
Problems for Solid State Physics
(3rd Year Course 6)
Hilary Term 2011

Professor Steven H. Simon
Oxford University

“Everything should be made as simple as possible, but no simpler.”

— Frequently attributed to Albert Einstein

Actual quote:

“It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic
elements as simple and as few as possible without having to surrender the adequate representation
of a single datum of experience”

— Albert Einstein, lecture delivered at Oxford 10 June 1933

‡ Denotes crucial problems that you need to be able to do in your sleep.
* Denotes problems that are slightly harder.
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Problem Set 1

Einstein, Debye, Drude, and Free Electron Models

1.1. Einstein Solid

Classical Einstein Solid (or “Boltzmann” Solid): Consider a single harmonic oscillator
in three dimensions with Hamiltonian

H =
p2

2m
+
k

2
x2

Calculate the classical partition function

Z =

∫
dp

(2πh̄)3

∫
dx e−βH(p,x)

Using the partition function, calculate the heat capacity 3kB. Conclude that if you can
consider a solid to consist of N atoms all in harmonic wells, then the heat capacity should
be 3NkB = 3R, in agreement with the law of Dulong and Petit.

Quantum Einstein Solid: Now consider the same Hamiltonian quantum mechanically.
Calculate the quantum partition function

Z =
∑

j

e−βEj

where the sum over j is a sum over all Eigenstates. Explain the relationship with Bose
statistics. Find an expression for the heat capacity. Show that the high temperature limit
agrees with the law of Dulong of Petit. Sketch the heat capacity as a function of temperature.

(See also problem A.1.1. for more on the same topic)

1.2. Debye Theory:

(a)‡ State the assumptions of the Debye model of heat capacity of a solid. Derive the Debye
heat capacity as a function of temperature (you will have to leave the final result in terms of
an integral that cannot be done analytically). From the final result, obtain the high and low
temperature limits of the heat capacity analytically.

(b) The following table gives the heat capacity C for KCl as a function of temperature.
Discuss, with reference to the Debye theory, and make an estimate of the Debye temperature.

T (K) 0.1 1.0 5 8 10 15 20

C (J K −1 mol −1) 8.5 × 10−7 8.6× 10−4 1.2× 10−1 5.9× 10−1 1.1 2.8 6.3

For part (a) you may find the following integral to be useful

∫ ∞

0

dx
x3

ex − 1
=

∞∑

n=1

∫ ∞

0

x3e−nx = 6

∞∑

n=1

1

n4
=
π4

15

Alternately, you may find useful the form

∫ ∞

0

dx
x4ex

(ex − 1)2
=

4π4

15

which you can derive from the first by integrating by parts.
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1.3. Drude Theory of Transport in Metals

(a) Assume a scattering time τ and use Drude theory to derive an expression for the conduc-
tivity of a metal.

(b)Define the resistivity matrix ρ
˜
as ~E = ρ

˜
~j. Use Drude theory to derive an expression for

the matrix ρ
˜
for a metal in a magnetic field. (You might find it convenient to assume ~B

parallel to the ẑ axis.) Invert this matrix to obtain an expression for the conductivity tensor.

(c) Define the Hall coefficient. Estimate the magnitude of the Hall voltage for a specimen of
sodium in the form of a rod of rectangular cross section 5mm by 5mm carrying a current of 1A
in a magnetic field of 1T. The density of sodium atoms is roughly 1 gram/cm3, and sodium
has atomic mass of roughly 23. What practical difficulties would there be in measuring the
Hall voltage and resistivity of such a specimen (and how might these difficulties be addressed).
You may assume that there is one free electron per sodium atom (Sodium has valence one).

(d) What properties of metals does Drude theory not explain well?

(e)* Consider now an applied AC field ~E ∼ eiωt which induces an AC current ~j ∼ eiωt.
Modify the above calculation (in the presence of a magnetic field) to obtain an expression
for the complex AC conductivity matrix σ

˜
(ω). For simplicity in this case you may assume

that the metal is very clean, meaning that τ → ∞, and you may assume that ~E ⊥ ~B. (You

might again find it convenient to assume ~B parallel to the ẑ axis.) At what frequency is there
a divergence in the conductivity? What does this divergence mean? (When τ is finite, the
divergence is cut off). Explain how could one use this divergence (known as the cyclotron
resonance) to measure the mass of the electron. ( In fact, in real metals, the measured mass
of the electron is generally not equal to the well known value me = 9.1095× 10−31 kg. This
is a result of band structure in metals, which we will explain later in the course. )

1.4. Fermi Surface in the Free Electron (Sommerfeld) Theory of Metals

(a)‡ Explain what is meant by the Fermi energy, Fermi temperature and the Fermi surface
of a metal.

(b)‡ Obtain an expression for the Fermi wavevector and the Fermi energy for a gas of electrons
(in 3D). Show that the density of states at the Fermi surface, dN/dEF can be written as
3N/2EF .

(c) Estimate the value of EF for sodium [The density of sodium atoms is roughly 1 gram/cm3,
and sodium has atomic mass of roughly 23. You may assume that there is one free electron
per sodium atom (Sodium has valence one)]

(d) Now consider a two dimensional Fermi gas. Obtain an expression for the density of states
at the Fermi surface.

1.5. Velocities in the Free Electron Theory

(a) Assuming that the free electron theory is applicable: show that the speed vF of an electron
at the Fermi surface of a metal is vF = h̄

m(3π2n)1/3 where n is the density of electrons.

(b) Show that the mean drift speed vd of an electron in an applied electric field E is vd =
|σE/(ne)|, where σ is the electrical conductivity, and show that σ is given in terms of the
mean free path λ of the electrons by σ = ne2λ/(mvF ).

(c) Assuming that the free electron theory is applicable to copper:

(i) calculate the values of both vd and vF for copper at 300K in an electric field of 1 V
m−1 and comment on their relative magnitudes.

(ii) estimate λ for copper at 300K and comment upon its value compared to the mean
spacing between the copper atoms.
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Copper is monovalent, meaning there is one free electron per atom. The density of atoms in
copper is n = 8.45× 1028 m−3. The conductivity of copper is σ = 5.9× 107Ω−1m−1 at 300K.

1.6. Physical Properties of the Free Electron Gas

In both (a) and (b) you may always assume that the temperature is much less than the Fermi
temperature.

(a)‡ Give a simple but approximate derivation of the Fermi gas prediction for heat capacity
of the conduction electron in metals

(b)‡ Give a simple (not approximate) derivation of the Fermi gas prediction for magnetic
susceptibility of the conduction electron in metals. Here susceptibility is χ = dM/dH =
µ0dM/dB at small H and is meant to consider the magnetization of the electron spins only.

(c) How are the results of (a) and (b) different from that of a classical gas of electrons? What
other properties of metals may be different from the classical prediction?

(d) The experimental heat capacity of potassium metal at low temperatures has the form:

C = (2.08T + 2.6T 3)mJmol−1 K−1

where T is in Kelvin. Explain the origin of each of the two terms in this expression and make
an estimate of the Fermi energy for potassium metal.
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Problem Set 2

Chemical Bonding, Thermal Expansion, Normal Modes, Phonons and Tightbinding in 1d

2.1. Chemical Bonding

(a) Qualitatively describe five different types of chemical bonds and why they occur. Describe
which combinations of what types of atoms are expected to form which types of bonds (make
reference to location on the periodic table). Describe some of the qualitative properties of
materials that have these types of bonds.

(b) Describe qualitatively the phenomenon of Van der Waals forces. Explain why the force
is attractive and proportional to 1/R7 where R is the distance between two atoms.

