Additional Problems

More problems associated with Problem Set 1

A1l

A1.2.

Diatomic Einstein Solid*

Having studied problem 1.1., consider now a solid made up of diatomic molecules. We can
(very crudely) model this as a two particles in three dimensions, connected to each other
with a spring, both in the bottom of a harmonic well.
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Here k is the spring constant holding both particles in the bottom of the well, and K is
the spring constant holding the two particles together. Assume that the two particles are
distinguishable atoms.

(a) Analogous to problem 1.1. above, calculate the classical partition function and show that
the heat capacity is again 3kp per particle (i.e., 6kp total).

(b)Analogous to problem 1.1. above, calculate the quantum partition function and find an
expression for the heat capacity. Sketch the heat capacity as a function of temperature if
K>k

(¢)** How does the result change if the atoms are indistinguishable?

For this problem you may find it useful to transform to relative and center-of-mass coordi-
nates. If you find this difficult, for simplicity you may assume that m; = mo.

Another review of free electron theory

What is the free electron model of a metal. Define Fermi energy and Fermi temperature.

Why do metals held at room temperature feel cold to the touch even though their Fermi
temperatures are much higher than room temperature?

A d-dimensional sample with volume L¢ contains N electrons and can be described as a free
electron model. Show that the Fermi energy is given by
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Find the numerical values of ag for d = 1,2, and 3.
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Show also that the density of states at the Fermi energy is given by

Nd

9(Er) = 2LiE,

Assuming the free electron model is applicable, estimate the Fermi energy and Fermi tem-
perature of the following materials:

(a) Copper, a monovalent metal (with face-centered-cubic structure) having four atoms per
unit cell, where the side of a unit cell has length 0.361 nm.

(b) A one dimensional organic conductor which has unit cell of length 0.8 nm, where each
unit cell contributes one mobile electron.



A.1.3. Heat Capacity of a Free Electron Gas**
In problem 1.6..a we approximated the heat capacity of a free electron gas (in 3d). Calculate
an exact expression for the specific heat of a metal at low temperature. Caution, be careful
to account for the fact that the chemical potential is a function of temperature. Note: you
will run into some nasty integrals. If you cannot evaluate these integrals you can rewrite
them as series whose summation is known.
More problems associated with Problem Set 2
A.2.1. LCAO Done Right
(a) In problem 2.2. we introduced the method of linear combination of Atomic orbitals. In
that problem we assumed that our basis of orbitals is orthonormal. In this problem we will
relax this assumption.
Consider now many orbitals on each atom (and potentially many atoms). Let us write
N
lv) = Z bili)
i=1
for an arbitrary number N of orbitals. Let us write the N by N overlap matrix S whose
elements are
Siy = (ilj)
In this case do NOT assume that S is diagonal.
Using a similar method as in problem 2.2.; derive the new “Schroedinger equation”
Hep = ES¢ (1)
With the same notation for H and ¢ as in problem 2.2.. This equation is known as a
“generalized eigenvalue problem” because of the S on the right hand side.
(b)** Let us now return to the situation with only two atoms and only one orbital on each
atom but such that (1|2) = S;2 # 0. Without loss of generality we may assume (i[i) = 1
and S 2 is real. If the atomic orbitals are s-orbitals then we may assume also that ¢ is real
and positive (why?).
Use the above Eq. 1 to derive the eigenenergies of the system. Argue again the the energy
gained in the bonding orbital is sufficient to overcome the repulsion between nuclei.
A.2.2. LCAO and the Ionic-Covalent Crossover
(a) For problem 2.2..b consider now the case where the atomic orbitals |1) and |2) have
unequal energies €91 and €y 2. As the difference in these two energies increases show that
the bonding orbital becomes more localized on the lower energy atom. (For simplicity you
may use the orthogonality assumption (1|2) = 0). Explain how this calculation can be used
to describe a crossover between covalent and ionic bonding.
A.2.3. Van der Waals Bonding in Detail*

(a) *Here we will do a much more precise calculation of the van der Waals force between
two hydrogen atoms. First, let the position of the two nuclei be separated by a vector R as



shown in the figure. Let us write the Hamiltonian for both atoms (assuming fixed positions
of nuclei) as

H = Hy+ H;
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Here Hj is the Hamiltonian for two noninteracing hydrogen atoms, and H; is the interaction
between the atoms.

