is not perfect, it becomes
reasonable for systems with large spins S. For smaller spins (like spin 1/2) one needs to
consider these so-called “quantum fluctuations”. (We will not do that here).

(b) For the spin-S ferromagnet particularly for large S, our “classical” intuition is fairly good
and we can use simple approximations to examine the excitation spectrum above the ground
state.

First recall the Heisenberg equations of motion for any operator
o
ih— =[O, H
ih— =0, H]
with H the Hamiltonian (Eq. 1 with S; being a spin S operator).

(b.i) Derive equations of motion for the spins in the Hamiltonian Eq. 1. Show that one
obtains

dS;

h
dt

=Six [J> Sj—gmB (2)
J

where the sum is over sites j that neighbor <.

(b.ii) In the ferromagnetic case, particularly if S is large, we can treat the spins as not being

operators, but rather as being classical variables. In the ground state, we can set all S; = 25

(Assuming B is in the —Z direction so the ground state has spins aligned in the 2 direction).

Then to consider excited states, we can perturb around this solution by writing

S7 = S —0((65)?/9)

SF = 457

SV = o8V

where we can assume 05% and §5Y are small compared to S. Expand the equations of motion
(Eq. 2) for small perturbation to obtain equations of motion that are linear in 4.5, and 4.5,

(b.iii) Further assume wavelike solutions
5Slm _ Ameiwtfikm
553/ — Ayeiwtfikm
This ansatz should look very familiar from our prior consideration of phonons.
Plug this form into your derived equations of motion.
> Show that S¥ and S} are out of phase by 7/2. What does this mean?

> Show that the dispersion curve for “spin-waves” of a ferromagnet is given by hw = |F (k)]
where

F(k) = JS(6 — 2[cos(kya) + cos(kya) + cos(k,a)]) + guw|B|
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where we assume a cubic lattice.

> How might these spin waves be detected in an experiment?

Itinerant Ferromagnetism

(a.i) Review 1: For a three dimensional tight binding model on a cubic lattice, calculate the
effective mass in terms of the hopping matrix element ¢ between nearest neighbors and the
lattice constant a.

(a.ii) Review 2: Assuming the density n of electrons in this tight binding band is very low,
one can view the electrons as being free electrons with this effective mass m*. For a system of
spinless electrons show that the total energy per unit volume (at zero temperature) is given
by

EJV = nEpin + Cn°/3

where F,,;, is the energy of the bottom of the band.
> Calculate the constant C.

b) Let the density ()f SpiIl—llp electrons be n+ and the density ()f SpiIl-d()Wl electrons be n
T
we can write thCSC as

ny = (n/2)(1+a) 3)
ny = (n/2)(1-a) (4)

where the total net magnetization of the system is given by
M = —upna

Using the result of part (a), fixing the total density of electrons in the system n,
> calculate the total energy of the system per unit volume as a function of «.
> Expand your result to fourth order in a.
> Show that a = 0 gives the lowest possible energy.
> Argue that this remains true to all orders in «

(¢) Now consider adding a Hubbard interaction term

Hpuppara = U Y _ N{N|

with U > 0 where Ng is the number of electrons of spin ¢ on site .

Calculate the expectation value of this interaction term given that the up and down electrons
form fermi seas with densities ny and nj as given by Eqns. 3 and 4 above.

> Write this energy in terms of a.

(d) Adding together the kinetic energy calculated in part b with the interaction energy
calculated in part c, determine the value of U for which it is favorable for « to become
nonzero.

> For values of U not too much bigger than this value, calculate the magnetization as a
function of U.

> Explain why this calculation is only an approximation.

(e) Cousider now a two dimensional tight binding model on a square lattice with a Hubbard
interaction. How does this alter the result of part (d)?



5.7. Antiferromagnetism in the Hubbard Model
Consider a tight binding model with hopping ¢ and a strong Hubbard interaction.

Hpupbara = UZN%Nf

(a) If there is one electron per site, if the interaction term U is very strong, explain qualita-
tively why the system must be an insulator.

(b) On a square lattice, with one electron per site, and large U, use second order pertur-
bation theory to determine the energy difference between the ferromagnetic state and the
antiferromagnetic state. Which one is lower energy?