2.2. Covalent Bonding in Detail*

(a) Linear Combination of Atomic Orbitals (LCAO) In class we considered two atoms
each with a single atomic orbital. We called the orbital |1〉 around nucleus 1 and |2〉 around
nucleus 2. More generally we may consider any set of wavefunctions |n〉 for n = 1, . . . , N .
For simplicity, let us assume this basis is orthonormal 〈n|m〉 = δn,m

Let us write a trial wavefunction for our ground state as

|Ψ〉 =
∑

n

φn|n〉

This is known as a linear combination of atomic orbitals (LCAO). We would like to find the
lowest energy wavefunction we can construct in this form, that is the best approximation to
the actual ground state wavefunction. (The more states we use in our basis, generally, the
more accurate our results will be).

We claim that the the ground state is given by the solution of the effective Schroedinger
equation

Hφ = E φ (1)

where φ is the vector of N coefficients φn, and H is the N by N matrix

Hn,m = 〈n|H |m〉

with H the Hamiltonian of the full system we are considering.

To prove this, let us construct the energy

E =
〈ψ|H |ψ〉
〈ψ|ψ〉

Show that minimizing this energy with respect to each φn gives the same eigenvalue equation,
Eq. 1. (Caution: φn is generally complex!). Similarly, the second eigenvalue of the effective
Schroedinger equation will be an approximation to the first excited state of the system.

This technique is know as the molecular orbital approach, or the LCAO (linear combination of
atomic orbitals) approach. It is used heavily in numerical simulation of molecules. However,
more generally, one cannot assume that the basis set of orbitals is orthonormal. In problem
A.2.1. we properly consider a non-orthonormal basis.

(b) Two-orbital covalent bond Let us return to the case where there are only two orbitals
in our basis. This pertains to a case where we have two identical nuclei and a single electron
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which will be shared between them to form a covalent bond. We write the full Hamiltonian
as

H =
p2

2m
+ V (r−R1) + V (r−R2) = K + V1 + V2

where V is the Coulomb interaction between the electron and the nucleus, R1 is the position
of the first nucleus and R2 is the position of the second nucleus. Let ε be the energy of the
atomic orbital around one nucleus in the absence of the other. In other words

(K + V1)|1〉 = ε|1〉
(K + V2)|2〉 = ε|2〉

Define also the cross-energy element

Vcross = 〈1|V2|1〉 = 〈2|V1|2〉

and the hopping matrix element

t = −〈1|V2|2〉 = −〈1|V1|2〉

(why can we write Vcross and t equivalently using either one of the expressions given on the
right hand side?). Show that the eigenvalues of our Schroedinger equation Eq. 1 are given
by

E = ε+ Vcross ± |t|

Argue (perhaps using Gauss’s law) that Vcross should roughly cancel the repulsion between
nuclei, so that, in the lower eigenstate the total energy is indeed lower when the atoms are
closer together. This approximation must fail when the atoms get sufficiently close. Why?

2.3. Thermal Expansion

As a model of thermal expansion, we study the distance between two nearest neighbor atoms
in an anharmonic potential that looks roughly like this

6

-?
6kbT

V (x)

x
x0

where x is the distance between the two neighboring atoms. This potential can be expanded
around its minimum as

V (x) =
κ

2
(x − x0)

2 − κ3
3!

(x − x0)
3 + . . .
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where the minimum is at position x0 and κ3 > 0. For small energies, we can truncate the
series at the cubic term.

(a) Classical model: In classical statistical mechanics, we write the expectation of x as

〈x〉β =

∫
dxx e−βV (x)

∫
dx e−βV (x)

Although one cannot generally do such integrals, one can expand the exponentials as

e−βV (x) = e−
βκ

2
(x−x0)

2

[
1 +

βκ3
6

(x− x0)
3 + . . .

]

and let limits of integration go to ±∞ (why is this allowed?) Use this expansion to derive
〈x〉β to lowest order in κ3, and hence show that the coefficient of thermal expansion is

α =
1

L

dL

dT
≈ 1

x0

d〈x〉β
dT

=
1

x0

kb κ3
2κ2

with kb Boltzmann’s constant. In what temperature range is the above expansion valid?

(b) Quantum model: In quantum mechanics we write a Hamiltonian

H = H0 + V

where

H0 =
p2

2m
+
κ

2
(x− x0)

2

is the Hamiltonian for the free Harmonic oscillator, and V is the perturbation

V = −κ3
6
(x − x0)

3 + . . .

where we will throw out quartic and higher terms. What value of m should be used here?

(i)** (Note: You can solve parts ii and iii below even if you cannot solve this part).

Use perturbation theory to show that to lowest order in κ3

〈n|x|n〉 = x0 + Enκ3/(2κ
2) (2)

where |n〉 is the eigenstate of the Harmonic oscillator whose energy is

En = h̄ω(n+
1

2
) +O(κ3) n ≥ 0

with ω =
√
κ/m.

(ii) Note that even when the oscillator is in its ground state, the expectation of x deviates
from x0. Physically why is this?

(iii)* Use, Eq. 2 to calculate the quantum expectation of x at any temperature. We write

〈x〉β =

∑
n〈n|x|n〉e−βEn

∑
n e

−βEn

Derive the coefficient of thermal expansion. Examine the high temperature limit and show
that it matches that of part a above. In what range of temperatures is our perturbation
expansion valid? In light of the current quantum calculation, when is the above classical
calculation valid?

(c) While this model of thermal expansion in a solid is valid if there are only two atoms, why
is it invalid for the case of a many-atom chain?
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2.4. Classical Normal Modes to Quantum Eigenstates

In class we stated, without proof that a classical normal mode becomes a quantum eigenstate.
Here we prove this fact for a simple diatomic molecule in a potential well. (See also problem
A.1.1.)

Consider two particles, each of mass m in one dimension, connected by a spring (K), at the
bottom of a potential well (with spring constant k). We write the potential energy as

U =
k

2
(x21 + x22) +

K

2
(x1 − x2)

2

Write the classical equations of motion. Transform into relative xrel = (x1 − x2) and center
of mass xcm = (x1 + x2)/2 coordinates.

(a) Show that in these transformed coordinates, the system decouples, thus showing that the
two normal modes have frequencies

ωcm =
√
k/m

ωrel =
√
(k + 2K)/m

Note that since there are two initial degrees of freedom, there are two normal modes.

Now consider the quantum mechanical version of the same problem. The Hamiltonian is

H =
p21
2m

+
p22
2m

+ U(x1, x2)

Again transform into relative and center of mass coordinates. Define the corresponding
momenta are given by prel = (p1 − p2)/2 and pcm = (p1 + p2).

(b) Show that [pα, xγ ] = −ih̄δα,γ where α and γ take the values cm or rel.

(c) In terms of these new coordinates show that the Hamiltonian decouples into two inde-
pendent harmonic oscillators with the same eigenfrequencies ωcm and ωrel. Conclude that
the spectrum of this system is

Enrel,ncm
= h̄ωrel(nrel +

1

2
) + h̄ωcm(ncm +

1

2
)

where ncm and nrel are nonnegative integers.

(d) At temperature T what is the expectation of the energy of this system?

In problem A.2.4. the principle that normal modes become quantum eigenstates is proven in
more generality.

2.5. Normal Modes of a One Dimensional Monatomic Chain

(a)‡ Explain what is meant by “normal mode” and by “phonon”. Explain briefly why phonons
obey Bose statistics.

(b)‡ Derive the dispersion relation for the longitudinal oscillations of a one dimensional mass-
and-spring crystal with N identical atoms of mass m, lattice spacing a, and spring constant
κ. (Motion of the masses is restricted to be in one dimension).

(c)‡ Show that the mode with wavevector k has the same pattern of mass displacements as
the the mode with wavevector k+ 2π/a. Hence show that the dispersion relation is periodic
in reciprocal space (k-space).