Without loss of generality, let us assume that R is in the & direction. Show that for large R
and small 7;, the interaction Hamiltonian can be written as
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where x;,¥;, z; are the components of r;. Show that this is just the interaction between two
dipoles.

(b) Perturbation Theory: The eigenvalues of Hy can be given as the eigenvalues of the two
atoms separately. Recall that the eigenstates of hydrogen are written in the usual notation
as |n,l,m) and have energies E,, = —Ry/n? with Ry = me*/(32n2e2h?) = ¢2/(8mepap) the
Rydberg (Here [ > 0, |m| <l and n > [+ 1). Thus the eigenstates of Hy are written as
In1, 1, mi;na, la, ma) with energies E,, ,, = —Ry(1/n? 4+ 1/n3). The ground state of Hy is
[1,0,0;1,0,0). Perturbing Hy with the interaction Hy, show that to first order in H; there
is no change in the ground state energy. Thus conclude that the leading correction to the
energy ground state energy is proportional to 1/R% (and hence the force is proportional to
1/R"). Recalling second order perturbation theory show that we have a correction to the
total energy given by
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Show that the force must be attractive.

(¢)* Bounding the binding energy: First, show that the numerator in this expression is
zero if either ny = 1 or ny = 1. Thus the smallest E,, ,,, that appears in the denominator
is E9 9. If we replace E,, n, in the denominator with Es o then the [0E| we calculate will
be greater than than the |0FE| in the exact calculation. On the other hand, if we replace
E,, n, by 0, then we the [0F| will always be less than the E of the exact calculation. Make
these replacements, and perform the remaining sum by identifying a complete set. Derive
the bound
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A24.

You will need the matrix element for a hydrogen atom
(1,0,0]22|1,0,0) = a?

where ag = 4megh?®/(me?) is the Bohr radius. (This last identity is easy to derive if you
remember that the ground state wavefunction of a hydrogen atom is proportional to e~"/2%

).

General Proof That Normal Modes Become Quantum Eigenstates This proof gen-
eralizes the argument given in problem 2.4.. Consider a set of N particles a = 1,... N with
masses m,, interacting via a potential

1
U= 5 ZbZCaVa)bZCb

where z, is the deviation of the position of particle a from its equilibrium position and V
can be taken (without loss of generality) to be a symmetric matrix. (Here we consider a
situation in 1d, however, we will see that to go to 3d we just need to keep track of 3 times
as many coordinates).

(i) Defining y, = \/mqx, show that the classical equations of motion may be written as

ya = - Zsa,b Yo
b

where
1 1
Sop = —Vop—
b /Mg b /my
Thus show that the solutions are
y((zm) _ e—iwmtsgm)

where w,, is the m*" eigenvalue of the matrix S with corresponding eigenvector sgm). These
are the N normal modes of the system.

(ii) Recall the orthogonality relations for eigenvectors of hermitian matrices

ST = G (2)
ST s = Gan (3)

Since S is symmetric as well as hermitian, the eigenvectors can be taken to be real. Construct
the transformed coordinates

ym — Zsflm)xm/ma (4)

a

P =% s pa/y/ima (5)

a

show that these coordinates have canonical commutations

[Py (] = —ihd,, m (6)



and show that in terms of these new coordinates the Hamiltonian is rewritten as
H=% Lipemgz ¢ L2 ryenp2 7
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Conclude that the quantum eigenfrequencies of the system are also w,,. (Can you derive this
result from the prior two equations?)

More problems associated with Problem Set 3

A3l

A3.2.

A3.3.

And More X-ray scattering

A sample of Aluminum powder is put in an Debye-Scherrer X-ray diffraction device. The
incident X-ray radiation is from Cu-Ka Xray transition (this just means that the wavelength
is 1 = 1.54 Angstrom)

The following scattering angles were observed:

19.48° 22.64° 33.00° 39.68° 41.83° 50.35° 57.05° 59.42°

Given also that the atomic weight of Al is 27, and the density is 2.7 g/cm?, use this infor-
mation to calculate Avagadros number. How far off are you? What causes the error?

