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Preface

This course covers interesting quantum states of matter: Superfluids, Superconduc-
tors, and Fermi Liquids. This is where condensed matter really starts to get bizarre —
and therefore even more fun (at least in my opinion).

I realize that possibly not everyone will have actually attended the official prerequi-
site courses (or possibly did attend, but didn’t pay attention), so I will try to make this
course as self-contained as possible, while still making contact with what has been taught
in prior courses.

Particularly for those who have read the Oxford Solid-State Basics, I will warn you
right from the front that this book is higher level and is likely to be more difficult going.
Whereas that book was written as a third year undergrad course, this book is written at
a masters level for students who have a good amount of theoretical background already.
The jokes aren’t as good either.

Lets get started!



ii

At early points in one’s career there is an inevitable tension between learning physics
and learning mathematical formalism. While learning to manipulate commutation rela-
tions, and even learning the rules for green’s function expansions can be fun — and indeed,
by doing this one gets a feeling that one is actually learning something — the real hard
part is learning to develop intuition for physics. Developing intuition is extremely hard,
and it is something that professional physicists struggle with throughout their lives.

This course needs to strike a balance between the two tasks. For some we will not
learn enough formalism. For others we will not learn enough physics. I hope we will be
able to satisfy both factions, and I hope everyone will learn at least a bit of both.



Chapter 1

What we will study

1.1 Bose Superfluids (BECs, Superfluid He, Superconduc-
tors)

Much of the term will be focused on discussion of superfluids and superconductors.

We will discuss both Bose Einstein Condensates (BECs) and superfluids — the main
example being superfluid Helium 4. The difference here is that a BEC is by definition a
gas of noninteracting bosons, whereas Helium 4 is strongly interacting. In the modern era
one calls a weakly interacting Bose gas a BEC also – since it can be treated as a weak per-
turbation of the noninteracting case. Helium 4, however, is very far from noninteracting.

The tension between the physics of the interacting and noninteracting cases will be
a theme.

We will then turn to the study of superconductors. First we will view these as simply
being a superfluid of charged bosons.

Of course superconductors are things like aluminum1 are regular metals, where the
charged objects are electrons, which are fermions of charge −e. However, as we will see
later, these charged objects can pair into bosons of charge −2e.

Why are such pairs bosons? Recall that fermions accumulate a minus sign when they
are exchanged. Exchanging a pair of fermions with another pair of fermions accumulates
an even number of minus signs, hence a plus sign, so the pair of fermions is a boson.

This picture of electrons pairing into bosons is not entirely accurate and there are
good reasons to believe that even using this as a cartoon picture is quite dangerous.
However, in some other ways this picture does make sense. In order to figure out how it
makes sense we must first take a detour into a study of Fermions.

1Those using the british spelling and pronounciation ”aluminium” will be ridiculed.

1



2 CHAPTER 1. WHAT WE WILL STUDY

1.2 Theory of Fermi Liquids

Fermi liquids, metals and other systems of interacting fermions have some unusual prop-
erties — some of which you have probably studied in your introductory solid state or
condensed matter courses2. However, in most of these treatments, the interaction be-
tween fermions is completely neglected. This is a terrible thing to do being that the
interaction energy scale is usually just as a big (and sometimes even bigger) than the
Fermi energy — and both are immensely bigger than the temperature for usual metals
at room tempertature. We will need to understand some of the properties of these Fermi
systems before we can go on to understand the more exotic physics of electron pairing.

1.3 BCS theory of superconductivity and Majoranas

This is not examinable

2If you have not studied introductory solid state physics, you should do so. I can recommend a good
book.



Chapter 2

Introduction to Superfluids

Superfluids and superconductors share the unusual property of zero dissipation. For ex-
ample, we can imagine a toroidal pipe which we can fill with 4He. If we start 4He supefluid
flowing around the torus it will continue essentially forever (with caveats that T must be
low enough, the velocity must be small enough, and the system must be big enough).
“Forever” here means an essentially unmeasurable long time.

Similarly with a superconductor. we can take a solid torus (a very thick loop of
wire) and if we start a current flowing around the wire , it will conitnue with no loss
essentially forever (again caveats, the temperature must be low enough, the current must
be small enough and the the sample must be big enough). Experiments have measured
that the decay time in certain superconducting wires exceeds 105 years. It is probably
much longer, but it becomes very difficult to measure such tiny amounts of decay.

Insert story about crazy Gerrit Flim demonstrating persistant current flow in su-
perconductors.

2.1 Some History and Basics of Superfluid Phenomena

In 1908 in Leiden, Heike Kamerlingh Onnes liquified helium for the first time allowing
access to extremely low temperatures.

On April 8, 1911 Kamerlingh Onnes ”discovered” both supercondctivity and super-
fluidity.

He noticed that below 4.2K the resistance of mercury (Hg) metal suddenly becomes
unmeasurably small. He spent the next few years convincing himself that this is a real
effect and not some error in the experiment. He also shows that many metals have the same
superconducting behavior — each with its own critical temperature. There was no real
explanation of the observed superconductivity until 1957 (the BCS theory). We will discuss
superconductivity more in later chapters, but this chapter will focus on superfluidity.

3



4 CHAPTER 2. INTRODUCTION TO SUPERFLUIDS

Figure 2.1: The Lambda transition in helium. The superfluid phase is known as He II.

On the very same day as the discovery of superconductivity, he notes in his lab book
that something different is happening around 2K, but he didn’t follow up on this for many
years.

In 1913 Kamerlingh Onnes wins the Nobel prize.

In 1922-23 Onnes, along with some of his coworkers goes back to re-examine the
“something strange” that happens around 2K. Looking at the heat capacity, they find
something like Fig. 2.1. The discontinuity in the heat capacity is a signal of a thermo-
dynamic phase transition1 The regular phase of helium is known as He I whereas2 the
superfluid phase is known as He II.

Onnes died in 1926, but the work in his lab continued on. With some exploration,
they uncovered the full phase diagram shown in Fig. 2.2. The line separating the He I and
He II phases is known as the Lambda-line.

Compared to other elements, helium is quite special in that it does not solidify at
low temperature except when under pressure. This special feature is due to both its very
light mass and its weak interactions (no chemical bonding). The light mass is important
since ∆p∆x > ~/2. If you try to localize x, you have a nonzero p. But since kinetic energy
is p2/(2m) having a light mass means there is a very high energy cost to localizing the
position of the atoms.

The most remarkable thing about superfluid helium is persistant flow (which Kamer-
lingh Onnes was never aware of). However, perhaps just as remarkable is the extremely
good transport of heat in superfluids. In fact, going through the supefluid transition, ther-

1For those who have studied phase transitions we have Cv ∼ B± + A±|T − Tc|−α where the critical
exponent α ≈ −0.0127 matches that of the XY-universality class and here A± and B± are different
constants depending on whether we approach the critical point from the high or low temperature direction.
When we study the order parameter in section 2.3 it will be clear to those having studied phase transitions
wwhy this is in the XY universality class.

2This nomenclature is particularly confusing being that we also have 4He and 3He, indicating the
number of nucleons. Everything in this chapter is in reference to phases of regular helium, 4He, although
we will also discuss 3He in our chapter below on Fermi liquids.
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Figure 2.2: The Phase Diagram (P,T) of 4He. The superfluid phase is known as He II.
The nonsuperfluid phase is known as He I

mal conductance can jump by a factor of 105 or more! Indeed, this was what Kamerlingh
Onnes saw in 1911 when he said “something happens” at 2K). What is happening here
is that the fluid suddenly goes from rapid boiling to no boiling at all in the superfluid
phase. Boiling occurs when a small region of a system is at slightly higher temperature
than the vaporization transition. This region turns into gas and then boils up to the top
of the containier. In a superfluid, the thermal transport is so good that no region in the
sample is at higher temperature than any other region. The system still has evaporation,
but only directly from the surface.

The discovery of the superfluid properties of He II did not come until the mid 1930s.
The next heros of our story are Peter (Pyotr) Kapitsa and John Allen.

Peter Kaptiza, having survived the flu epidimeic of 1918-19 in Russia which claimed
half of his family, had moved to Cambridge to study with Rutherford. He was made a
fellow of Trinity College Cambridge in 1925 two years after obtaining his PhD and he went
on to build one of the world’s finest low temperature physics labs at Cambridge. By the
mid 1930s Kaptiza was earning what was considered a magnificent salary of 800 pounds
per year.

By the early 1930s there were only four labs in the world that were able to liquid-
ify helium and conduct low temperature experiments: Leiden, Oxford3, Cambridge, and
Berlin.

John Allen received his PhD from Toronto in their cryogenics lab, and moved to
Cambridge to work with Kaptiza. Unfortunately, when he arrived there, he discovered
that Kapitsa had been “detained” on a visit to the Soviet Union, and was told that he

3Oxford had liquid helium in 1933, one year before Cambridge did. Fredrick Lindemann, the first
Viscount Cherwell, advertised Oxford’s success in the Times and Nature. Nonetheless, the crucial discovery
of superfluid flow was made at Cambridge
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would not be allowed to return to Cambridge. This was the era of Stalin, and the Soviets
wanted to have the great Kaptiza back in his native land.

Kaptiza was well funded by the Soviets to set up a low temperature physics lab
(they purchased much of his equipment from Cambridge).

John Allen, at Cambridge with no supervisor, had to work as an unsupervised
postdoc. Rutherford, the head of the Cavendish lab at Cambridge, made the best of the
situation — he used Kaptiza’s salary to pay both Allen and a young theorist named Rudolf
Peierls.

The cryogenic race was on: it was clear that there was plenty of interesting physics
to be discovered to whoever got there first!

In 1938 both Kaptiza and Allen (with Misener, another student from the Toronto
lab) simultaneously discovered the effect that gives superfluid helium its name — that
superfluid helium flows with apparently no resistance through very thin capillaries.