(d)‡ Derive the phase and group velocities and sketch them as a function of k. What is the

sound velocity? Show that the the sound velocity is also given by vs =
√
β−1/ρ where ρ is

the chain density and β is the compressibility.



5

(e) Find the expression for g(ω) the density of states of modes per angular frequency. Sketch
g(ω).

2.6. Normal modes of a One Dimensional Diatomic Chain*

a

m1 m2

κ κ

(a) What is the difference between an acoustic mode and an optical mode. Describe how
particles move in each case.

(b) Derive the dispersion relation for the longitudinal oscillations of a one dimensional di-
atomic mass-and-spring crystal where the unit cell is of length a and each unit cell contains
one atom of mass m1 and one atom of mass m2 connected together by springs with spring
constant κ (all springs are the same, and motion of particles is in one dimension only).

(c) Determine the energies of the acoustic and optical modes at k = 0 as well as at the
Brillioun zone boundary. Determine the sound velocity and show that the group velocity is
zero at the zone boundary. Show that the the sound velocity is also given by vs =

√
β−1/ρ

where ρ is the chain density and β is the compressibility.

(d) Sketch the dispersion in both reduced and extended zone scheme.

(e) What happens when m1 = m2 ?

2.7. One Dimensional Tight Binding Model

(a)Monatomic Solid: Consider a one-dimensional tight binding model of electrons hopping
between atoms. Let the distance between atoms be called a, and here let us label the atomic
orbital on atom n as |n〉 for n = 1 . . .N (and you may assume periodic boundary conditions).
Suppose there is an on-site energy ε and a hopping matrix element −t. In other words,
suppose 〈n|H |m〉 = ε for n = m and 〈n|H |m〉 = −t for n = m ± 1. Derive and sketch the
dispersion curve for electrons. (Hint: Use the effective Schroedinger equations of problem
2.2.a) How many different eigenstates are there in this system? What is the effective mass
of the electron near the bottom of this band? What is the density of states? If each atom is
monovalent (it donates a single electron) what is the density of states at the fermi surface?
What then is the Pauli paramagentic (spin) susceptibility of the system? (See problem 1.6.).
What is the spin susceptibility if each atom is divalent?

(b) Diatomic Solid: Now consider a model of a diatomic solid as such

−A−B −A−B −A−B−

Suppose that the onsite energy of type A is different from the onsite energy of type B. I.e,
〈n|H |n〉 is εA for n being on a site of type A and is εB for n being on a site of type B. (All
hopping matrix elements −t are still identical to each other). Calculate the new dispersion
relation. Sketch this dispersion relation in both the reduced and extended zone schemes.
What happens in the “atomic” limit when t becomes very small. What is the effective mass
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of an electron near the bottom of the lower band? If each atom (of either type) is monovalent,
is the system a metal or an insulator?
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Problem Set 3

Crystal Structure, Reciprocal Lattice, and Scattering

3.1. Crystal Structure

x

y

1
4

3
4

3
4

1
4

1
2

1
2

1
2

1
2a

a

Zn=

S =

The diagram above shows a plan view of a structure of cubic ZnS (zinc blende) looking down
the z axis. The numbers attached to some atoms represent the heights of the atoms above
the z = 0 plane expressed as a fraction of the cube edge a. Unlabeled atoms are at z = 0
and z = a.

(a) What is the Bravais lattice type

(b) Describe the basis

(c) Given that a = 0.541 nm, calculate the nearest-neighbor Zn-Zn, Zn-S, and S-S distances.

(d) Copy the drawing above, and show the [210] direction and the set of (210) planes.

(e) Calculate the spacing between adjacent (210) planes.

3.2. Directions and Spacings of Crystal Planes

Explain briefly what is meant by the terms “Crystal Planes” and “Miller Indices” for the
case where the axes of a lattice are all mutually orthogonal to each other.

Show that the general direction [hkl] in a cubic crystal is normal to the planes with Miller
indices (hkl). Is the same true in general for an orthorhombic crystal? Show that the spacing
d of the (hkl) set of planes in a cubic crystal with lattice parameter a is

d =
a√

h2 + k2 + l2

What is the generalization of this formula for an orthorhombic crystal?

3.3. ‡Reciprocal Lattice

(a) Define the term Reciprocal Lattice.

(b) Show that if a lattice in 3d has primative basis vectors a1, a2 and a3 then primative
basis vectors for the reciprocal lattice can be taken as

b1 = 2π
a2 × a3

a1 · (a2 × a3)
(1)
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b2 = 2π
a3 × a1

a1 · (a2 × a3)
(2)

b3 = 2π
a1 × a2

a1 · (a2 × a3)
(3)

What is the proper formula in 2d?

(c) Define tetragonal and orthorhombic. For an orthorhombic lattice, show that |bj| =
2π/|aj|. Hence, show that the length of the reciprocal lattice vector G = hb1 + kb2 + lb3 is
equal to 2π/d, where d is the spacing of the (hkl) planes (see question 3.2. ).

3.4. Reciprocal Lattice and X-ray Scattering

A two-dimensional rectangular crystal has a unit cell with sides a1 = 0.468 nm and a2 = 0.342
nm. A collimated beam of monochromatic X-rays of wavelength of 0.166 nm is used to
examine the crystal.

(a) Draw to scale a diagram of the reciprocal lattice. Label the reciprocal lattice points for
indices in the range 0 ≤ h ≤ 3 and 0 ≤ k ≤ 3.

(b) Calculate the magnitude of the wavevectors k and k′ of the incident and reflected X-
ray beams, and hence construct on your drawing the “scattering triangle” corresponding to
the Laue condition ∆k = G for diffraction from the (210) planes. (the scattering triangle
includes k, k′ and ∆k).

(c) Draw the first and second Brillouin zones using the Wigner-Seitz construction.

3.5. ‡ X-ray scattering II

BaTiO3 has a primitive cubic lattice and a basis with atoms having fractional coordinates

Ba (0,0,0)
Ti (12 ,

1
2 ,

1
2 )

O (12 ,
1
2 , 0), (12 , 0,

1
2 ), (0, 12 ,

1
2 )

Sketch the unit cell. Show that the X-ray structure factor for the (00l) Bragg reflections is
given by

Shkl = fBa + (−1)lfTi +
[
1 + 2(−1)l

]
fO (4)

where fBa is the atomic form factor for Ba, etc. Calculate the ratio I002/I001, where Ihkl
is the intensity of the X-ray diffraction from the (hkl) planes. You may assume that the
atomic form factor is proportional to atomic number (Z), and neglect its dependence on the
scattering vector. [ ZBa = 56, ZTi = 22, ZO = 8 ]

3.6. ‡ X-ray scattering and Systematic Absences

(a) Explain what is meant by “Lattice Constant” for a cubic crystal structure.

(b) Explain why X-ray diffraction may be observed in first order from the (110) planes of a
crystal with a body-centred cubic lattice, but not from the (110) planes of a crystal with a
face-centred cubic lattice. Derive the general selection rules for which planes are observed in
bcc and fcc lattices.

(c) Show that these selection rules hold independent of what atoms are in the primitive unit
cell, so long as the lattice is bcc or fcc respectively.

(d) A collimated beam of monochromatic X-rays of wavelength 0.162 nm is incident upon
a powdered sample of the cubic metal palladium. Peaks in the scattered X-ray pattern are



3

observed at angles of 42.3◦, 49.2◦, 72.2◦, 87.4◦ and 92.3◦ from the direction of the incident
beam. Identify the lattice type, and calculate the lattice constant and the nearest-neighbor
distance. How well does this distance agree with the known data that the density of palladium
is 12023 kg m−3? [Atomic mass of palladium = 106.4].

(e) How could you improve the precision with which the lattice constant is determined.

