Problem Set 4

Band Structure and Semiconductor Physics

4.1.

4.2.

Number of States in the Brillouin Zone

A specimen in the form of a cube of side L has a primitive cubic lattice whose mutually
orthogonal fundamental translation vectors have length a. Show that the number of different

allowed k-states within the first Brillouin zone equals the number of primitive unit cells
forming the specimen (do not consider spin). One may assume periodic boundary conditions,
although it is worth thinking about whether this still holds for hard-wall boundary conditions
as well.

iNearly Free Electron Model

Consider an electron in a weak periodic potential in one dimension V(z) = V(z + a). Write
the periodic potential as

Vix) = Z eV,
G

where the sum is over the reciprocal lattice G = 27n/a, and Vi = V_¢ assures that the
potential V(z) is real.

(a) Explain why for k near to a Brillouin zone boundary (such as k near 7/a) the electron
wavefunction should be taken to be

w _ Aeikm +Bei(k+G)z (1)

where G is a reciprocal lattice vector such that |k| is close to |k + G|.
(b) For an electron of mass m with k exactly at a zone boundary, use the above form of the
wavefunction to show that the eigenenergies at this wavevector are
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where G is chosen so |k| = |k + G|.
> Give a qualitative explanation of why these two states are separated in energy by 2|Vg|.

> Give a sketch (don’t do a full calculation) of the energy as a function of k in both the
extended and the reduced zone schemes.

(c) *Now consider k close to, but not exactly at, the zone boundary. Give an expression for
the energy F(k) correct to order (6k)? where 0k is the wavevector difference of k to the zone
boundary wavevector.

> Calculate the effective mass of an electron at this wavevector.

(d) Consider a two dimensional square lattice of divalent atoms. If the periodic potential is
very very weak, you can consider the electrons to be free and to form a circular Fermi sea.
Using the intuition from above (as well as the result of 4.1. above) sketch the Fermi surface
for weak, medium, and strong periodic potentials.

> Roughly how strong should the periodic potential be for the system to be no longer a
metal.



4.3.

4.4.

Band Theory

(a) Give a brief description of the formation of electron bands in crystals including reference
to the atomic structure of the constituent atoms.

(b) Explain the following:
(i) sodium, which has 2 atoms in a bee (conventional cubic) unit cell, is a metal;
(ii) calcium, which has 4 atoms in a fcc (conventional cubic) unit cell, is a metal;

(iii) diamond, which has 8 atoms in a fcc (conventional cubic) unit cell with a basis, is
an electrical insulator, whereas silicon and germanium, which have similar structures, are
semiconductors.

> Why is diamond transparent?

(c) A two-dimensional material has a square lattice with lattice constant @ =0.3 nm. The
dispersion relations for electron energies in the conduction and valence bands are given by

ec(k) = 6 —2(coskga+ coskya)
ev(k) = —2+ (coskyza + coskya)

where energies are given here in units of eV. Sketch €. and ¢, for the direction k, = k.
> Indicate the value and position of the minimum band gap.

> Show that close to the conduction and valence band edges, contours of constant energy
are circles in k-space and..

> .. determine the effective masses of both the electrons and the holes.

> Sketch the density of states as a function of energy for the whole of both the conduction
and the valence band.

(d) Using tight-binding theory, explain where the above dispersion relations come from.

Law of Mass Action and Doping of Semiconductors

(a) Assume that the band gap energy E, is much greater than the temperature k7. Show
that in a pure semiconductor at a fixed T, the product of the number of electrons (n) and
the number of holes (p) depends only on the density of states in the conduction band and
the density of states in the valence band (through their effective masses), and on the band

gap energy.

> Derive expressions for n for p and for the product np. You may need to use the integral
Iy daatem = /m)2.

(b) The band gaps of Silicon and Germanium are 1.1 eV and 0.75 eV respectively. You
may assume the effective masses for Silicon and Germanium are isotropic, roughly the same,
and are roughly .5 of the bare electron mass for both electrons and holes. (Actually the
effective masses are not quite the same, and furthermore the effective masses are both rather
anisotropic.. but we are just making a rough estimates here).

> Estimate the conduction electron concentration for intrinsic (undoped) Silicon at room
temperature.

> Make a rough estimate of the maximum concentration of ionized impurities that will still
allow for this “intrinsic” behavior.

> Estimate the conduction electron concentration for Germanium at room temperature.

(c) The graph in Figure 1 shows the relationship between charge-carrier concentration for a
certain n-doped semiconductor.



> Estimate the bandgap for the semiconductor and the concentration of donor ions.

> Describe in detail an experimental method by which this data could have been measured
and suggest possible sources of experimental error.
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FIG. 1: Figure for Problem 4.4.

4.5. More about Semiconductors
(a) In semiconductor physics what is meant by a hole and why is it useful?

(b) An electron near the top of the valence band in a semiconductor has energy
E =107k

where E is in Joules and k is in m~'. An electron is removed from a state k = 2 x 10%m™~ '
where Z is the unit vector in the z-direction. For a hole, calculate (and give the sign of!)

(i) the effective mass

(ii) the energy

(iil) the momentum

(iv) the velocity.
(v) If there is a density p = 10°m~3 of such holes all having almost exactly this same
momentum, calculate the current density and its sign.

(c)Show that the chemical potential in an intrinsic semiconductor lies in the middle of the
gap at low temperature.

> Explain how the chemical potential varies with temperature if the semiconductor is doped
with (i) donors (ii) acceptors.

(d) A direct gap semiconductor is doped to produce a density of 10?3 electrons/m?. Calculate
the hole density at room temperature given that the gap is 1.0 eV, and the effective mass
of carries in the conduction and valence band are 0.25 and 0.4 electron masses respectively.
Hint: use the result of problem 4.4..a.



4.6. Semiconductor Quantum Well

(a) A quantum well is formed from a layer of GaAs of thickness L nm, surrounded by layers
of Ga;_,Al;As. You may assume that the band gap of the Ga;_,Al,As is substantially
larger than that of GaAs. (The electron (hole) effective mass in GaAs is 0.068 me (0.45 m.)
where m, is the mass of the electron.)

> Sketch the shape of the potential for the electrons and holes.

> What approximate value of L is required if the band gap of the quantum well is to be 0.1
eV larger than that of GaAs bulk material?

(b) *What might this structure be useful for?

> How would it be possible to n-dope this structure so that electrons accumulate in the
well region of the structure, but away from impurities.

> Why would this be useful?