Another very strange effect, now known as supercreep, was discovered the following
year in Oxford by Sir Francis Simon (no relation that I know of) and Bernard Rollin:
Superfluid helium in an open-topped container will creep up the walls of the container
and eventually find its way to lower gravitational potential by siphoning itself onto the
floor. This effect is often viewed as a combination of wetting and zero viscosity. Many
liquids will form a layer an atom or two thick on the walls of their container all around
the container — this is due to the attractive forces between the wall of the container and
the fluid molecules. This phenomenon is known as wetting. Superfluid helium, with no
viscosity, can flow readily through a layer which is atomically thin – whereas other fluids
cannot. Thus superfluid helium can siphon itself out of a container onto the floor through
this very thin layer.

However, the situation is more complicated than simply saying that the fluid has
zero viscocity. Other experiments aiming the measure the viscocity of the liquid come up
with finite results. For example, a vibrating wire, or rotating disk in the helium liquid
will detect a finite viscous damping which only vanishes at zero temperature (Keesom and
MacWood, Leiden Lab, 1938). This connundrum was one of the key points that led to the
development of Landau’s two fluid model.

2.2 Landau and the Two Fluid Model

2.2.1 More History and a bit of Physics

In 1938 just as Kapitsa was discovering superfluidity, the great theorist, Lev Landau was
thrown in prison for publicly comparing Stalin to Hitler4. He remained imprisoned for
a year until Kapitsa put his own head on the line — threatening to quit as a scientist
unless Landau was released, and pleading that only Landau would be able to explain

4He was exceedingly lucky not to have been executed!
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superfluidity.

While Landau was in prison, the young Hungarian physicist Laszlo Tisza5 working
in Paris with Fritz London tried to explain superfluidity as a result of Bose-Einstein
condensation6. Fritz and his brother Heinz London, several years earlier working with
Lindemann in Oxford, had already tried to use a similar approach for understanding
superconductors. While they had some success, Landau immediately realized what was
wrong with their approach.

� Helium is NOT a noninteracting boson. It has extremely strong short range repulsive
interactions.

� A noninteracting BEC does not have a discontinuity in its specific heat

� A noninteracting BEC will NOT superflow. Interactions are crucial for obtaining
this effect. (We will explain this in detail below in section 2.4)

At this point Landau gets into the game. He felt that BEC was not the right physics7

— perhaps he even felt this more strongly than is actually warranted. Later Feynmann
would clarify the importance of Bose physics for superfluidity (See below in chapter 5).

Landau made two major contributions to the theory of superfluidity.

� He develops the two-fluid model (an expansion on Tisza’s work)

� He explains the criterion for superflow.

These contributions earned Landau a Nobel prize in 1962.8. Sadly a few months
before the prize was annouced, Landau was in a car crash and coma. While he came out
of the coma, he never fully recovered, he was never scientifically productive again, and he
died in 1968, at age 60, from complications due to these injuries.

2.2.2 Landau’s Two Fluid Model

The general idea of the two fluid model is that we should imagine two interpenetrating
fluids which we call “super” and “normal”9. We write the total density of the fluid as the
sum of the mass densities of the super and normal fractions.

mass/volume = ρtotal = ρS + ρN .

5Tisza moved to MIT in 1941 and lived in the US the remainder of his life. He passed away in 2009 at
the age of 101.

6The prediction of BEC by Einstein was much earlier, in 1925.
7Apparently Landau also really hated Fritz London. It is unclear why this would be true, but Landau

made a point never to cite London.
8There are many things that Landau could have been awarded a Nobel prize for!
9This is another terrible nomenclature. Above the critical temperature we have only normal fluid. But

below the critical temperature we have both super and normal fluid. However, we also say that He II
(below the critical temperature) is superfluid.
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The normal fraction behaves like we should expect a fluid to behave. The superfluid
fraction, however, has no viscosity, and carries no heat. At zero temperature we expect
all of the fluid to be super, whereas above the critical temperature Tc, i.e., in the He I
phase, we expect all of the fluid to be normal. At nonzero T but still in the He II phase,
we expect to have a mixture of partially super and partially normal fluids.

T = 0 ρN = 0 ρS = ρ
Tc > T > 0 ρN (T ) ρS(T ) = ρtotal − ρN (T ) interpolates
T > Tc ρN = ρ ρS = 0

One way to think about the super-fraction is to think of it as being the “ground
state” of the system, and the normal fluid being the excitations. For a moment let us
think about the analogy with BEC. In that system we know that only at T = 0 are all
of the bosons in the same lowest energy eigenstate. At any finite T there will be some
bosons in the lowest energy eigenstate (these we might call “super”) and some will be
in the excited eigenstaes (which we might call “normal”). Once we go above the critical
temperature, there will a microscopic fraction of particles (essentially zero) in the lowest
energy eigenstate, and the entire system will be normal.

The mass current will also be divided into a normal and super component

j = ρSvS + ρNvN

with vN being the normal fluid velocity and vS being the superfluid velocity. Here the
super part of the fluid will be free from viscosity but the normal part is not.

This two fluid model nicely “explains” the two different measurements of viscosity.
With a vibrating wire or a rotating disk, the object moving through the fluid will have
to push the normal fluid out of the way, and hence will measure the normal viscosity.
However, when trying to push the fluid through a small capillary, no matter how thin the
capillary, the super-fluid component will always flow through – whereas the normal fluid
will stay behind. Since flow occurs through small capillaries one would measure a fluid
with essentially zero viscosity.

From a technical standpoint the two fluid model actually imposes the curl-free con-
straint

∇× vS = 0 (2.1)

We will justify this constraint later; for now let us just treat it as a conjecture. However,
it is worth understanding why this is an appropriate conjecture for a fluid that shows no
visosity.

One explanation is to realize that viscosity is a statement transferring force through
shear. However, the curl-free constraint is the statement that the fluid cannot shear at
all! (Expand on this! add picture).

Suppose for a moment that ρS is fixed (say we are at zero temperature). Then we
have

∇ · vS = 0
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by current conservation. If we use our conjecture Eq. 2.1 we can use a vector identity to
derive

∇2vS = ∇(∇ · vS)−∇× (∇× vS) = 0

If we then recall the Navier-Stokes equation we have[
∂

∂t
+ (v · ∇)

]
v +

1

ρ
∇P =

η

ρ
∇2vS

where η is the coefficient of viscocity. By using the curl-free constraint the viscosity term
always vanishes!

2.2.3 More Physical Effects and Their Two Fluid Pictures

Fountain Effect

Another strange effect observed by John Allen10 is known as the “fountain effect”, shown
in the left of Fig. 2.3. A tube is inserted in the superfluid and plugged with cotton such
that only the “super” fraction of the fluid can get through. Heating the cotton, will result
in superfluid being sucked into the tube at a high rate such that it can fountain out the
top. This effect was explained in 1939 by Heinz London11 using the two-fluid model. In
this picture we think of the motion of the fluid as being similar to osmosis. If in some
region (such as in the tube) we increase the temperature from T to T + ∆T , this increases
the concentration of ρN . Using the usual principle of osmosis, this makes ρS flow into the
hotter region to try to bring the normal fluid back ot the same concentration as that of
the surrounding area. I.e., the superfluid flows into the hotter region to try to bring the
temperature back down.

This physics may look like a violation of the 2nd law of thermodynamics since fluid
is flowing from cold to hot. However, it is not a violation since the superfluid carries no
heat.

The situation can be analyzed in more detail by using the experimental setup shown
in the right of Fig. 2.3. Here the tube between the two containers is assumed to be plugged
with cotton, or is such a thin capillary that only superfluid can flow through it (but not
normal fluid). This is sometimes known as a “superleak.”12

We can analyze the situation using simple thermodynamics. In particular, we use
the Gibbs-Duheim relationship for the change in chemical potential which we set to zero

10In fact, the discovery of this effect was a fortuitous error in an experiment!
11The London brothers were Jewish refugees from Germany in 1933. Lindeman at Oxford found money

to fund as many German scientists as he could, but his money soon ran out. Fritz moved to Paris and
eventually ended up at Duke university in the states. Heinz moved to Bristol, but was declared a potentially
”hostile foreigner” and interned for some time on the Isle of Man. He was released to work on the British
nuclear program and was given British citizenship. In the 1950s Heinz invented the dilution refrigerator
which is used heavily in physics research for cooling materials down to as low as a few millikelvin.

12The superleak is crucial for this experiment since an open tube cannot have a pressure difference across
it!
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Figure 2.3: Left: The fountain effect. A tube is inserted in the superfluid and plugged
with cotton such that only the “super” fraction of the fluid can get through. Heating the
cotton, will result in superfluid being sucked into the tube at a high rate such that it can
fountain out the top. Right: a similar experiment showing that a temperature difference
implies a pressure difference.
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Figure 2.4: Thermomechanical Effect: The propeller turns as if fluid is flowing from hot
to cold, even though there is no net tranport of mass.

in order to have equilibrium

dµ = − S
N
dT +

V

N
dP = 0

Rearranging this we can write

∆P

∆T
=
S

V

and the right hand side can be written in terms of

S(T ) =

∫ T

0
dT ′

CV (T ′)

T ′

where CV can be measured experimentally.

Thermomechanical Effect

In this experiment, a propeller is put in a container of helium. One side of the container
is heated as shown in Fig. 2.4. No net current of fluid can flow due to the walls of the
container. Nonetheless, the propeller turns as if fluid is flowing from hot to cold.

What is happening here is that the increased temperature (on the left in the figure)
increases the density of normal fluid, and the normal fluid then tries to flow to the right.
Similarly, by osmosis the superfluid tries to flow to the left to bring the two sides of the
system into equilibrium where they have the same density of normal fluid (i.e., have the
same temperature). Thus we have counter flow of normal and super fluid – with no net
flow of mass.