3.7. ‡ Neutron Scattering

(a) X-ray diffraction from sodium hydride (NaH) established that the Na atoms are arranged
on a face- centred cubic lattice. Why is it difficult to locate the positions of the H atoms using
X-rays? The H atoms were thought to be displaced from the Na atoms either by (14 ,

1
4 ,

1
4 )

or by (12 ,
1
2 ,

1
2 ), to form the ZnS (zinc blende) structure or NaCl (sodium chloride) structure,

respectively. To distinguish these models a neutron powder diffraction measurement was
performed. The intensity of the Bragg peak indexed as (111) was found to be much larger than
the intensity of the peak indexed as (200). Write down expressions for the structure factors
Shkl for neutron diffraction assuming NaH has (i) the sodium chloride (NaCl) structure, and
(ii) the zinc blende (ZnS) structure. Hence, deduce which of the two structure models is
correct for NaH. [Nuclear scattering length of Na = 0.363× 105nm; nuclear scattering length
of H = −0.374× 105 nm]

(b) How does one produce monochromatic neutrons for use in neutron diffraction experi-
ments? What are the main differences between neutrons and X-rays? Explain why (inelastic)
neutron scattering is appropriate for observing phonons, but x-rays are not.
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Problem Set 4

Band Structure and Semiconductor Physics

4.1. Number of States in the Brillioun Zone

A specimen in the form of a cube of side L has a primitive cubic lattice whose mutually
orthogonal fundamental translation vectors have length a. Show that the number of different

allowed ~k-states within the first Brillouin zone equals the number of unit cells forming the
specimen (do not consider spin). One may assume periodic boundary conditions, although
it is worth thinking about whether this still holds for hard-wall boundary conditions as well.

4.2. ‡Nearly Free Electron Model

Consider an electron in a weak periodic potential in one dimension V (x) = V (x+ a). Write
the periodic potential as

V (x) =
∑

G

eiGxVG

where the sum is over the reciprocal lattice G = 2πn/a, and V ∗
G = V−G assures that the

potential V (x) is real.

(a) Explain why for k near to a Brillioun zone boundary (such as k near π/a) the electron
wavefunction should be taken to be

ψ = Aeikx +Bei(k+G)x (1)

where G is a reciprocal lattice vector such that |k| is close to |k +G|.
(b) For an electron of mass m with k exactly at a zone boundary, use the above form of the
wavefunction to show that the eigenenergies at this wavevector are

E =
h̄2k2

2m
+ V0 ± |VG|

where G is chosen so |k| = |k +G|. Give a qualitative explanation of why these two states
are separated in energy by 2|VG|. Give a sketch (don’t do a full calculation) of the energy as
a function of k in both the extended and the reduced zone schemes.

(c) *Now consider k close to, but not exactly at, the zone boundary. Give an expression for
the energy E(k) correct to order (δk)2 where δk is the wavevector difference of k to the zone
boundary wavevector. Calculate the effective mass of an electron at this wavevector.

(d) Consider a two dimensional square lattice of divalent atoms. If the periodic potential is
very very weak, you can consider the electrons to be free and to form a circular Fermi sea.
Using the intuition from above (as well as the result of 4.1. above) sketch the Fermi surface
for weak, medium, and strong periodic potentials. Roughly how strong should the periodic
potential be for the system to be no longer a metal.

4.3. Band Theory

(a) Give a brief description of the formation of electron bands in crystals including reference
to the atomic structure of the constituent atoms.

(b) Explain the following:
(i) sodium, which has 2 atoms in a bcc (conventional cubic) unit cell, is a metal;
(ii) calcium, which has 4 atoms in a fcc (conventional cubic) unit cell, is a metal;
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(iii) diamond, which has 8 atoms in a fcc (conventional cubic) unit cell with a basis, is
an electrical insulator, whereas silicon and germanium, which have similar structures, are
semiconductors. Why is diamond transparent?

(c) A two-dimensional material has a square lattice with lattice constant a =0.3 nm. The
dispersion relations for electron energies in the conduction and valence bands are given by

εc(k) = 6− 2(cos kxa+ cos kya)

εv(k) = −2 + (cos kxa+ cos kya)

where energies are given here in units of eV. Sketch εc and εv for the direction kx = ky.
Indicate the value and position of the minimum band gap.

Show that close to the conduction and valence band edges, contours of constant energy are
circles in k-space, and determine the effective masses of both the electrons and the holes.
Sketch the density of states as a function of energy for the whole of both the conduction and
the valence band.

(d) Using tight-binding theory, explain where the above dispersion relations come from.

4.4. Law of Mass Action and Doping of Semiconductors

(a) Assume that the band gap energy Eg is much greater than the temperature kbT . Show
that in a pure semiconductor at a fixed T , the product of the number of electrons (n) and
the number of holes (p) depends only on the density of states in the conduction band and
the density of states in the valence band (through their effective masses), and on the band
gap energy. Derive expressions for n for p and for the product np. You may need to use the
integral

∫∞

0 dxx1/2e−x =
√
π/2.

(b) Estimate the conduction electron concentration for intrinsic (undoped) Silicon at room
temperature. Make a rough estimate of the maximum concentration of ionized impurities that
will still allow for this “intrinsic” behavior. Estimate the conduction electron concentration
for Germanium at room temperature. The band gaps of Silicon and Germanium are 1.1
eV and 0.75 eV respectively. Assume the effective masses for Silicon and Germanium are
isotropic, roughly the same, and are roughly .5 of the bare electron mass. (Actually the
effective masses are not quite the same, and furthermore the effective masses are both rather
anisotropic.. but we are just making a rough estimate).

(c) The graph in Figure 1 shows the relationship between charge-carrier concentration for
a certain n-doped semiconductor. Estimate the bandgap for the semiconductor and the
concentration of donor ions. Describe in detail an experimental method by which this data
could have been measured and suggest possible sources of experimental error.

4.5. More about Semiconductors

(a) In semiconductor physics what is meant by a hole and why is it useful?

(b) An electron near the top of the valence band in a semiconductor has energy

E = −10−37|~k|2

where E is in Joules and k is in m−1. An electron is removed from a state ~k = 2× 108m−1x̂
where x̂ is the unit vector in the x-direction. Calculate (i) The effective mass (ii) the energy
(iii) the momentum (iv) the velocity of the hole and giving the sign for each one. (v) If
there is a density p = 105m−3 of such holes all having almost exactly this same momentum,
calculate the current density and its sign.

(c)Explain why the chemical potential in an intrinsic semiconductor lies in the middle of the
gap at low temperature. Explain how the chemical potential varies with temperature if the
semiconductor is doped with (i) donors (ii) acceptors.
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FIG. 1: Figure for Problem 4.4.

(d) A direct gap semiconductor is doped to produce a density of 1023 electrons/m3. Calculate
the hole density at room temperature given that the gap is 1.0 eV, and the effective mass
of carries in the conduction and valence band are 0.25 and 0.4 electron masses respectively.
Hint: use the result of problem 4.4..a.

4.6. Semiconductor Quantum Well

(a) A quantum well is formed from a layer of GaAs of thickness L nm, surrounded by
layers of Ga1−xAlxAs. Sketch the shape of the potential for the electrons and holes. What
approximate value of L is required if the band gap of the quantum well is to be 0.1 eV larger
than that of GaAs bulk material? You may assume that the band gap of the Ga1−xAlxAs is
substantially larger than that of GaAs. (The electron (hole) effective mass in GaAs is 0.068
me (0.45 me) where me is the mass of the electron.) (b) *What might this structure be useful
for? How would it be possible to n-dope this structure so that electrons accumulate in the
well region of the structure, but away from impurities. Why would this be useful?

GaAs

Ga1−xAlxAs

Ga1−xAlxAs

L
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Problem Set 5

Magnetism and Mean Field Theory

5.1. ‡ General Magnetism

(a) Explain qualitatively why some atoms are paramagnetic and others are diamagnetic with
reference to the electronic structure of these materials.

