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Problem Set 1

Einstein, Debyve, Drude, and Free Electron Models

1.1. Einstein Solid

Classical Einstein Solid (or “Boltzmann” Solid): Consider a single harmonic oscillator
in three dimensions with Hamiltonian

2m 2 The classical calculation has never

Calculate the classical partition function been examined on the condensed
| | matter exam
J (27h)3

Using the partition function. calculate the heat capacity 3kg. Conclude that if vou can
consider a solid to consist of N atoms all in harmonic wells, then the heat capacity should
be 3Nkg = 3R, in agreement with the law of Dulong and Petit.

Quantum Einstein Solid: Now consider the same Hamiltonian quantum mechanically.
Calculate the quantum partition function

j

where the sum over j is a sum over all Eigenstates. Explain the relationship with Bose
statistics. Find an expression for the heat capacity. Show that the high temperature limit
agrees with the law of Dulong of Petit. Sketch the heat capacity as a function of temperature.

(See also problem A.1.1. for more on the same topic)



1.2. Debye Theory:

(a)1 State the assumptions of the Debye model of heat capacity of a solid. Derive the Debye
heat capacity as a function of temperature (vou will have to leave the final result in terms of
an integral that cannot be done analytically). From the final result, obtain the high and low
temperature limits of the heat capacity analytically.

Debye theory is (b) The following table gives the heat capacity C' for KCl as a function of temperature.
examined frequently! Discuss, with reference to the Debyve theory. and make an estimate of the Debve temperature.
T(K) 0.1 1.0 ] B 10 15 20

C(JK " mol "85 x 107786 x 107*|1.2 x 107" [5.9 x 107" 1.1 | 2.8 | 6.3

For part (a) you may find the following integral to be useful
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Alternately, vou may find useful the form
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which vou can derive from the first by integrating by parts.



1.3. Drude Theory of Transport in Metals

Basic Drude theory

has been examined lots.
Make sure to know

how it works for
semiconductors too.

Finite frequency Drude
is probably too hard
for an exam

(a) Assume a scattering time 7 and use Drude theory to derive an expression for the conduc-
tivity of a metal.

(b)Define the resistivity matrix p as £ = pj. Use Drude theory to derive an expression for

the matrix p for a metal in a magnetic field. (You might find it convenient to assume B
parallel to the £ axis.) Invert this matrix to obtain an expression for the conductivity tensor.

(c) Define the Hall coefficient. Estimate the magnitude of the Hall voltage for a specimen of
sodium in the form of a rod of rectangular cross section 5mm by 5mm carrying a current of 1A
in a magnetic field of 1T. The density of sodium atoms is roughly 1 gram /em?, and sodium
has atomic mass of roughly 23. What practical difficulties would there be in measuring the
Hall voltage and resistivity of such a specimen (and how might these difficulties be addressed).
You may assume that there is one free electron per sodium atom (Sodium has valence one).

(d) What properties of metals does Drude theory not explain well?

(e)* Consider now an applied AC field E ~ ™" which induces an AC current j ~ e™*.
Modify the above calculation {in the presence of a magnetic field) to obtain an expression
for the complex AC conductivity matrix g(w). For simplicity in this case you may assume

that the metal is very clean, meaning that © — oc, and vou may assume that ELlB. (You
might again find it convenient to assume B parallel to the £ axis.) At what frequency is there
a divergence in the conductivity? What does this divergence mean? (When 7 is finite, the
divergence is cut off ). Explain how could one use this divergence (known as the cvclotron
resonance) to measure the mass of the electron. ( In fact, in real metals, the measured mass
of the electron is generally not equal to the well known value me = 9.1095 x 1073! ke. This
is a result of band structure in metals, which we will explain later in the course. )

ETC.... SEE MY WEBSITE
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B Paper 2010:

Q1. On Syllabus. End of part d is tricky and was not really covered, but could be deduced by a
perceptive student.

Q2. On Syllabus. The [7] point part is tricky
Q3. On Syllabus.

Q4. On Syllabus, although for part b we have only discussed effective masses at the extrema of the
bands.

Q5. On syllabus.

Q6. The first two parts are mostly on syllabus, although we covered them only very briefly. The final
part about constructing a laser is certainly not. The students should be able to deduce the density of
states of a 2d electron gas. Figuring out how the multiple states in a quantum well change this density

of states would require some thinking and was not covered (but clever students might get it).

B Paper 2009.

Q1. Onsyllabus. This question is solved in great detail in my lecture notes (note also there is an errorin
the height of data point e of the plot. Discussed in my lecture notes page 136)

Q2. On syllabus.
Q3. Onsyllabus.

Q4. On syllabus. We did not explicitly discuss part (c) but a clever student should be able to figure it
out.

Q6. As with Q6 of 2010, this is mostly on syllabus except the last part discussing lasers. The students
should be able to derive the density of states in 1d. Again, figuring out how the multiple states in a
quantum well change this density of states would require some thinking and was not covered (but
clever students might get it).