Now the key is that the flow of the normal fluid pushes the propeller while the flow
of the superfluid does not. The reason for this is that superfluid flow must not dissipate
mechanical energy — otherwise superflow would not be dissipationless.
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Figure 2.5: Left: Sound waves are density waves: mass sloshes back and forth. Right:
Second sound waves involves counterflow. There is no mass transport, although heat is
transported.

2.2.4 Second Sound

The idea of counter flow of normal and superfluids suggests the phenomenon of second
sound13.

First let us remind ourselves of how sound waves work. In the left of Fig. 2.5 we see
the density flow in a sound wave — mass sloshes back and forth over the wavelength over
the sound and with the period of the oscillation T . In the right of Fig. 2.5 we see second
sound waves — the supercurrent is always counter-flowing the normal current so there is
no net mass transport, jtotal = 0 everywhere. However, heat sloshes back and forth since
only the normal current carries heat.

Such second sound waves provide extremely good thermal conduction — indeed, the
best thermal conductance of any material since heat travels ballistically in second sound
rather than diffusively. The heat transport can be over 100 times as efficient as heat
transport in, say, copper.

Derivation of second sound

We now turn to do a more formal derivation of second sound. Since we are not interested
in regular sound waves, we will assume that the pressure is constant and the density is
constant (these approximations simplify quite a bit, but are not entirely necessary).

Since we have fixed density and fixed pressure, we will enforce

jtot = 0 = ρNvN + ρSvS

We now assume that there is an osmotic force from temperature imbalance. This is
precisely the force that arises from the fountain effect. Usually we think of this as a force
pushing the superfluid towards the heat, but since the total mass current is fixed to be
zero, we can just as well think of this as a force pushing the normal fluid towards lower

13Second sound was first predicted by Tisza. The correct second sound velocity was predicted by Landau.
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temperature regions

v̇N = −α∇T (2.2)

with α > 0. It is a homework exercise to estimate the value of the coefficient α.

We now write a continuity equation for entropy. Let us write s for the entropy
density. We then have a conservation equation

ṡ = −∇ · (svN ) (2.3)

since the entropy moves with the normal fluid only (the super fraction contains no entropy).

The entropy density is a function of the local temperature, which we can expand

s(T + δT ) = s(T ) + κδT

where recalling that cV = T (∂s/∂T )|V . we must have

κ = cV (T )/T

Here cV is heat capacity per unit mass.

We can now put this expansion of the entropy into Eq. 2.3 to obtain

κṪ = −s(∇ · vN )

Here it may look like there should be another term on the right which would be vN · ∇s.
However, we can throw this out since this is second order in “small” things14 I.e, the
gradient of the temperature is assumed small and the velocity is also assumed small.

Differentitating with respect to time we obtain

T̈ = − s
κ
∇ · v̇N =

( s
κ
α
)
∇2T

where we have again thrown away terms second order in “small”, and we have also used
Eq. 2.2. Thus we obtain the wave equation15

T̈ = γ∇2T

with γ > 0 which tells us that heat propagates ballistically rather than diffusively as it
usually does.

14For careful bookkeeping of “small” we start with a system with no wave, for which we have s = s0,
T = T0 and vN = 0. Then we add perturbations order by order s = s0 + εδs1 + ε2δs2 + . . . and vN =
εvN1 + ε2vN2 + . . . and so forth, then we just keep terms to order ε.

15Using the homework assignment where we estimate α as well as some results later about CV and ρN
we can get that the second sound velocity is independent of T at low enough T .
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2.2.5 Big Questions Remaining

These questions will be addressed in the next sections.

1. What justifies the curl free constaint on the supercurrent ∇× vS = 0.

2. Why do we get dissipationless superflow? This is NOT only a result of item (1) the
curl free constraint.

3. What do we expect the normal/super fluid density to be as a function of temperature
ρN (T ) and ρS(T ) ?

2.3 Curl Free Constraint: Introducing the Superfluid Order
Parameter

One of Landau’s other great contributions to physics is the concept of an order parameter.
(If you have studied the Landau theory of phase transitions you will know what this is.)
Roughly, the order parameter describes the breaking of a symmetry in a physical system.

As a simpler example, let us reconsider a BEC. In this case, we take the the order
parameter to be the complex wavefunction for the ground state, which we write as ψ,
however, we normalize it so that it goes to zero at the phase transition — i.e., it’s amplitude
is proportional to the number of bosons in the ground state.

What symmetry has been broken when going from the normal state above the critical
temperature to the superfluid state below the critical temperature? It is actually a gauge
symmetry! When the order parameter ψ becomes nonzero it must choose a complex phase,
which is a spontaneous breaking of a symmetry!

In the case where the bosons are not uniform in space, we generalize the uniform
Landau order parameter to a Landau-Ginzburg order parameter and write it as a function
of position ψ(r).

For interacting bosons we do something quite similar, we define an order parameter
as

ψ(r) = 〈ψ̂(r)〉

where ψ̂(r) is a boson annihilation operator. We will be more explicit about this approach
in later chapters 4. For now it is acceptable to just think of this order parameter as being
the complex wavefunction of a BEC with the one complication that we want to change
the normalization so that ∫

dr|ψ(r)|2 = N0

rather than normalization to unity. Here N0 is the number of bosons in the condensate16.

16It is unfortunately not generally true that N0/N is the same as the superfluid fraction from the two-
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We can separate the phase degree of freedom from the magnitude by writing

ψ(r) =
√
n0 e

iθ(r) (2.4)

where n0 = N0/N is the condsensate number density and θ is a phase defined modulo 2π.
Here we can think of eiθ/

√
V as being the usual normalization of the wavefunction of a

boson in its ground state.

Again thinking of ψ as a wavefunction for superfluid bosons, then we can write the
condensate current in the usual quantum mechanical way

j0 =
1

2
(ψ∗p̂ψ − (p̂ψ∗)ψ) (2.5)

=
−i~

2
(ψ∗∇ψ − (∇ψ∗)ψ)

where here the momentum operator p̂ gives us a mass current.

Now using Eq. 2.4 we have

∇ψ =

(
∇n0

2n0
+ i∇θ

)
ψ

which gives us a superfluid mass current of

j0 = ~n0∇θ (2.6)

We can write this current as a mass density times a superfluid velocity

j0 = ρ0vS

which, using ρ0 = mn0 gives us an expression for the superfluid velocity17

vS =
~
m
∇θ

which is a gradient. This then implies the desired curl-free constraint

∇× vS = 0

fluid model in the case of an interacting Bose system. In the two-fluid model ρS is defined in terms of
the amount of mass that flows with no dissipation — which at T = 0 is always the total mass of the
fluid. However for interacting bosons the magnitude of the order parameter, which describes the number
of particles in the condensate, will not be the full mass of the fluid even at T = 0. This will be more clear
later when we give more rigorous definitions of the order parameter, and indeeed we calculate N0 for a
weakly interacting Bose gas in section 4.5 below.

17Although as mentioned above in footnote 16 the condensate fraction n0 may not match the superfluid
fraction of the two-fluid model, it is nonetheless true that both pictures give the same expression for the
supefluid velocity.
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Figure 2.6: Left: A contour in fluid that can be contracted and therefore bounds a disk in
the fluid. In this case the circulation must be zero. Right: A contour in fluid that cannot
be contracted. In this case we can only say that the circulation is quantized in units of
the elementary circulation quantum h/m.

2.3.1 Vorticity Quantization

Circulation is defined as the line integral of a velocity around a closed contour. Choosing
any given closed contour we have∮

C
vS · dl =

~
m

∮
C
∇θ·dl = 2πp~/m = ph/m (2.7)

where p is an integer. Here we have used the fact that θ must be well defined only modulo
2π so going around a closed path, the value of θ needs to come back to the same value,
but can change by integer multiples of 2π.

Thus we have shown that in a superfluid circulation is quantized in integer multiples
of the circulation quantum h/m.

Suppose now that our contour surrounds only He fluid as shown in the left of Fig. 2.6.
I.e, we have a big sample of He fluid [with nothing else in it but He fluid] and the contour
can be continously contracted to a point. In this case we can use Stoke’s theorem∮

C=∂D
vS · dl =

∫
D
dA · (∇× vS) = 0

where the area integration is over a disk D bounded by the contour C. Thus we would
conclude that the circulation must be zero. However, this conclusion is only true if su-
perfluid fills the entire disk. If there is a hole within the disk region which has no fluid in
it (like a bundt cake, or a toroidal pipe) as shown in the right of Fig. 2.6, we cannot use
Stoke’s theorem and therefore we only know that the circulation is quantized in units of
the elementary circulation quantum h/m.

In fact there is no constraint on the size of the hole — the hole in the fluid can be
extremely small and this still consitutes a hole in the fluid. We only need a single point
where the superfluid density goes to zero such that the phase is no longer defined at that
one point. In this case we can have the phase θ wrap by any integer multiple of 2π as
we go around this single point. This is known as a “vortex”. The existence of vortices in
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Figure 2.7: If we start a bucket of helium rotating above the critical temperature and
then we cool it below the critical temperature, the circulation is accomodated by the
introduction of many vortex lines.

superfluid helium was predicted by Feynmann in 195518.

Imagine a bucket of helium above the superfluid transition temperature. We start
the bucket rotating so that the circulation is very large∮

vS · dl� 0

We now imagine cooling the system through the transition temperature Tc. Since the
superfluid must be curl free, the only way we can accomodate the circulation is to have
many point vortices, where there is quantized circulation around each such vortex. Looked
at from far away, the velocity flow field is roughly the same in the superfluid phase as it was
in the normal phase. As mentioned above, in the core of the vortex (here one dimensional
lines) the superfluid density drops to zero. In actual superfluids He, the vortex core is
only a few angstrom in diameter.

One often hears arguments that quantized circulation explains the persistant flow
phenomenon observed in superfluids. Indeed, one can imagine starting a superfluid flowing
around a toroidal pipe. Since the circulation is quantized, it can only decay in discrete
steps. If there is some impediment, or activation barrier, to making sudden steps in
circulation, one might imagine that this prevents the circulation from decaying at all.