(b) Define the terms Ferromagnetism, Antiferromagnetism, Ferrimagnetism, and Itinerant
Ferromagnetism. Write down an example of a Hamiltonian which would have each one of
these as its ground state.

(c) The wavefunction of an electron bound to an impurity in n-type silicon is hydrogenic in
form. Estimate the impurity contribution to the diamagnetic susceptibility of a Si crystal
containing 1020 m−3 donors given that the electron effective mass m∗ = 0.4me and the
relative permitivity is εr = 12. Make sure you know the derivation of the formula you use!

5.2. ‡ Weiss Mean Field Theory of the Ferromagnet Consider the spin-1/2, ferromagnetic
Heisenberg Hamiltonian on the cubic lattice

H = −J
2

∑

<i,j>

Si · Sj − gµBB
∑

i

Si (1)

Here, J > 0, with the sum indicated with < i, j > means summing over i and j being
neighboring sites of the cubic lattice, and B is the externally applied magnetic field, which we
will assume is in the ẑ direction for simplicity. (Here µB is the conventional Bohr magneton).
The factor of 1/2 out front is included so that each pair of spins is counted only once. Each
site i is assumed to have a spin Si of spin S = 1/2.

(a) Focus your attention on one particular spin Si, and write down an effective Hamiltonian
for this spin, treating all other variables Sj with j 6= i as expectations 〈Sj〉 rather than
operators.

(b) Calculate 〈Si〉 in terms of the temperature and the fixed variables 〈Sj〉 to obtain a mean-
field self-consistency equation. Write the magnetization M = |M| in terms of 〈S〉 and the
density of spins.

(c) At high temperature, find the susceptibility χ = dM/dH = µ0dM/dB in this approxi-
mation.

(d) Find the critical temperature in this approximation. Write the susceptibility in terms of
this critical temperature.

(e) Show graphically that in zero external field (B = 0), below the critical temperature, there
are solutions of the self consistency equation with M 6= 0.

(f) Repeat parts (a)-(d) but now assuming there is an S = 1 spin on each site.

5.3. Bragg-Williams Approximation

This problem provides a different approach to obtaining the Weiss mean-field equations. For
simplicity we will again assume spin 1/2 variables on each site.

Assume there are N lattice sites in the system. Let the average spin value be 〈Si〉 = m.
Thus the probability the probability of a spin being an up spin is P↑ = 1/2+m whereas the
probability of any spin being a down spin is P↓ = 1/2 −m. The total number of up spins
or down spins is then NP↑ and NP↓ respectively where there are N total lattice sites in the
system.
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(a) Consider first a case where sites do not interact with each other. In the micro-canonical
ensemble, we can count the number of configurations (microstates) which have the given
number of spin ups and spin downs (determined by m). Using S = kb lnΩ calculate the
entropy of the system in the large N limit.

(b) Assuming all sites have independent probabilities P↑ and P↓ of pointing up and down
respectively, calculate the probability that two neighboring sites will point in the same direc-
tion and the probability that two neighboring sites will point in opposite directions. Use this
result to calculate the an approximation to the expectation of the Hamiltonian. Note: This
is not an exact result, as in reality, sites that are next to each other will have a tendency
to have the same spin because that will lower their energies, but we have ignored this effect
here.

(c) Putting together the results of (a) and (b) above, derive the approximation to the free
energy

F = E−TS = NkbT

[
(
1

2
+m) log(

1

2
+m) + (

1

2
−m) log(

1

2
−m)

]
−gµBBzNm−JNZm2/2

where Z is the number of neighbors each spin has, and we have assumed the external field
to be in the ẑ direction.

(d) Extremize this expression with respect to the variable m to obtain the same mean field
equations as above. Below the critical temperature note that there are three solutions of
the mean field equations. By examining the second derivative of F with respect to m, show
that the m = 0 solution is actually a maximum of the Gibbs energy rather than a minimum.
Sketch F (m) both above and below the critical temperature for B = 0. At nonzero B?

5.4. Mean Field Theory for the Antiferromagnet

For this exercise we use the Molecular Field (Weiss Mean Field) approximation for the spin-
1/2Antiferromagnetic model on a 3 dimensional cubic lattice. The full Hamiltonian is exactly
that of Eq. 1 above, except that now we have J < 0, so neighboring spins want to point in
opposite directions. (Compared to a Ferromagnet where J > 0 and neighboring spins want
to point in the same direction). For simplicity let us assume that the external field points in
the ẑ direction.

At mean field level, the ordered ground state of this Hamiltonian will have alternating spins
pointing up and down respectively. Let us call the sublattices of alternating sites, sublattice
A and sublattice B respectively (i.e, A sites have lattice coordinates (i, j, k) with i + j + k
odd whereas B sites have lattice coordinates with i+ j + k even).

In Mean field theory the interaction between neighboring spins is replaced by an interaction
with an average spin. Let mA = 〈Sz〉A be the average value of the spins on sub-lattice A,
and mB = 〈Sz〉B be the average value of the spins on sub-lattice B. (We assume that these
are also oriented in the ±ẑ direction).

(a) Write the mean field Hamiltonian for a single site on sublattice A and the mean field
Hamiltonian for a single site on sublattice B.

(b) Derive the mean-field self consistency equations

mA =
1

2
tanh(β[JZmB + gµBB]/2)

mB =
1

2
tanh(β[JZmA + gµBB]/2)

with β = 1/(kbT ). Recall that J < 0.
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(c) Let B = 0. Reduce the two self-consistency equations to a single self consistency equation.
(Hint: Use symmetry to simplify! Try plotting mA versus mB).

(d) Assume mA,B are small near the critical point and expand the self consistency equations.
Derive the critical temperature Tc below which the system is antiferromagnetic (i.e., mA,B

become nonzero).

(e) How does one detect antiferromagnetism experimentally?

(f) In this mean-field approximation, the magnetic susceptibility can be written as

χ = (N/2)gµ0µB lim
B→0

∂(mA +mB)

∂B

(why the factor of 1/2 out front?).

Derive this susceptibility for T > Tc and write it in terms of Tc. Compare your result with the
analogous result for a ferromagnet. (Problem 5.2.). In fact, it was this type of measurement
that first suggested the existence of antiferromagnets!

(g)* Derive a similar expression for the susceptibility below Tc and write the final result in
terms of Tc and in terms of mA(T ). Give a sketch of the susceptibility at all T .

5.5. Ground States and Spin Waves

(a) Consider the spin-1 Heisenberg Hamiltonian from Problem 5.2.. Let us take B to be in
the ẑ direction, and assume a cubic lattice.

(a.i) For J > 0, i.e., for the case of a ferromagnet, intuition tells us that the ground state of
this Hamiltonian should simply have all spins aligned. Consider such a state. Show that this
is an eigenstate of the Hamiltonian Eq. 1 and find its energy.

(a.ii) For J < 0, the case of an antiferromagnet, one might expect that, at least for B = 0
the state where spins on alternating sites point in opposite directions might be an eigenstate.
Unfortunately, this is not precisely true. Consider such an state of the system. Show that
the state in question is not an eigenstate of the Hamiltonian. Although the intuition of
alternating spins on alternating sites is not perfect, it becomes reasonable for systems with
large spins S. For smaller spins (like spin 1/2) one needs to consider these so-called “quantum
fluctuations”. (We will not do that here).

Hint for parts (i) and (ii):

Si · Sj =
1

2
(S+

i S
−
j + S−

i S
+
j ) + Sz

i S
z
j

(b) For the spin-S ferromagnet particularly for large S, our “classical” intuition is fairly good
and we can use simple approximations to examine the excitation spectrum above the ground
state.

