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“Everything should be made as simple as possible, but no simpler.”

— Frequently attributed to Albert Einstein

Actual quote:
“It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic
elements as simple and as few as possible without having to surrender the adequate representation

of a single datum of experience”

— Albert Einstein, lecture delivered at Oxford 10 June 1933

I Denotes crucial problems that you need to be able to do in your sleep.
* Denotes problems that are slightly harder.



Problem Set 1

Einstein, Debye, Drude, and Free Electron Models

1.1.

1.2.

Einstein Solid
Classical Einstein Solid (or “Boltzmann” Solid): Consider a single harmonic oscillator
in three dimensions with Hamiltonian
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Calculate the classical partition function

dp
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Using the partition function, calculate the heat capacity 3kp. Conclude that if you can
consider a solid to consist of N atoms all in harmonic wells, then the heat capacity should
be 3Nkp = 3R, in agreement with the law of Dulong and Petit.

Quantum Einstein Solid: Now consider the same Hamiltonian quantum mechanically.
Calculate the quantum partition function
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where the sum over j is a sum over all Eigenstates. Explain the relationship with Bose
statistics. Find an expression for the heat capacity. Show that the high temperature limit
agrees with the law of Dulong of Petit. Sketch the heat capacity as a function of temperature.

(See also problem A.1.1. for more on the same topic)

Debye Theory:

(a)} State the assumptions of the Debye model of heat capacity of a solid. Derive the Debye
heat capacity as a function of temperature (you will have to leave the final result in terms of
an integral that cannot be done analytically). From the final result, obtain the high and low
temperature limits of the heat capacity analytically.

(b) The following table gives the heat capacity C for KCl as a function of temperature.
Discuss, with reference to the Debye theory, and make an estimate of the Debye temperature.

T(K) 0.1 1.0 5 8 10 | 15 | 20
C (JK ' mol 7)||85x1077|8.6 x 107*|1.2 x 107! [5.9 x 107'| 1.1 | 2.8 | 6.3

For part (a) you may find the following integral to be useful
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Alternately, you may find useful the form
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which you can derive from the first by integrating by parts.



1.3.

1.4.

1.5.

Drude Theory of Transport in Metals

(a) Assume a scattering time 7 and use Drude theory to derive an expression for the conduc-
tivity of a metal.

(b)Define the resistivity matrix p as E= Bj' Use Drude theory to derive an expression for
the matrix p for a metal in a magnetic field. Invert this matrix to obtain an expression for
the conductivity tensor.

(c) Define the Hall coefficient. Estimate the magnitude of the Hall voltage for a specimen of
sodium in the form of a rod of rectangular cross section 5mm by 5mm carrying a current of 1A
in a magnetic field of 1T. The density of sodium atoms is roughly 1 gram/cm3, and sodium
has atomic mass of roughly 23. What practical difficulties would there be in measuring the
Hall voltage and resistivity of such a specimen (and how might these difficulties be addressed).
You may assume that there is one free electron per sodium atom (Sodium has valence one).

(d) What properties of metals does Drude theory not explain well?

(e)* Consider now an applied AC field E ~ ¢! which induces an AC current j ~ e,
Modify the above calculation (in the presence of a magnetic field) to obtain an expression
for the complex AC conductivity matrix g(w). For simplicity in this case you may assume

that the metal is very clean, meaning that 7 — 0o, and you may assume that E | B. At
what frequency is there a divergence in the conductivity? What does this divergence mean?
(When 7 is finite, the divergence is cut off). Explain how could one use this divergence
(known as the cyclotron resonance) to measure the mass of the electron. ( In fact, in real
metals, the measured mass of the electron is generally not equal to the well known value
me = 9.1095 x 10731 kg. This is a result of band structure in metals, which we will explain
later in the course. )

Fermi Surface in the Free Electron (Sommerfeld) Theory of Metals

(a)f Explain what is meant by the Fermi energy, Fermi temperature and the Fermi surface
of a metal.

(b)1 Obtain an expression for the Fermi wavevector and the Fermi energy for a gas of electrons
(in 3D). Show that the density of states at the Fermi surface, dN/dEFr can be written as
3N/2Ep.

(c) Estimate the value of E for sodium [The density of sodium atoms is roughly 1 gram/cm3,
and sodium has atomic mass of roughly 23. You may assume that there is one free electron
per sodium atom (Sodium has valence one)]

(d) Now consider a two dimensional Fermi gas. Obtain an expression for the density of states
at the Fermi surface.
Velocities in the Free Electron Theory

(a) Assuming that the free electron theory is applicable: show that the speed v of an electron
at the Fermi surface of a metal is vy = £ (372n)!/3 where n is the density of electrons.

(b) Show that the mean drift speed vg of an electron in an applied electric field E is vg =
|cE/(ne)|, where o is the electrical conductivity, and show that o is given in terms of the
mean free path \ of the electrons by o = ne?\/(mvg).

(c) Assuming that the free electron theory is applicable to copper:

(i) calculate the values of both v4 and vr for copper at 300K in an electric field of 1 V

m~! and comment on their relative magnitudes.

(ii) estimate A for copper at 300K and comment upon its value compared to the mean
spacing between the copper atoms.



1.6.

Copper is monovalent, meaning there is one free electron per atom. The density of atoms in
copper is n = 8.45 x 1028 m—3. The conductivity of copper is ¢ = 5.9 x 10°Q~'m~! at 300K.
Physical Properties of the Free Electron Gas

In both (a) and (b) you may always assume that the temperature is much less than the Fermi
temperature.

(a)f Give a simple but approximate derivation of the Fermi gas prediction for heat capacity
of the conduction electron in metals

(b)f Give a simple (not approximate) derivation of the Fermi gas prediction for magnetic
susceptibility of the conduction electron in metals. Here susceptibility is x = dM/dH =
wodM /dB at small H and is meant to consider the magnetization of the electron spins only.

(c) How are the results of (a) and (b) different from that of a classical gas of electrons? What
other properties of metals may be different from the classical prediction?

(d) The experimental heat capacity of potassium metal at low temperatures has the form:
C = (2087 +2.67T%*mJmol ' K~!

where T is in Kelvin. Explain the origin of each of the two terms in this expression and make
an estimate of the Fermi energy for potassium metal.