While it is true that the circulation can be locked to a single value, this is actually
not sufficient to explain dissipationless flow. The issue is not whether the circulation
decays but whether energy is dissipated. Even without having a decay in the circulation
(which is the line integral of the velocity) one can dissipate energy if some sort of friction
heats the fluid. This would slowly reduce the superfluid fraction and increase the normal
fraction, thus reducing the superfluid current, and eventually the system would have no
superfluid left! So the question boils down to whether or not a particular superfluid will
dissipate energy. In fact in noninteracting BECs, we will see below that, while circulation
is quantized, they do dissipate energy to friction and therefore do not have persistent flow.

18As we will discuss below, as similar prediction was made for superconductors somewhat earlier by
Abrokosov, but he did not publish it until after Feymann convinced the world that the idea was reasonable.



18 CHAPTER 2. INTRODUCTION TO SUPERFLUIDS

Figure 2.8: Left: Flowing a fluid past a wall. Right: In the fluid frame, the wall is moving.

2.4 Landau Criterion for Superflow

Landau developed a brilliant argument to determine whether a fluid can flow without
dissipating energy.

Let us assume that for a superfluid (and normal fluid) at rest there is some spec-
trum ε(p) for excitations which we will call “quasiparticles”. In a BEC these are simply
excitations of particles out of the ground state wavefunction. In an interacting superfluid,
these are more complex collective excitations. We need only assume that such excitations
exist.

We now imagine flowing the superfluid past a stationary wall at velocity v as in the
left of Fig. 2.8, and we would like to ask whether energy can be dissipated. Another way
to ask this is to ask whether quasiparticles can be excited.

In order to answer this, the argument entirely boils down to figuring out the energy
momentum relation in the rest frame of the superfluid and then asking whether energy and
momentum can be conserved in a process that creates a quasiparticle excitation19. Thus,
let us switch to the fluid rest frame as in the right of Fig. 2.8. We know the dispersion
εfluid(p) = ε(p) of excitations in this (the fluid) frame, and we would like to determine
the dispersion relation in the lab frame. A classical Galilean transformation gives us

εlab(p) = εfluid(p)− p · v (2.8)

Note that here the quantum number p describes the momentum of the quasiparticle in
the fluid frame.

To justify this Galilean transformation (Eq. 2.8) we should recall that in quantum
mechanics the phase of the wavefunction oscillates as

ψ ∼ e−iεt/~

19We will often think of superconductors as being superfluids of charged bosons. Using this argument
of switching to the rest frame of fluid is dangerous. With a fluid of Helium, you actually can imagine
making a Galilean tranform and having your rest frame moving along with the fluid. However, with a
superconductor, the charged bosons are flowing past the lattice of ions of the positive ions in the material
— i.e., there is a natural rest frame which is the rest frame of the solid material where the electrons live!
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Figure 2.9: A spectrum ε(p) and the corresponding critical velocity for the superfluid.

So here we are claiming that a wavefunction for a particle with momentum p should
oscillate as

ψ(p) ∼ eip·x/~−iεt/~

If we transform into a moving frame we then have

ψ(p) → eip·(x+vt)/~−iεt/~

= eip·x/~−i(ε−p·v)t/~

so we rederive Eq. 2.8.

A more familiar way of understanding this transformation is to think about frequen-
cies ω = ε/~ instead of energies. We then recognize Eq. 2.8 as being the usual Doppler
shift of a frequency in a moving frame20.

So given Eq. 2.8 our question is whether in the lab frame, the energy to create
an excitation is ever negative. If so, excitations are created spontaniously and energy is
dissipated. So when does this happen? Obviously ε − v · p is minimized when v and p
are parallel. Thus we can get negative values of εlab only if

ε(p)

p
< v

Given a dispersion ε(p) (in the rest frame), there is thus a critical velocity

vcrit = min
p

ε(p)

p

(see figure 2.9). Below this critical velocity, there is no way to create a quasiparticle
while conserving energy and momentum. If the fluid flows at velocity greater than the
critical velocity, quasiparticles are spontaneously generated and energy is dissipated from
the superflow.

20This argument is strictly correct for situations where the dispersion is linear — i.e., we have sound
waves or phonons.
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Note now that if one considers a BEC, the spectrum of excitations is simply p2/(2m)
i.e., just the spectrum of noninteracting particles. The critical velocity is then

vcrit;BEC = min
p

p2/(2m)

p
= 0 (!)

We thus conclude (as Landau realized intuitively!) that a noninteracting BEC does not
superflow!

When we add interacting between the bosons, the spectrum develops an acoustic
wave (we will see this in more detail later!). In that case we have a low energy spectrum

ε(p) = vsound p+ . . .

which then gives us a critical velocity

vcrit = vsound

assuming the correction hidden in the “+ . . .” is positive. If it is a negative correction (as
shown in Fig. 2.9) the critical velocity can be somewhat lower.

To be a bit more detailed about interacting Bose systems, we recall what we have
learned in other courses about the Bogoliubov approach to weakly interacting Bose gases.
In fact we will review this technique in section 4.5 below. We derived (and will derive
again later in several ways), that for a weakly interacting Bose gas with interaction

U

2

∑
i 6=j

δ(ri − rj)

with U being weak, the excitation spectrum is given by

ε(p) =

√
(
p2

2m
+ nU)2 − (nU)2

where n is the density of bosons. For small p this can be expanded as

ε(p) ∼ p√
2m

√
p2

2m
+ 2nU

Thus we obtain a critical velocity

min
p

ε(p)

p
= min

p

1√
2m

√
p2

2m
+ 2nU =

√
nU

m
= vacoustic = vcrit

Note: about real experiments

While the Landau theory of critical velocity is quite beautiful and compelling, experiments
do not often agree with the Landau estimate. In fact measured critical flow velocities can
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often be as much as 100 times smaller than the acoustic velocity — and furthermore the
critical velocity often depends on the details of the geometry of the experiment.

In thin tubes of superfluid it is easy to qualitatively explain the physics of the critical
velocity. This has to do with the physics of vortices and the quantization of circulation. As
we mentioned above if we have a toroidal (but thin) tube of fluid, with a fixed circulation
going around the tube, this circulation is quantized. This circulation can decay if a vortex
is nucleated at one edge of the tube, flows perpendicular to the supefluid flow and then
disintegrates at the other edge of the tube. This process can reduce the circulation in
discrete steps.

Such a process begins to look much less likely in thick tubes of fluid — however,
experiments seem to suggest that vortex physics is still involved.

2.5 Superfluid Density

Finally we turn to Landau’s prediction of the superfluid density as a function of temper-
ature ρS(T ).

2.5.1 The Andronikoshvili Experiment

Landau made a prediction for the superfluid density ρS(T ) then convinced a young ex-
perimentalist, Elephter Andronikoshvili21, to make careful measurements of the superfluid
density in 1946, and the results supported his predictions (perhaps unsurprisingly since
Landau was a genius!).

The experiment is shown in Fig. 2.10. A stack of closely spaced disks is hung in
a container of helium by a thin wire which acts as a torsion oscillator. The idea is that
when the stack of disks rotates, normal fluid, which is viscous will get stuck between the
disks and must rotate with the stack. However superfluid, which has no viscosity slips
through the closely spaced disks and does not rotate. The normal fluid thus contributes
to the total moment of inertia of the stack, and hence changes the oscillation frequency of
the torsion oscillator. By measuring the change in the oscillation frequency as a function
of temperature, one can determine the fraction of helium that is superfluid as a function
of temperature.

Andronikoshvili clearly measured that the normal fluid density is proportional to T 4

at low temperature.
ρN (T ) ∼ T 4

We should compare this result to a simple calculaton for a noninteracting BEC. We

21In my opinion, this is the coolest name of all physicists. The ending ”vili” is Georgian meaning
“descendant of”. Thus, Elephter was part of a royal Georgian family that traces its ancestery back to
Andronikos I of the Eastern Roman Empire in the 1100’s. Andronikos seemed quite violent and fittingly
met a violent end himself.
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Figure 2.10: The Andronikoshvili experiment. Since normal fluid sticks between the closely
spaced disks (but superfluid does not), the moment of inertia of the stack of disks, and
hence frequency of oscillation of the disks tells us the fraction of fluid that is superfluid.

can write the mass of particles that are normal by simply counting the number of particles
that are not in the condensate (i.e., not in p = 0). We thus have

ρN (T ) =
m

V

∑
p 6=0

nB(βε(p)) = m

∫
d3p

(2π~)3

1

eβp2/(2m) − 1
(2.9)

where β = 1/(kBT ) as usual, and we have used that

nB(x) =
1

ex − 1

is the Bose factor and for the noninteracting Bose particles we have the dispersion ε(p) =
p2/(2m).

We can evaluate Eq. 2.9 by defining q = β1/2p giving us

ρN (T ) = m(kBT )3/2

∫
d3q

(2π~)3

1

eq2/(2m) − 1
∼ T 3/2 (2.10)

which differs markedly from the experimental result!

2.5.2 Landau’s Calculation of Superfluid Density

Again this calculation relies on thinking about superfluids in both the lab and the moving
superfluid frame as in Fig. 2.8. Here, however, we realize that the normal fluid is dragged
by the wall and will have the same velocity as the wall, whereas the superfluid moves
seperately (the fluid velocities drawn in Fig. 2.8 are for the super part of the fluid only).

Thus in the frame where the wall is moving but the superfluid is still, the normal
fluid current (which is the total fluid current) is given by

jtotal = jN = ρNvN (2.11)
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and we would like to calculate ρN .

As before, in the lab frame we have

εlab−frame = ε(p)− v · p

where ε(p) describes the excitation spectrum when the superfluid is in its rest frame. As
mentioned in the above section where we calculated critical velocity, if εlab−frame becomes
negative, then we get spontaneous generation of excitations and we get dissipation.