ETC I
SEE MY WEBSITE!
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Topic Subtopic

Something About Phonons
Define Phonon
Phonon Density of States
In 2d
In 1d / diatomic
How would you measure phonons (light/neutrons)
Why is there a degeneracy of modes at...
Debye Specific Heat
Derivation in 3d
Derivation In 2d
Derivation In 1d
How many/ what kind of (acoustic/optical/transverse/longitudinal) phonon
Describe Maotion of acoustic/optical modes
Some Sort of Harmonic Chain
Diatomic with Two Masses
Monatomic
Alternating Sprint Constants
monatamic limit of diatomic
Sketch Dispersions / monotomic diatomic

Something about the Free Electron Gas
Derive Specific Heat of Fermi Gas
Define Fermi Energy / Fermi Surface
Density of States of Free Electron Gas
Definition of
Derivation In 3d
Derivation In 2d
Derivation In 1d
Estimate a FermiEnergy / Relationship of N to Ef
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Topic Subtopic

Something About Diffraction / Crystal Structure
Derive Structure Factor / Scattering Amplitude
Calculate Interplanar distances
Diffraction
Derive Systematic Absences
When two atoms scatter same; H not scattering
Analyze a Powder Diffraction Pattern
Predict Diffraction Data
Write Down Structure Factor for X
Identify a unit cell doubling
Plan View
primitive vs conventional unit cell
Identify Lattice/Basis
Calculate Reciprocal Lattice
Wigner Seitz / Brillouin Zone Construction
Contrast neutron/xray
Describe equipment for neutron/xray
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Topic Subtopic

Something about Band Structure/Semicondcuctor Physics

MNearly Free Electron Model (NFEM)
Derive Gaps of NFEM at zone boundary
Draw Dispersion
Describe Effective Mass
Monovalent / Divalent - Metal/Insulator
Gaps open when doubling unit cell

Draw a fermi surface in 2d/3d for weak/strong potential

Tight Binding Band
Describe Density of States
Describe opening of gap
Define Effective Mass
Define Chemical Potential / Doping
Define Mability
Define Conductivity
Define Hole
Signs of velocity, energy, current, ...
Law of Mass Action / formula for n(T,mu)
Derivation
Use to calculate some density/mu when doped
Temperature dependence of semiconductors
Estimate band gap / doping from data
How this would be measured
How chemical potential changes with doping
Quantum Well
Density of States in 2d
Density of States In 1d
Optical Properties of Semiconductors

Direct / Indirect Gap
States bound to donors

Drude Theory
Derive Hall Coefficient
Derive Conductivity/Mobility
Extract mobility/density from experimental data
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Topic Subtopic

Something about magnetism
Define Para/Diamagnetism
Estimate Larmor Diamagnetism
Curie Law Derivation for Spin 1/2
Derive Pauli Paramagnetism
Adiabatic Demagnetization
What is exchange J

Molecular {mean) field
Relationship of 1 to Tc

What causes domains

Domain Relation to Hysteresis
Derive Size of Blach Wall
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3. Explain what is meant by the following terms in relation to the electronic bandstructure:
Fermi energy, chemical potential, Fermi surface and effective mass.

[4]

Explain how a weak periodic potential in a (one-dimensional) crystal can lead to the
tormation of a band gap. Sketch and describe qualitatively how the band gap and effective
masses close to the Brillouin zone boundaries change as the magnitude of the periodic
potential is increased.

A fictitious metal crystallises into a simple cubic lattice with lattice constant a and one atom
per lattice point. The potential in the cryvstal is weakly modulated with the periodicity
of the lattice. Sketch the first Brillouin zone for this crystal. The metal is monovalent
(that is, it has only one valence electron per unit cell). Describe the shape and dimensions
of the Fermi surface it the modulation is extremely weak. What if it is somewhat weak
(compared to the Fermi energy). but not extremely weak? A second metal has an identical
unit cell, but is divalent (two valence electrons per unit cell). Give a qualitative description
and sketch of the Fermi surtace for this divalent metal. Discuss what happens in both the
monovalent and divalent cases as the periodic potential becomes extremely strong,

From Collection (2008 Exam)




From 2001 Exam

5. Explain briefly the origin of the electronic band gap in a typical electrical .
insulator. 6]

The periodic potential Viz) experienced by an electron in a one-dimensional
crystal mayv be given in the form

Viz) = Vo + Ve 9% 4 V_geticr,

where & is the reciprocal lattice vector, and |V = Explain why a suitable
wavelunction for an electron in such a potential may be written to a first approximation

Eu:l" - - £l
*.t,'_',l{:r':] — AE'RI—I—BE'[&_{}]T. [3]

By substituting 1(x) into the Schridinger equation and comparing coefficients in
e and 9T chow that the energy of an electron of mass m and wavevector k at

the zone hUlllIilEil"__.-’ is given by

ar.2
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+ Ve

Discuss the significance of each of the three terms on the right-hand side of this equation
in terms of band theory. [10]

Using this result explain why diamond is a good electrical insulator, whereas
silicon and germanium. which have the same structure type as diamond, are
semiconductors.  (In the diamond structure there are two tetravalent atoms in the
basis. ) 6]