First recall the Heisenberg equations of motion for any operator

ih̄
dÔ

dt
= [Ô,H]

with H the Hamiltonian (Eq. 1 with Si being a spin S operator).

(b.i) Derive equations of motion for the spins in the Hamiltonian Eq. 1. Show that one
obtains

h̄
dSi

dt
= Si ×


J

∑

j

Sj + gµbB


 (2)
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where the sum is over sites j that neighbor i.

(b.ii) In the ferromagnetic case, particularly if S is large, we can treat the spins as not being
operators, but rather as being classical variables. In the ground state, we can set all Si = ẑS
(Assuming B is in the ẑ direction so the ground state has spins aligned in the ẑ direction).
Then to consider excited states, we can perturb around this solution by writing

Sz
i = S −O((δS)2/S)

Sx
i = δSx

i

Sy
i = δSy

i

where we can assume δSx and δSy are small compared to S. Expand the equations of motion
(Eq. 2) for small perturbation to obtain equations of motion that are linear in δSx and δSy

(b.iii) Further assume wavelike solutions

δSx
i = Axe

iωt−ik·r

δSy
i = Aye

iωt−ik·r

Plugging this form to your derived equations of motion, show that the dispersion curve for
“spin-waves” of a ferromagnet is given by h̄ω = |F (k)| where

F (k) = S [J(6− 2[cos(kxa) + cos(kya) + cos(kza)]) + gµbB]

How might these spin waves be detected in an experiment?

5.6. Itinerant Ferromagnetism

(a.i) Review 1: For a three dimensional tight binding model on a cubic lattice, calculate the
effective mass in terms of the hopping matrix element t between nearest neighbors and the
lattice constant a.

(a.ii) Review 2: Assuming the density n of electrons in this tight binding band is very low,
one can view the electrons as being free electrons with this effective massm∗. For a system of
spinless electrons show that the total energy per unit volume (at zero temperature) is given
by

E/V = nEmin + Cn5/3

where Emin is the energy of the bottom of the band. Calculate the constant C.

(b) Let the density of spin-up electrons be n↑ and the density of spin-down electrons be n↓

we can write these as

n↑ = (n/2)(1 + α) (3)

n↓ = (n/2)(1− α) (4)

where the total magnetization of the system is given by

M = µbnα

Using the result of part (a), fixing the total density of electrons in the system n, calculate
the total energy of the system per unit volume as a function of α. Expand your result to
fourth order in α. Show that α = 0 gives the lowest possible energy. Argue that this remains
true to all orders in α
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(c) Now consider adding a Hubbard interaction term

Hhubbard = U
∑

i

N i
↑N

i
↓

with U ≥ 0 where N i
σ is the number of electrons of spin σ on site i.

Calculate the expectation value of this interaction term given that the up and down electrons
form fermi seas with densities n↑ and n↓ as given by Eqns. 3 and 4 above. Write this energy
in terms of α.

(d) Adding together the kinetic energy calculated in part b with the interaction energy
calculated in part c, determine the value of U for which it is favorable for α to become
nonzero. For values of U not too much bigger than this value, calculate the magnetization
as a function of U . Explain why this calculation is only an approximation.

(e) Consider now a two dimensional tight binding model on a square lattice with a Hubbard
interaction. How does this alter the result of part (d)?

5.7. Antiferromagnetism in the Hubbard Model

Consider a tight binding model with hopping t and a strong Hubbard interaction.

Hhubbard = U
∑

i

N i
↑N

i
↓

(a) If there is one electron per site, if the interaction term U is very strong, explain qualita-
tively why the system must be an insulator.

(b) On a square lattice, with one electron per site, and large U , use second order pertur-
bation theory to determine the energy difference between the ferromagnetic state and the
antiferromagnetic state. Which one is lower energy?
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Some Revision Problems

6.1. Debye Theory

Use the Debye approximation to determine the specific heat of a two dimensional solid as
a function of temperature. State your assumptions. You will need to leave your answer in
terms of an integral that generally one cannot do. At high T , show the specific heat goes to
a constant and find that constant. At low T , show that Cv = KT n Find n. Find K in terms
of a definite integral. If you are brave you can try to evaluate the integral, but you will need
to leave your result in terms of the Riemann zeta function ζ(s) =

∑∞

n=1 n
−s.

6.2. Debye Theory II

Physicists should be good at making educated guesses: Guess the element with the highest
Debye temperature. The lowest? You might not guess the ones with the absolutely highest
or lowest temperatures, but you should be able to get close.

6.3. Free Electron Theory

(a) Explain what is meant by the Fermi energy, Fermi temperature and the Fermi surface of
a metal.

(b) Show that the kinetic energy of a free electron gas in 3D is (3/5)NEF where EF is the
fermi energy.

(c) Consider a two dimensional electron gas. Derive an expression for the density of states.

(d) *Calculate the specific heat at low temperature of this two dimensional electron gas. The
following integral may be useful:

∫ ∞

−∞

dx
x2ex

(ex + 1)2
=
π2

3

6.4. Vibrations I

(a) Consider a 1 dimensional mass and spring model of a crystal. Write down the dispersion
curve ω(k) for this model (this should be easy by this time). Now write an expression for
the specific heat of this 1 dimensional chain. You will inevitably have an integral that you
cannot do.

(b)* However, you can expand exponentials for high temperature to obtain a high tempera-
ture approximation. It should be obvious that the high temperature limit should give heat
capacity C = kB per atom (the law of Dulong-Petit in one dimension). By expanding to
next nontrivial order, show that

C/N = kB(1−A/T 2 + . . .)

where

A =
h̄2k

6m

where m is the atomic mass and k is the spring constant.
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6.5. Vibrations II Consider a 1 dimensional spring and mass model of a crystal. Generalize
this model to include springs not only between neighbors but also between second nearest
neighbors. Let the spring constant between neighbors be called κ1 and the spring constant
between second neighbors be called κ2. Let the mass of each atom be M .

(a) Calculate the dispersion curve ω(k) for this model.

(b) Determine the sound wave velocity, Show the group velocity vanishes at the Brillouin
zone boundary.

6.6. Reciprocal Lattice

Show that the reciprocal lattice of a FCC (face-centered-cubic) lattice is a BCC (body-
centered-cubic) lattice. Correspondingly show that the reciprocal lattice of a BCC lattice is
an FCC lattice. If an FCC lattice has conventional unit cell with lattice constant a, what is
the lattice constant for the conventional unit cell of the reciprocal BCC lattice?

Consider now an orthorhombic face-centered lattice with conventional lattice constants
a1, a2, a3. What it the reciprocal lattice now?

6.7. Scattering

The Bragg angles of a certain reflection off of copper Is 47.75◦ at 20◦C but is 46.60◦ at
1000◦C. What is the coefficient of linear expansion of copper? (Note: the Bragg angle θ is
half of the measured diffraction (deflection) angle 2θ).

6.8. More scattering

KCl and KBr are alkali-halides with the same crystal structure as NaCl: fcc cubic with Na at
(0,0,0) and Cl at (1/2,1/2,1/2). KBr shows X-ray diffraction peaks from planes (111) (200)
(220) (331) (222) (400)(331)(420), but KCl shows peaks only at (200)(220)(222)(400)(420).
Why might this be true?

6.9. Semiconductors

Describe experiments to determine the following properties of a semiconductor sample: (i)
sign of the majority carrier, (ii) carrier concentration (assume that one carrier type is domi-
nant), (iii) band gap, (iv) effective mass (v) mobility of the majority carrier.

6.10. More Semiconductors

Outline the absorption properties of a semiconductor and how these are related to the band
gap. Explain the significance of the distinction between a direct and an indirect semiconduc-
tor. What region of the optical spectrum would be being studied for a typical semiconducting
crystal?