However, even if εlab−frame is positive, it can still be excited thermally. We expect
that the density of such particles will be given by

nB(β(ε(p)− v · p))

and this gives the occupation probability of the state labeled p in the superfluid rest frame.

So, in the superfluid rest frame we have the momentum (i.e., the mass current) of
the excitations (i.e., of the normal fluid) being given by

jN =

∫
d3p

(2π~)3
p nB(β(ε(p)− v · p))

We can then expand for small v to obtain

jN =

∫
d3p

(2π~)3

[
p nB(βε(p))− pβ(v · p)n′B(βε(p))

]
The first term in the brackets vanishes by symmetry. To evaluate the second term, we can
assume the velocity v is in the x direction. We then have

jN,x = vxβ

∫
d3p

(2π~)3
p2
x

[
−n′B(βε(p))

]
Referring back to Eq. 2.11 and realizing that the wall velocity v is the normal fluid velocity
we obtain the result that

ρN = β

∫
d3p

(2π~)3
p2
x

[
−n′B(βε(p))

]
(2.12)

Case 1: Noninteracting BEC

Let us try plugging in the dispersion ε(p) = p2/(2m) for a noninteracting BEC. We
can scale out the temperature by defining

q = β1/2p

to obtain

ρN = β(β−5/2)

∫
d3q

(2π~)3
q2
x

[
−n′B(q2/2m)

]
∼ T 3/2 (2.13)
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which agrees with our prior calculation of the normal fluid density of a BEC in Eq. 2.10.
(With some analytic work it can be shown that the two expressions in fact have the same
prefactor too!).

Case 2: Interacting BEC / Superfluid

For an interacting BEC or superfluid, we expect a low energy acoustic mode so that

ε(p) = c|p|+ . . .

Again using Eq. 2.12 we can here instead define q = βp so that

ρN = ββ−5

∫
d3q

(2π~)3
q2
x

[
−n′B(c|q|)

]
∼ T 4 (2.14)

in agreement with the results of Andronikoshvili! (Score one more for Landau!)

Heat capacity and a caution

It is correct to write the total internal energy of the Bose system at finite temperature as

U =

∫
d3p

(2π~)3
ε(p)nB(βε(p))

Indeed, for a linear (phonon) spectrum this reproduces the usual T 3 Debye heat capacity
of phonons at low temperature.

One might wonder whether we could calculate the normal fluid density by just
writing

ρ̃N ∼
∫

d3p

(2π~)3
nB(βε(p))

While this redefinition of the normal fluid density worked in Eq. 2.10 for ε = p2/(2m)
(giving the same result as Eq. 2.13) it generally is not correct! Indeed, for ε = c|p| it fails
to give the same result as Eq. 2.14.

The reason is simply that the quantity ρN is defined only by Eq. 2.11. One could
also define the different quantity ρ̃N but this is in fact not a measurable quantity, whereas
ρN is.



Chapter 3

Charged Superfluid ≈
Superconductor

To a large extent the phenomenology of a superconductor can be understood as just being
a charged superfluid. This approach (roughly) is known as London theory, invented by
Heinz and Fritz London when they were in Oxford in 1935. Historically this was before
the discovery of the phenomenon of superfluidity! Indeed, much of the two fluid model
was pioneered first in the context of superconductivity.

3.1 London Theory

As with the picture of superfluid Helium, we postulate both a normal and superfluid part
of the charged fluid in a superconductor. We will ignore the normal component for now
and focus on the motion of the super part — which flows with no dissipation.

A dissipationless fluid will display free acceleration when a force F is applied. We
can thus write

∂v

∂t
=

F

m∗
=
−e∗E
m∗

This is essentially Drude theory for a fluid with no scattering. We have written here a
charge e∗ and a mass m∗ of the charge carrier1. Note that here only the ratio e∗/m∗

enters. This equation does not know whether the charge carrier is a single electron or a
pair of electrons or quartets of electrons. However, e∗/m∗ = e/m in all cases.

The supercurrent is then written as

jsuper = −e∗n∗Sv

1In a crystalline solid with band structure we should use the effective mass m∗ of the band at the Fermi
surface. This quantity may also be anisotropic which then gives a directional anisotropy to the London
equations.

25
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where n∗S is the superfluid number density of the charge carriers. We emphasize that
this quantity is the charge density current rather than the mass density current we dis-
cussed when we were discussing Helium superfluid above. Note again that the combination
−e∗n∗S = −enS does not know how big the individual particles are. It could be density nS
of particles of charge −e or could be density nS/2 of particles of charge 2e and so forth.
The point here is that at level of this London theory, one has no way of knowing that the
electrons might pair up into boson clusters.

Putting the last two equations together we derive the so-called First London Equa-
tion

∂jsuper
∂t

=
(e∗)2n∗S
m∗

E 1st London Eq. (3.1)

Again, the charge cluster size here does not matter. Note that this equation is really
nothing more than Drude theory with no scattering, and an assumption of a net charge
density −enS .

We can then take the curl of the first London equation and use Faraday’s law to
replace ∇×E = −∂B/∂t to get

∇× ∂jsuper
∂t

=
(e∗)2n∗S
m∗

∇×E =
−e2nS
m

∂B

∂t

Then integrating both sides
∫
dt starting at some initial time we get

∇× jsuper =
−e∗2n∗S
m∗

B + C(r) (3.2)

where C(r) is independent of time.

We now need to try to figure out what this integration constant C is. To do so, we
imagine starting with a superconductor in B = 0 in its ground state so that jsuper = 0. In
this situation we can take C(r) = 0 everywhere, at least for this experimental protocol.

Once we have turned on B we want to consider the possible steady-state solutions.
First, we have Ampere’s law

∇×B = µ0jsuper (3.3)

Here we are ignoring the normal part of any current, since we are only concerned with
current that is persistant. Further, since we are concerned with steady state we will ignore
the contribution of ∂E/∂t. Taking the curl of Amperes’ law we get Eq. 3.4. In going from
Eq. 3.4 to 3.5 we use a vector identity on the left and Eq. 3.2 on the right. Finally in
going to Eq. 3.6 we set C = 0 as suggested above on the right and we use the Maxwell’s
equation (no monopoles) on the left.

∇× (∇×B) = µ0(∇× jsuper) (3.4)

∇(∇ ·B)−∇2B = µ0

(
−e∗2n∗S
m∗

B + C(r)

)
(3.5)

∇2B =
µ0e
∗2n∗S
m∗

B(r) (3.6)
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Figure 3.1: Depiction of magentic field decaying exponentially.

This last equation has solutions of the form (for example)

B(x) = B0 e
±x/λ (3.7)

where λ is known as the penetration depth, and is given by

λ =

(
m∗

µ0n∗Se
∗2

)1/2

(3.8)

Once again we emphasize that this quantity does not know the size of the charged particle,
but only knows the charge to mass ratio e/m and the total superfluid charge density enS .

For most superconductors the penetration depth at zero temperature is somewhere
between tens and hundreds of nanometers. Note, however, that as T gets very close to the
critical temperature from below the superfluid density n∗S gets very small (and eventually
vanishes at Tc as the superfluid fraction goes to zero) so that λ diverges at Tc.

The exponential decay we derived in Eqs. 3.6 and 3.7 is depicted in Fig. 3.1. The
magnetic field outside of the superconductor is a constant, but going into the supercon-
ductor it decays expontially with a decay length given by λ.

The reason the magnetic field decays going into the superconductor is that the mag-
netic field is screened by persistant superfluid electric currents. This is similar to Lenz’s
law: We start with a superconductor in no magnetic field, then we turn on a magentic
field and currents flow in the superconductor to prevent the change of the magnetic field
and these currents persist indefinitely since there is no resistance to current flow.

However, as we will see next, it turns out that the screening of magnetic field in a
superconductor is fundamentally more than just Lenz’s law!
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Figure 3.2: The Meissner Effect

3.1.1 Meissner-Ochsenfeld Effect

The Meissner-Ochsenfeld Effect (or just “Meissner Effect”)2 demonstrates that the screen-
ing of magnetic field from superconductors is not just Lenz’s laws.

To demonstrate the effect, see figure 3.2. On the left we have a material in a magnetic
field above its superconducting critical temperture. Then we cool the system down until
it becomes a superconductor. While Lenz’s law would predict that currents would flow
so as to prevent any changes in the magnetic field, what is observed instead is that the
magnetic field is completely expelled from the superconductor! So it is not just that the
superconductor is a perfect conductor: the superconductor is a perfect diamagnet! The
ground state of the total system of superconductor and magnetic field has the magnetic
field expelled from the superconductor. Thus the Meissner effect is thermodynamical not
dynamical (i.e., Lenz’s laws cares about the dynamics of how you get to a situation, the
thermodynamic ground state does not).

To explain the Meissner effect the Londons postulated that the integration constant
C(r) in Eq. 3.2 is always zero, independent of the initial conditions. Thus we instead write

∇× jsuper =
−e∗2n∗S
m∗

B 2nd London Equation (3.9)

which is known as the Second London equation. We should compare this equation to the
curl free condition on superfluid helium, Eq. 2.1. This would be equivalent if we set the

2Walther Meissner had established in 1922 one of the world’s only helium liquifiers in Berlin. In 1933,
Meissner’s student, Robert Oschsenfeld discovered that the magnetic field outside fo the superconductor
changed when the superconductor is cooled through the critical tempertaure. Meissner got excited by this
result and took over the experiment to the large extent.
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charge on the superfluid to zero (set e∗ = 0) and fix the superfluid density to a constant. .

London Gauge

Both London equations can be summarized with a single equation in terms of the vector
potential by writing

jsuper =
−e∗2n∗S
m∗

A (3.10)

if we take the curl of this equation, using ∇×A = B we immediately recover the second
London equation Eq. 3.9, whereas if we take the time derivative of this equation, using
Ȧ = −E we obtain the first London equation Eq. 3.1. However we note that in order for
Eq. 3.10 to make sense we have to work in so-called “London gauge” (or Coulomb Gauge)
where

∇ ·A = 0

This guarantees that ∇ · jsuper = 0 which is what we need for a steady state current flow.
Further, we must also choose the gauge

A0 = 0

so that we have E = −Ȧ (which we already used) rather than E = −Ȧ−∇A0 which we
would have otherwise.