Still More X-ray scattering

The unit cell dimension for a particular b.c.c. solid is 2.4 Angstrom. Two orders of diffraction
are observed. What is the minimum Energy of the neutrons? At what T would such neutrons
be dominant If the distribution is Maxwell Boltzmann.

Phonons in 2d

a2

a1

Consider a mass and spring model of a two dimensional triangular lattice (assume the lattice
is extended infinitely in all directions). Assume that each mass is attached to each of its
6 neighbors by equal springs of equal length. Find the first Brillouin zone. Calculate the
dispersion curve w(k).

A.3.4. Tight Binding in 2d



A3.5.
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Consider a rectangular lattice in 2 dimensions with lattice constants a; in the horizontal
direction and as in the vertical direction. Describe the first Brillioun zone for this lattice.

Now imagine a tight binding model where there is one orbital at each lattice site, and where
the hopping matrix element is (n|H|m) = t; if sites n and m are neighbors in the horizontal
direction and is = t2 if n and m are neighbors in the vertical direction. Calculate the
dispersion relation for this tight binding model. What does the dispersion relation look like
near the bottom of the band?

Diatomic Tight Binding Model: Peierls disortion

Consider a chain made up of all the same type of atom, but in such a way that the spacing
between atoms alternated as long-short-long-short as follows

—A=A—A=A-A=A-

In a tight binding model, the shorter bonds (marked with =) will have hopping matrix
element tsport = t(1 + €) whereas the longer bonds marked with — have hopping matrix
element o,y = t(1 —€). Calculate the tight-binding energy spectrum of this chain. (The
onsite energy € is the same on every atom). Expand your result to linear order in e. Suppose
the lower band is filled and the upper band is empty (what is the valence of each atom in
this case?). Calculate the total ground state energy of the filled lower band, and show it
decreases linearly with increasing e.

Now consider a chain of equally spaced identical A atoms connected together with identical
springs with spring constant x. Show that making a distortion whereby every other spacing is
shorter by dx costs energy proportional to (§2)2. Conclude that for a chain with the valence
discussed above, a distortion of this sort will occur spontaneously. This is known as a Peierls
distortion.

More problems associated with Problem Set 4

A4l

p-n junction

[ Note: Presumably p-n junction is not supposed to be on the syllabus, but for years it was
a standard question.]

Explain the origin of the depletion layer in an abrupt p-n junction and discuss how the
junction causes rectifcation to occur. Stating your assumptions, show that the total width
w of the depletion layer of a p-n junction is:

W = Wp + Wp



where

w _( 2e-e0Naco )1/2
" \eNp(Na+ Np)

and a similar expression for w, Here ¢, is the relative permittivity and N4 and Np are the
acceptor and donor densities per unit volume, while ¢q is the difference in potential across
the p-n junction with no applied voltage. Calculate the total depletion charge and infer how
this changes when an additional voltage, V ,is applied.

What is the differential capacitance of the diode and why might it be useful to use a diode
as a capacitor in an electronic circuit?

More problems associated with Problem Set 5

A5l

A5.2.

Spin J Paramagnet

Given the hamiltonian for a system of noninteracting spin-J atoms
H=—gupB-J

Determine the magnetization as a function of B and T'. Show that the susceptibility is given
by

_ pro(@us)® J(J +1)
3 kpT

X

where p is the density of spins.

Correction to Mean Field

Consider the spin-1/2 Ising Ferromagnet on a cubic lattice in d dimensions. When we consider
mean field theory, we treat exactly a single spin o; and the z = 2d neighbors on each side
will be considered to have an average spin — (o). The critical temperature you calculate
should be kT, = Jz/4.

To improve on mean field theory, we can instead treat a block of two connected spins o; and
oy where the neighbors outside of this block are assumed to have the average spin — (o).
Each of the spins in the block has 2d — 1 such averaged neighbors. Use this improved mean
field theory to write a new equation for the critical temperature (it will be a transcendental
equation). Is this improved estimate of the critical temperature higher or lower than that
calculated in the more simple mean-field model?