6.11. Yet More Semiconductors

Outline a model with which you could estimate the energy of electron states introduced
by donor atoms into an n-type semiconductor. Write down an expression for this energy,
explaining why the energy levels are very close to the conduction band edge.

6.12. Magnetism

Explain briefly the origin of diamagnetism and paramagnetism in atoms.

Consider a crystal of volume V composed of N identical atoms. Each atom has spin 1/2 and
g = 2. Assume neighboring atoms do not interact, derive an expression for the paramagnetic
susceptibility as a function of temperature in the high temperature limit. Explain how this
system might be used to make a refrigerator. In reality what limits how well this works?

Discuss what is meant by “quenching” of orbital angular momentum and its consequences
for paramagnetism.
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6.13. Mean field theory

(a) β-Brass is an alloy containing equal numbers of of Cu and Zn atoms. Above a temperature
of 730K, the atoms are arranged randomly on a body centered cubic lattice. Below 730K, the
lattice becomes simple cubic with Cu atoms largely on the (0,0,0) position and the Zn atoms
largely at the (1/2,1/2,1/2) position in the unit cell. The energy of the crystal depends on
the occupancy of the sites and is given by

E =
1

2

∑

i,j

Jσiσj

where σi = +1 if the site is occupied by a Cu atom and σi = −1 if the site is occupied by a
Zn atom. Here the sum is restricted to nearest neighbors. Using mean field approximation
show that

〈|σ|〉 = tanh(zJ〈|σ|〉)

what is z ? (b) Estimate the magnitude of J (c) Explain, in detail, how this ordering could
be observed.
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Additional Problems

More problems associated with Problem Set 1

A.1.1. Diatomic Einstein Solid*

Having studied problem 1.1., consider now a solid made up of diatomic molecules. We can
(very crudely) model this as a two particles in three dimensions, connected to each other
with a spring, both in the bottom of a harmonic well.

H =
p1

2

2m1
+

p2
2

2m2
+
k

2
x1

2 +
k

2
x2

2 +
K

2
(x1 − x2)

2

Here k is the spring constant holding both particles in the bottom of the well, and K is
the spring constant holding the two particles together. Assume that the two particles are
distinguishable atoms.

(a) Analogous to problem 1.1. above, calculate the classical partition function and show that
the heat capacity is again 3kB per particle (i.e., 6kB total).

(b)Analogous to problem 1.1. above, calculate the quantum partition function and find an
expression for the heat capacity. Sketch the heat capacity as a function of temperature if
K � k.

(c)** How does the result change if the atoms are indistinguishable?

For this problem you may find it useful to transform to relative and center-of-mass coordi-
nates. If you find this difficult, for simplicity you may assume that m1 = m2.

A.1.2. Another review of free electron theory

What is the free electron model of a metal. Define Fermi energy and Fermi temperature.

Why do metals held at room temperature feel cold to the touch even though their Fermi
temperatures are much higher than room temperature?

A d-dimensional sample with volume Ld contains N electrons and can be described as a free
electron model. Show that the Fermi energy is given by

EF =
h̄2

2mL2
(Nad)

2/d

Find the numerical values of ad for d = 1, 2, and 3.

Show also that the density of states at the Fermi energy is given by

g(EF ) =
Nd

2LdEF

Assuming the free electron model is applicable, estimate the Fermi energy and Fermi tem-
perature of the following materials:

(a) Copper, a monovalent metal (with face-centered-cubic structure) having four atoms per
unit cell, where the side of a unit cell has length 0.361 nm.

(b) A one dimensional organic conductor which has unit cell of length 0.8 nm, where each
unit cell contributes one mobile electron.
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A.1.3. Heat Capacity of a Free Electron Gas**

In problem 1.6..a we approximated the heat capacity of a free electron gas (in 3d). Calculate
an exact expression for the specific heat of a metal at low temperature. Caution, be careful
to account for the fact that the chemical potential is a function of temperature. Note: you
will run into some nasty integrals. If you cannot evaluate these integrals you can rewrite
them as series whose summation is known.

More problems associated with Problem Set 2

A.2.1. LCAO Done Right

(a) In problem 2.2. we introduced the method of linear combination of Atomic orbitals. In
that problem we assumed that our basis of orbitals is orthonormal. In this problem we will
relax this assumption.

Consider now many orbitals on each atom (and potentially many atoms). Let us write

|ψ〉 =
N∑

i=1

φi|i〉

for an arbitrary number N of orbitals. Let us write the N by N overlap matrix S whose
elements are

Si,j = 〈i|j〉

In this case do NOT assume that S is diagonal.

Using a similar method as in problem 2.2., derive the new “Schroedinger equation”

Hφ = ESφ (1)

With the same notation for H and φ as in problem 2.2.. This equation is known as a
“generalized eigenvalue problem” because of the S on the right hand side.

(b)** Let us now return to the situation with only two atoms and only one orbital on each
atom but such that 〈1|2〉 = S1,2 6= 0. Without loss of generality we may assume 〈i|i〉 = 1
and S1,2 is real. If the atomic orbitals are s-orbitals then we may assume also that t is real
and positive (why?).

Use the above Eq. 1 to derive the eigenenergies of the system. Argue again the the energy
gained in the bonding orbital is sufficient to overcome the repulsion between nuclei.

A.2.2. LCAO and the Ionic-Covalent Crossover

(a) For problem 2.2..b consider now the case where the atomic orbitals |1〉 and |2〉 have
unequal energies ε0,1 and ε0,2. As the difference in these two energies increases show that
the bonding orbital becomes more localized on the lower energy atom. (For simplicity you
may use the orthogonality assumption 〈1|2〉 = 0). Explain how this calculation can be used
to describe a crossover between covalent and ionic bonding.

A.2.3. Van der Waals Bonding in Detail*

(a) *Here we will do a much more precise calculation of the van der Waals force between
two hydrogen atoms. First, let the position of the two nuclei be separated by a vector R as
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shown in the figure. Let us write the Hamiltonian for both atoms (assuming fixed positions
of nuclei) as

H = H0 +H1

H0 =
p1

2

2m
+

p2
2

2m
− e2

4πε0|r1|
− e2

4πε0|~r2|

H1 =
e2

4πε0|R| +
e2

4πε0|R+ r1 + r2|
− e2

4πε0|R+ r1|
− e2

4πε0|R+ r2|

as shown in the figure

I
�

+
+

-
-

r1
r2

-
R

Here H0 is the Hamiltonian for two noninteracing hydrogen atoms, and H1 is the interaction
between the atoms.

Without loss of generality, let us assume that R is in the x̂ direction. Show that for large ~R
and small ~ri, the interaction Hamiltonian can be written as

H1 =
e2

4πε0|R|3
(z1z2 + y1y2 − 2x1x2) +O(1/R4)

where xi, yi, zi are the components of ri. Show that this is just the interaction between two
dipoles.

(b) Perturbation Theory: The eigenvalues ofH0 can be given as the eigenvalues of the two
atoms separately. Recall that the eigenstates of hydrogen are written in the usual notation
as |n, l,m〉 and have energies En = −Ry/n2 with Ry = me4/(32π2ε20h̄

2) = e2/(8πε0a0) the
Rydberg (Here l ≥ 0, |m| ≤ l and n ≥ l + 1). Thus the eigenstates of H0 are written as
|n1, ll,m1;n2, l2,m2〉 with energies En1,n2

= −Ry(1/n2
1 + 1/n2

2). The ground state of H0 is
|1, 0, 0; 1, 0, 0〉. Perturbing H0 with the interaction H1, show that to first order in H1 there
is no change in the ground state energy. Thus conclude that the leading correction to the
energy ground state energy is proportional to 1/R6 (and hence the force is proportional to
1/R7). Recalling second order perturbation theory show that we have a correction to the
total energy given by

δE =
∑

n1,n2,l1,l2,m1,m2

| < 1, 0, 0; 1, 0, 0| H1 |n1, ll,m1;n2, l2,m2〉|2
E0,0 − En1,n2

Show that the force must be attractive.