3.1.2 Quantum Input and Superfluid Order Parameter

At this point we are going to rederive the London equations using input from quantum
physics. This particular approach is beyond what the London brothers knew. We have
a bit of advantage over the Londons’ in that we have most of a century of experience
with quantum physics, whereas in the 1930s when they were first introducing these ideas
quantum mechanics was quite new3.

Again let us we write an “order parameter” for the superconductor, which is basically
a wavefunction for the superfluid (compare to the discussion of section 2.3). Given such a
wavefunction ψ, we can write the condensate current in the usual way we write a current
in terms of a wavefunction

j =
e∗

2m∗
[ψ∗(p− e∗A)ψ − [(p + e∗A)ψ∗]ψ]

A few things to note about this equation. First, it is obviously analogous to Eq. 2.5. We
have included a prefactor of e∗/m∗ because here we are interested in charge current rather
than mass current. (Note, as we have mentioned a number of times, this ratio does not
know how big the charge carrier is, it just knows the charge-to-mass ratio). Secondly we

3We have another advantage over the Londons — we are alive and they are dead.
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have minimally coupled the momentum to the vector potential in the usual way charged
particles couple to a vector potential.

As in section 2.3 we rewrite the order parameter in terms of a magnitude and a
phase4

ψ(r) =
√
n∗0 e

iθ(r)

where here n∗S is the density of charge carriers in the condensate, so that the total charge
density associated with the condensate is5

ρ0 = n∗0e
∗.

Using p = −i~∇ and plugging in this form of ψ into our expresion for the superfluid
current we obtain

j0 =
e∗

m∗
n∗0~∇θ −

e∗2n∗0
m∗

A

The first term we identify as being analogous to Eq. 2.6.

We now insert a bit of physical intuition —in the ground state we expect the phase
θ of the wavefunction will be a constant. We will prove this later, but for now let us just
assume it is true. In this case we immediately recover the London equations in the vector
potential form6 as in Eq. 3.10

j0 =
−e∗2n∗0
m∗

A (3.11)

3.1.3 Superconducting Vortices

In the case of superfluid helium, we derived vorticity quantization in section 2.3.1 above.
Here we would like to do something similar.

Let us consider a thick solid torus of the superconducting substance as shown in
Fig. 3.3. We then consider the superconducting current cirulation around the handle of
the torus ∮

C
jsuper · dl =

e∗n∗0~
m∗

∮
C
∇θ · dl− e∗2n∗0

m∗

∮
C

A · dl (3.12)

For the first term on the right, just like in Eq. 2.7, the integral must be 2π times an
integer. In the second term on the right, we use Stokes’ theorem to give us∮

C=∂D
A· =

∫
D
dS · (∇×A) =

∫
D
dS ·B = Φ

4As in the case of superfluid Helium we have the subtlety that strictly speaking the condensate density
and the superfluid density do not necessarily match although we think of them as being similar objects.
See footnotefoot:N0rho.

5In the previous chapter we used the symbol ρ0 as total mass density. I hope this does not cause
confusion!

6We have gotten something that seems to make sense only in London gauge. If we choose another gauge
we must then not have ∇2θ 6= 0 in order to preserve current conservation. This then destroys our intuition
of thinking of θ as being similar to the phase in the Helium supefluid where ∇2θ = 0.
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Figure 3.3: A superconducting torus. We are considering the path C as drawn.

where here Φ is the magnetic flux enclosed by the path C. Thus Eq. 3.12 can be rewritten
as ∮

C
jsuper · dl =

e∗n∗0~
m∗

2πp− e∗2n∗0
m∗

Φ (3.13)

where p is an integer. Rearranging this we have

Φ +
m∗

e∗2n∗0

∮
C

jsuper · dl =
h

e∗
p (3.14)

The combination on the left hand side is often called the fluxoid since it is some modifi-
cation to the flux. And it is this combination which is quantized. Note also the analogue
of this equation to our equation for circulation quantization Eq. 2.7.

If we choose our path C to be deep inside a superconductor, we generally expect the
current should be zero (any currents should run mostly on the surface, given the Meissner
effect which expells any magnetic field — which currents would produce) in which case we
obtain flux quantized in units of a fundamental flux quantum h/e∗.

Φ =
h

e∗
p (3.15)

Note that here it is now crucial that we know how big the charge carrying cluster e∗ is!
In fact we now know that the “boson” which forms the superconducting superfluid is a
charge 2e cluster, so we have the elementary superconducting flux quantum given by7

Φ0 =
h

2e
= 2.067 . . .× 10−15 Wb

7Quantization of flux through superconducting rings was first observed experimentally in 1961 by Deaver
and Fairbank in Stanford and by Doll and Naubauer in Germany. Critical theory support was provided
by Nina Byers and C. N. Yang. Yang had recently won a Nobel prize (in 1957) for his prediction of
parity breaking in weak nuclear decays. Nina Byers was a fellow of Somerville college Oxford but remained
in superposition between Oxford and California for a decade. She eventually converged in California.
However, late in life she told me personally that she really had always regretted leaving Oxford. She
passed away in 2014.
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As with a superfluid, we can take the size of the hole down to zero size. This is known
as a superconducting vortex. As with a superfluid, the condensate particle density n0 must
vanish at the center of the vortex and the phase twists around this point8. However unlike
superfluid helium the rotation of the fluid is screened by the magnetic field. (Compare
the 2nd London Equation, Eq. 3.9 to Eq. 2.1). Thus, the magnetic field penetrates the
superconductor within a distance λ of the vortex core and screens the rotation of the fluid.
Outside of this region no current flows, and there is no magnetic field.

At whatever distance we draw our path C, we will always have quantized fluxoid.
If the path is far away from the vortex core, then there will be no current, and the flux
enclosed is quantized. If the path is close to the vortex core, there is very little flux
enclosed (let us approximate it as zero) so that the circulation is quantized.

3.1.4 Type I and Type II superconductors

It turns out that there are two types of superconductors, creatively called Type I and
Type II. In Type I, magnetic field does not penentrate the superconductor at all – it is
completely expelled. This is known as the Meissner phase. Another way of thinking of this
is that it is a perfect diamagnet9 with susceptibility χ = −1, the induced magnetization
is exactly enough to precisely cancel the applied magentic field.

If enough magnetic field is applied, the superconductivity is destroyed. At temper-
ature T , the field at which the superconductivity is destroyed is known as Hc(T ). This
quantity goes to zero at the zero-field critical temperature Tc. (See left of Fig. 3.4) Note
that although individual vortices are not stable in type I superconductors, one must still
have a quantized magnetic flux through any hole in the superconductor.

The situation is different for type II superconductors. For small enough magnetic
fields (below Hc1(T ), see middle of Fig. 3.4), the magnetic field is completely expelled from
the superconductor giving a Meissner phase, similar to type I superconductors. However,
for stronger magnetic fields Hc1(T ) < H < Hc2(T ) the magnetic field penetrates the
superconductor in individual vortex lines. This is known as the vortex phase or Abrikosov
phase. (See right of Fig. 3.4). At strong enough fields, aboveHc2(T ), the superconductivity
is completley destroyed.

8The prediction of superconducting vortices was first made by Alexei Abrikosov of the Landau School
in 1953. However, Landau didn’t believe the result and prevented Abrikosov from publishing (Landau was
a genius, but he was not always right!). In 1955 Feynman predicted vortices in superfluid Helium and
eventually Landau was convinced of the result. Abrikosov’s work was published in 1957. He won a Nobel
prize for this work in 2003.

9To remind you M = χH defines the susceptibility.
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Figure 3.4: The phase diagram of Type I and Type II superconductors. Left: Type I
superconductor. Magnetic field is always completely expelled whenever the material is
superconducting (i.e, for fields lower than Hc(T ). Middle: Type II superconductor. For
fields less thanHc1(T ) the magnetic field is completely expelled. However for fields between
Hc1(T ) and Hc2(T ), the material is superconducting, and the magnetic field penetrates
the material in discrete vortex lines. Right: A depiction of vortices penetrating a sample.

Vortex Pinning

Note that in the vortex phase, if vortices move, then the flux moves with it. This then
generates a voltage via the Faraday effect

∇×E = −∂B

∂t .

Thus, in the vortex phase, voltage (and hence resistance) is zero only if the vortices are
not allowed to move.

The way one arranges for vortices to not move is to have them stick to pieces of
disorder. Indeed, there is good reason that vortices stick to disorder. If some disorder
kills superconductivity locally, a vortex that sits at this position costs no energy locally,
because there is no superconductivity to kill. Hence vortices will try to stick to regions
where superconductivity is already killed.

This phenomenon of vortex pinning being necessary in order to have a true zero
resistance state is very similar to our experience with ferromagnets, where domain walls
must be pinned by disorder in order to have a true ferromagnet that retains magnetization
even in zero field.

3.1.5 How big is Hc

The size of the various critical fields depends on the particular superconductor. Some
superconductors have critical fields in the milli-Tesla range, and others have critical fields
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that are tens of Telsa. Typically the more “robust” superconductors — meaning those
with higher critical temperature — also have higher critical fields. Both temperature and
magnetic field are perturbations that destroy superconductivity, and it is typically the
case that a material that is stongly resistant to one is also strongly resistant to the other.

We can understand the critical fields with more detailed thermodynamics. We start
by writing a Gibbs free energy, and consider changing the applied magnetic field H, we
have

dG = −µ0M · V dH

where V is the volume of the system, and M is the magnetization (which is magnetic
moment per unit volume). For simplicity let us assume that both H and M are aligned
along the z-axis. We then integrate to obtain

G(H,T )−G(H = 0, T ) = −µ0V

∫ H

0
dH ′ M(H ′) (3.16)

The magnetization is typically given in terms of a magnetic susceptibility

M = χH ′

Let us start by focusing on type-I superconductors. Type-I superconductors completely
expell the magnetic field, meaning χ = −1 as discussed above. Thus we can substitute
into Eq. 3.16 and integrate to obtain

Gsuper(H,T )−Gsuper(H = 0, T ) = µ0V H
2/2 (3.17)

whereas for the normal state of a material, typically χ� 1 and we have instead

Gnormal(H,T )−Gnormal(H = 0, T ) ≈ 0

Now at the transition into the normal state (Hc) the free energy of the normal state
and the free energy of the superconducting state must be the same (hence the transition),
so we have

Gsuper(Hc, T ) = Gnormal(Hc, T ) ≈ Gnormal(0, T )

Now substituting into Eq. 3.17 at H = Hc we obtain

Gnormal(H = 0, T )−Gsuper(H = 0, T ) = µ0V H
2
c /2 (3.18)

This quantity is known as the condensation energy, and it is the amount of energy saved
by allowing the material to superconduct rather than remain in the normal state.

On the other hand we can consider the free energy of type-II superconductors
in a magnetic field. Here, the magnetic field penentrates the superconductor, but guided
into flux vortices as shown in the right of Fig. 3.4. We should thus expect that the free
energy is given by

Gsuper(H) ≈ Gsuper(H = 0) +NεL
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Figure 3.5: Gibbs free energy for the Meissner phase versus the vortex phase. For H < Hc1

the Meissner phase is the ground state, whereas for H > Hc1 the vortex phase is lower
energy.

where N is the number of vortices, L is the length of the vortex (i.e., the thickness of the
sample) and ε is some energy per unit length.

Since each vortex accounts for Φ0 worth of flux (one flux quantum), we thus have

N = number of vortices =
Area Hµ0

Φ0

So that we can write

Gsuper(H) = Gsuper(H = 0) +
V εHµ0

Φ0

which is linear in magnetic field, compared to Eq. 3.17 for the type I superconductor
where the free energy difference is quadratic in magnetic field. We thus obtain a picture
like that shown in Fig. 3.5. For applied magnetic fields less than Hc1 ≈ 2ε/Φ0 the complete
expulsion of the magnetic field (i.e., the Meissner phase) is energetically favorable. On the
other hand, if H > Hc1 the vortex phase is lower energy.

Now the actual value of Hc1 depends on ε, the energy per unit length of the vortex
line. If ε is small, then vortex lines are not energetically costly and correspondingly Hc1

will be small. If on the other hand, ε is large, then Hc1 will be large. In some cases Hc1 can
be greater than Hc, meaning that the energy per unit length of a vortex is so large that
at the magnetic field necessary to force a vortex to penetrate the superconductor, the su-
percondcutivity is already destroyed. This is precisely the case of a type-I superconductor
where there is no vortex phase.
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Chapter 4

Microscopic Theory of Bosons

We now try to derive some of the above discussed results on both bosonic superfluids and
superconductors using a microscopic quantum mechanical picture.

4.1 Mathematical Preliminaries

We begin with some mathematical preliminaries on using second quantized operators.
While many people will have seen this before, it is worth repeating because it is easy to
get confused when it comes to some of the more complictated basis transformations and
so forth1.

4.1.1 Second quantization

We start with standard ladder operators for a harmonic oscillator

[a, a†] = 1.

The nth mode of the harmonic oscillator, written in normalized form is

|n〉 =
(a†)n√
n!
|0〉

where |0〉 is the ground state. The states |n〉 with n > 0 form an orthonormal set.

The magic of second quantization is that it is entirely equivalent to say
that |n〉 represents n bosons in an orbital!

We can write the number operator, which counts the number of bosons in this orbital
as

n̂ = a†a = number operator
1I always get confused as to where the complex conjugations go.

37
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4.1.2 Coherent States

We define a coherent state as

|α〉c = eαa
† |0〉 =

(
1 + αa† +

α2(a†)2

2
+ . . .

)
|0〉

=

(
|0〉+ α|1〉+

α2

√
2!
|2〉+ . . .

)
(4.1)

A few comments are in order here. First, we have put a subscript c on the ket |α〉c to
indicate that it is a coherent state. If no confusion will result, we may drop this subscript.
Secondly, note that the coherent state |α〉c is not normalized. In fact it is easy to show
that2

c〈α|α〉c = e|α|
2 6= 1

Similarly the coherent states are not orthogonal

c〈α|α′〉c = eα
∗α′

Finally it is worth noting that if we examine the prefactors in Eq. 4.1 which are of the
form αn/

√
n! we will discover that this combination peaks at roughly

√
n ≈ |α|.

The point of using coherent states is that it allows us to turn creation and annihi-
lation operators into numbers as we will now show.

Recall that
a|n〉 =

√
n|n− 1〉

Applying this to Eq. 4.1 we obtain

a|α〉c =

(
0 + α|0〉+

α2

√
2!

√
2|1〉+

α3

√
3!

√
3|2〉+ . . .

)
= α|α〉c

Thus the coherent state |α〉c is an eigenstate of the annihilation operator with eigenvalue
α.

Thus, we can take a and replace it by α if the a operator is acting on the coherent
state α. We then get the mapping

a→ α a|α〉c = α|α〉c
a† → α∗ c〈α|a† = c〈α|α∗

So that a creation operator a† acting to the left can also be replaced by α∗.

Let us use this principle to do some simple calculation. For example, let us calculate
the expectation of the number operator n̂ in the coherent state |α〉c.

2It is a simple excercise to show these! Try it!
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We have (recalling that are working with non-normalized states)

〈n̂〉 =
c〈α|a†a|α〉c
c〈α|α〉c

Allowing the a to act to the right and the a† to act to the left we obtain

〈n̂〉 =
|α|2 c〈α|α〉c
c〈α|α〉c

= |α|2

Let us next try to calculate 〈n̂2〉. Similarly we get

〈n̂2〉 =
c〈α|a†a a†a|α〉c

c〈α|α〉c
=

c〈α|a†a†a a+ a†a|α〉c
c〈α|α〉c

= |α|4 + |α|2

where we have used commutations to put the operators into normal order (all creation
operators at the far left).

Using these two results we calcuate the variance of the number of bosons in the
coherent state

VarN =
√
σ2
N =

√
〈n̂2〉 − 〈n̂〉2 =

√
|α|2 =

√
〈n̂〉

The important result here is that for large 〈n̂〉 the fluctuations in particle number are much
smaller than the mean – so it won’t matter if we fix the particle number or we allow it to
fluctuate. Given that the fluctuations are small, a system with a fixed particle number is
not very different from a coherent state.

A comment for those who have not explored coherent states before: Laser light can
be thought of as a coherent state of photon (which are, appropriately, bosons).

Number-Phase Relation

An interesting feature of coherent states (which will also be true of superfluids) is that
number and phase form a quantum mechanical conjugate pair, like momentum and posi-
tion — you cannot know both at the same time. To see this, let us write the parameter
α = |α|eiϕ, we then have

|α〉c = e|α|e
iϕa† |0〉 =

(
|0〉+ |α|eiϕ|1〉+

|α|2e2iϕ

√
2!
|2〉+ . . .

)
Now let us try differentiating with respect to the phase

−i ∂
∂ϕ
|α〉c =

(
0|0〉+ 1|α|eiϕ|1〉+ 2

|α|2e2iϕ

√
2!
|2〉+ . . .

)
which we realize is exactly the same as applying the number operator to the coherent state
(i.e., it multiplies |n〉 by n). Thus we identify

− i ∂
∂ϕ

= n̂ (4.2)
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analogous to −i~∂/∂x = p̂. Thus we expect if we are going to have a superfluid with a
well defined phase we must also accept that it will have an indefinite number of particles.
We will see this in detail below.

4.1.3 Multiple orbitals

Let us now consider the case of bosons which are allowed to reside in multiple orbitals.
Let us assume we have an orthonormal set of orbitals which we will label i, j, . . .. For
each orbital i we have a corresponding creation operator a†i and annihilation operator ai.
These operators obey the commutations

[ai , a
†
j ] = δij (4.3)

[ai, aj ] = [a†i , a
†
j ] = 0 (4.4)

In other words, the creation and annhilation operators in a given orbital are completely
independent from the creation and annihilation operators from another orbital.

We also define a ket |0〉 to mean the vacuum of all the orbital; i.e., no bosons at all.

Thus a†1|0〉 means one boson in orbital 1, whereas a†1
(a†2)2

2! |0〉 means two bosons in orbital
2 and one boson in orbital 1, and so forth.

It is crucial that we are able to change basis for our orbitals. Suppose we have two
seperate complete sets of orthonormal bases. Let us call the first set {|φn〉} and call the
second set {ψm}. As an example we might imagine that one set is a set of plane waves,
whereas maybe the other set is a set of harmonic oscillator wavefunctions. The conversion
between the two corresponding sets of creation operators is given by

a†φn =
∑
m

〈ψm|φn〉 a†ψm (4.5)

A very importnat example is the case of particles hopping on a lattice. Here we have a
natural tight binding basis where ψr0(r) = δr,r0 is a wavefunction of a particle localized
at position r and the corresponding second quantized operator that creates a particle in
this orbital is a†r. On the other hand, we also have the plane wave orbitals

φk(r) =
1√
N
eik·r

with N the number of sites in the system. We write the corresponding second quantized
operators that create a particle in these plane waves as

a†k =
1√
N

∑
r

eik·ra†r (4.6)

Any operator can be written in second quantized notation in any basis — this is
done by representing it in terms of its matrix elements in that basis. For example, a
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one-body operator can be written as

Ô =
∑
n,m

〈n|Ô|m〉a†nam

Similarly one can write a two body operator as

Ô =
∑

n,m,q,p

(〈n| ⊗ 〈q|) Ô (|m〉 ⊗ |p〉)

and so forth.