(c)* Bounding the binding energy: First, show that the numerator in this expression is
zero if either n1 = 1 or n2 = 1. Thus the smallest En1,n2

that appears in the denominator
is E2,2. If we replace En1,n2

in the denominator with E2,2 then the |δE| we calculate will
be greater than than the |δE| in the exact calculation. On the other hand, if we replace
En1,n2

by 0, then we the |δE| will always be less than the δE of the exact calculation. Make
these replacements, and perform the remaining sum by identifying a complete set. Derive
the bound

6e2a50
4πε0R6

≤ |δE| ≤ 8e2a50
4πε0R6
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You will need the matrix element for a hydrogen atom

〈1, 0, 0|x2|1, 0, 0〉 = a20

where a0 = 4πε0h̄
2/(me2) is the Bohr radius. (This last identity is easy to derive if you

remember that the ground state wavefunction of a hydrogen atom is proportional to e−r/2a0

).

A.2.4. General Proof That Normal Modes Become Quantum Eigenstates This proof gen-
eralizes the argument given in problem 2.4.. Consider a set of N particles a = 1, . . .N with
masses mp interacting via a potential

U =
1

2

∑

a,b

xaVa,bxb

where xa is the deviation of the position of particle a from its equilibrium position and V
can be taken (without loss of generality) to be a symmetric matrix. (Here we consider a
situation in 1d, however, we will see that to go to 3d we just need to keep track of 3 times
as many coordinates).

(i) Defining ya =
√
maxa show that the classical equations of motion may be written as

ÿa = −
∑

b

Sa,b yb

where

Sa,b =
1√
ma

Va,b
1√
mb

Thus show that the solutions are

y(m)
a = e−iωmts(m)

a

where ωm is the mth eigenvalue of the matrix S with corresponding eigenvector s
(m)
a . These

are the N normal modes of the system.

(ii) Recall the orthogonality relations for eigenvectors of hermitian matrices

∑

a

[s(m)
a ]∗[s(n)a ] = δm,n (2)

∑

m

[s(m)
a ]∗[s

(m)
b ] = δa,b (3)

Since S is symmetric as well as hermitian, the eigenvectors can be taken to be real. Construct
the transformed coordinates

Y (m) =
∑

a

s(m)
a xa

√
ma (4)

P (m) =
∑

a

s(m)
a pa/

√
ma (5)

show that these coordinates have canonical commutations

[P (m), Y (n)] = −ih̄δn,m (6)
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and show that in terms of these new coordinates the Hamiltonian is rewritten as

H =
∑

m

[
1

2
[P (m)]2 +

1

2
ω2
m[Y (m)]2

]
(7)

Conclude that the quantum eigenfrequencies of the system are also ωm. (Can you derive this
result from the prior two equations?)

More problems associated with Problem Set 3

A.3.1. And More X-ray scattering

A sample of Aluminum powder is put in an Debye-Scherrer X-ray diffraction device. The
incident X-ray radiation is from Cu-Ka Xray transition (this just means that the wavelength
is l = 1.54 Angstrom)

The following scattering angles were observed:

19.48◦ 22.64◦ 33.00◦ 39.68◦ 41.83◦ 50.35◦ 57.05◦ 59.42◦

Given also that the atomic weight of Al is 27, and the density is 2.7 g/cm3, use this infor-
mation to calculate Avagadros number. How far off are you? What causes the error?

A.3.2. Still More X-ray scattering

The unit cell dimension for a particular b.c.c. solid is 2.4 Angstrom. Two orders of diffraction
are observed. What is the minimum Energy of the neutrons? At what T would such neutrons
be dominant If the distribution is Maxwell Boltzmann.

A.3.3. Phonons in 2d

a1

a2

Consider a mass and spring model of a two dimensional triangular lattice (assume the lattice
is extended infinitely in all directions). Assume that each mass is attached to each of its
6 neighbors by equal springs of equal length. Find the first Brillouin zone. Calculate the
dispersion curve ω(k).

A.3.4. Tight Binding in 2d
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a1

a2

t1

t2

Consider a rectangular lattice in 2 dimensions with lattice constants a1 in the horizontal
direction and a2 in the vertical direction. Describe the first Brillioun zone for this lattice.

Now imagine a tight binding model where there is one orbital at each lattice site, and where
the hopping matrix element is 〈n|H |m〉 = t1 if sites n and m are neighbors in the horizontal
direction and is = t2 if n and m are neighbors in the vertical direction. Calculate the
dispersion relation for this tight binding model. What does the dispersion relation look like
near the bottom of the band?

A.3.5. Diatomic Tight Binding Model: Peierls disortion

Consider a chain made up of all the same type of atom, but in such a way that the spacing
between atoms alternated as long-short-long-short as follows

−A = A−A = A−A = A−

In a tight binding model, the shorter bonds (marked with =) will have hopping matrix
element tshort = t(1 + ε) whereas the longer bonds marked with − have hopping matrix
element tlong = t(1 − ε). Calculate the tight-binding energy spectrum of this chain. (The
onsite energy ε is the same on every atom). Expand your result to linear order in ε. Suppose
the lower band is filled and the upper band is empty (what is the valence of each atom in
this case?). Calculate the total ground state energy of the filled lower band, and show it
decreases linearly with increasing ε.

Now consider a chain of equally spaced identical A atoms connected together with identical
springs with spring constant κ. Show that making a distortion whereby every other spacing is
shorter by δx costs energy proportional to (δx)2. Conclude that for a chain with the valence
discussed above, a distortion of this sort will occur spontaneously. This is known as a Peierls
distortion.

More problems associated with Problem Set 4

A.4.1. p-n junction

[ Note: Presumably p-n junction is not supposed to be on the syllabus, but for years it was
a standard question.]

Explain the origin of the depletion layer in an abrupt p-n junction and discuss how the
junction causes rectifcation to occur. Stating your assumptions, show that the total width
w of the depletion layer of a p-n junction is:

w = wn + wp
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where

wn =

(
2εrε0NAφ0

eND(NA +ND)

)1/2

and a similar expression for wp Here εr is the relative permittivity and NA and ND are the
acceptor and donor densities per unit volume, while φ0 is the difference in potential across
the p-n junction with no applied voltage. Calculate the total depletion charge and infer how
this changes when an additional voltage, V ,is applied.

What is the differential capacitance of the diode and why might it be useful to use a diode
as a capacitor in an electronic circuit?

More problems associated with Problem Set 5

A.5.1. Spin J Paramagnet

Given the hamiltonian for a system of noninteracting spin-J atoms

H = −g̃µBB · J

Determine the magnetization as a function of B and T . Show that the susceptibility is given
by

χ =
ρµ0(g̃µB)

2

3

J(J + 1)

kBT

where ρ is the density of spins.

A.5.2. Correction to Mean Field

Consider the spin-1/2 Ising Ferromagnet on a cubic lattice in d dimensions. When we consider
mean field theory, we treat exactly a single spin σi and the z = 2d neighbors on each side
will be considered to have an average spin → 〈σ〉. The critical temperature you calculate
should be kbTc = Jz/4.

To improve on mean field theory, we can instead treat a block of two connected spins σi and
σi′ where the neighbors outside of this block are assumed to have the average spin → 〈σ〉.
Each of the spins in the block has 2d− 1 such averaged neighbors. Use this improved mean
field theory to write a new equation for the critical temperature (it will be a transcendental
equation). Is this improved estimate of the critical temperature higher or lower than that
calculated in the more simple mean-field model?