Continuum Limit

Very frequently we take the continuum limit where r lives not on a lattice, but in a contin-
uum. In this case we conventionally replace the creation and annhilation operators a†r and
ar with the continuum field operator ψ̂†(r) and ψ̂(r). The corresponding commutation
relations are then given by

[ψ̂(r), ψ̂†(r′)] = δ(r− r′)

In terms of these field operators the plane wave creation operators are given by

a†k =
1√
V

∫
dr eik·r ψ̂†(r)

with V the volume of the system.

Indeed, any orbital basis {φn} can be written in terms of the continuum field oper-
ators as

a†φn =

∫
drφn(r) ψ̂†(r)

The transformation in reverse, assuming we are working with a complete basis, is given
by

ψ̂†(r) =
∑
n

〈φn|r〉a†φn

=
∑
n

φ∗n(r)a†φn (4.7)

4.2 BECs and the Gross-Pitaevskii Equation

We will now use second quantized operators to examine some of the physics of BECs and
interacting bosons. We begin by considering noninteracting bosons.
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4.2.1 Noninteracting BECs as Coherent States

The principle of a BEC is that we want to put many bosons in the same oribtal. Let us
call this orbital φ0, and write a creation operator a†φ0

that creates a boson in this orbital.
Now let us write a coherent state for many bosons in this orbital.

|α;φ0〉 ≡ eαa
†
φ0 |0〉

Enirely analogous to our above calculation we can calculate the expectatoin of the number
of bosons in this orbital

〈N0〉 =
〈α;φ0|a†φ0

aφ0 |α;φ0〉
〈α;φ0|α;φ0〉

= |α|2

meaning that the coherent state puts (on average) |α|2 bosons into the orbital φ0.

It is very useful to examine the effect of the field operator ψ̂(r) on the coherent
state. To do this we use the decomposition given in Eq. 4.7 to give

ψ̂(r)|α;φ0〉 =
∑
n

φn(r)aφn |α;φ0〉 (4.8)

= αφ0(r)|α;φ0〉 (4.9)

Thus, using a coherent state turns the field operator ψ̂(r) into a scalar

ψ̂(r)→ ψ(r) = αφ0(r) =
√
N0 φ0(r)

where we assume the phase of α is real in the last step (although we did not have to make
this assumption). Thus the field operator becomes ψ(r) which is simply the ground state
wavefunction φ0 normalized to have N0 particles.

4.3 Interacting Bosons and the Gross-Pitaevskii Equation

We now turn to consider interacting bosons. We write a first quantized Hamiltonian as3

H =
∑
i

[
p2
i

2m
+ V (ri)

]
+

1

2

∑
i 6=j

U(ri − rj) (4.10)

Here, the term in bracket is a single paricle Hamiltonian, and we have included possibly
a trapping potential V (r). We can also include a chemical potential inside of V (r) if we
wish. The final term in the Hamiltonian is some intaction between the bosons.

3I apologize that I’ve used V (r) both for potential and volume of the system. I hope this does not cause
confusion!
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We can now convert the first quantized Hamiltonian to second quantized form. This
is a straightforward exercise4 yielding

H =

∫
dr ψ̂†(r)

[
−~2∇2

2m
+ V (r)

]
ψ̂(r)

+
1

2

∫
dr

∫
dr′ : ψ̂†(r)ψ̂(r) U(r− r′) ψ̂†(r′)ψ̂(r′) :

In the second line we have the density ρ(r) = ψ̂†(r)ψ̂(r) so that this term is an interaction
between density at position r and position r′. We have also included :’s around this term
to indicate that the term should be interpreted as being normal ordered — i.e., all creation
operators moved to the left. It is clear that this is necessary since applying this term to a
state with a single boson should give a zero interaction energy (and this will not be the
case unless the term is normal ordered)5.

From here we will further specialize to a particularly simple delta-function interac-
tion

U(r− r′) = U δ(r− r′) (4.11)

with U a scalar. Such a short range interaction is actually a very good respresentation
of the interaction for many physical bosonic systems. For example, for superfluid helium,
the Helium atoms are strongly repulsive only at very short distance, and so this is actually
a fairly good approximation. Similarly for modern cold-atom BECs, it is often the case
that the delta function interaction is actually very representative of the physical system.

This then simplifies our Hamiltonian to the form

H =

∫
dr ψ̂†(r)

[
−~2∇2

2m
+ V (r)

]
ψ̂(r) +

U

2

∫
dr ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r) (4.12)

Let us now consider a coherent state in an orbtial φ(r) as a trial wavefunction.

|α;φ〉 = eαa
†
φ |0〉

As discussed above, application of the field operator ψ̂(r) to this coherent state generates
the number ψ(r) = αφ(r) with |α| =

√
N .

We now calculate the expectation of the Hamiltonian in this coherent state

〈H〉 =
〈α;φ|H|α;φ〉
〈α;φ|α;φ〉

=

∫
dr

(
ψ∗(r)

[
−~2∇2

2m
+ V (r)

]
ψ(r) +

U

2
|ψ(r)|4

)
4Try it! The trick is to convert terms to a convenient basis — position space or momentum space —

as necessary.
5Note that leaving the term un-normal ordered will only make an order 1 error in an order N term, so

for large numbers of particles it is not a bad mistake!
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Finally integrating by parts to handle the derivative we get

〈H〉 =

∫
dr

(
~2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2 +

U

2
|ψ(r)|4

)
This expression is known as the Gross-Pitaevskii (or Ginzburg-Landau) form. This was
first discussed by Vitali Ginzburg and Landau in 1950 in the context of superconductivity6.
In 1960 it was rederived by both Gross (in the west) and Pitaevskii (in the USSR) in the
context of superfluid Helium.

Minimizing the energy by taking a functional derivative and setting it to zero,

δ〈H〉
δψ∗(r)

= 0

we obtain [
−~2∇2

2m
+ V (r) + U |ψ(r)|2

]
ψ(r) = 0 (4.13)

which is known as the Gross-Pitaevskii equation, or non-linear-Schroedinger equation. We
will study the solutions to this equation later. This simply the single particle Schroedinger
equation where there is an additional potential U |ψ(r)|2 making the local potential higher
in regions where there are many bosons (the energy eigenvalue can be absorbed into V ).

4.3.1 Rederivation without Coherent States

Is there an easier way to get to the Gross-Pitaevskii equation? Do we need to work in a
“grand-canonical ensemble” where the number of bosons is indefinite? Do we really have
to work with second quantized operators?

The answer to these questions are: Yes, there is an easier way. We don’t need any
of these technical tools. In fact we can work with first quantized operators with a fixed
number of particles.

Recall that a BEC wavefunction puts a macroscopic number of particles in a single
orbital φ(r). So let us write a trial wavefunction for such a BEC as follows:

Ψ =
N∏
i=1

φ(ri)

Note that this wavefunction is properly symmetic under exchange of particle positions as
a bosonic wavefunction should be.

We then find the expectation of our first quantized Hamiltonian Eq. 4.10 for our
trial state

〈Ψ|H|Ψ〉 = N

∫
dr φ∗(r)

[
−~2∇2

2m
+ V (r)

]
φ(r)+

N(N − 1)

2

∫
dr

∫
dr′ : |φ(r)|2 U(r−r′) |φ(r′)|2

6Ginzburg won a Nobel prize for this work in 2003. It is worth reading Ginzburg’s Nobel biography. It
seems his early years, growing up in the Stalinist Soviet Union were somewhat harrowing!
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making the substitution ψ =
√
Nφ and neglecting the distinction between N and N − 1

we get exactly the same result as when we used coherent states above. Minimizing the
total energy in either approach will allow us to calculate the best single orbital φ(r), or
equivalently ψ, which we should macroscopically occupy to form a BEC.

4.4 Order Parameter and Off-Diagonal Long Ranged Order

So if it is possible to derive everything with such a simple first quantized approach, why
then did we go through the extra work of working with coherent states and using second
quantization? The reason is that for an interacting BEC (particularly a strongly interact-
ing BEC) it is in fact not correct to put all the bosons in a single orbital. A single orbital
may be multipy occupied, but due to the interactions some bosons will be kicked out of
this single orbital. We will discuss this physics in more detail later. However, despite this
complication

〈ψ̂(r)〉 (4.14)

will remain a good order parameter and a good description, and a convenient description,
of the condensate.

It is worth noting, however, that there are some who object to the use of such
an object as an order paramter. The obvious objection is that it is perfectly possible
to consider a system of bosons with a fixed number, in which case the order parameter
Eq. 4.14 is strictly zero and one needs to think a bit harder7. It is enlightening to go
through some extra work to try to understand in a bit more detail the physics of the
superfluid order parameter for the case of fixed particle number.

Let us try to be a bit more precise with our definition of the order paramter for
a system with strongly interacting bosons. We can here work with a fixed number of
particles (a canonical ensemble). Let us write the folowing density operator

ρ1(r′, r) = 〈ψ̂†(r′)ψ̂(r)〉 (4.15)

This operator removes a particle from position r and puts a particle back in at position r′.
While this conserves total particle number, it does not locally conserve particle number if
r and r′ are very different. In terms of the multi-particle wavefunction, this object can be
written as

ρ1(r′, r) = N

∫
dr2

∫
dr3 . . .

∫
drN Ψ∗(r′, r2, . . . , rN )Ψ(r, r2, . . . , rN ) (4.16)

We can even write this quantity at finite temperature more generally as

ρ1(r′, r) =
N

Z

∑
n

e−βEn
∫
dr2

∫
dr3 . . .

∫
drN Ψ∗n(r′, r2, . . . , rN )Ψn(r, r2, . . . , rN )

7The Nobel Laureate Tony Leggett in particular has emphasized the shortcomings of a number non-
conserving order parameter
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where here En and Ψn are the nth eigenenergy and eigenvector of the system and Z =∑
n e
−βEn the partition function.

Note also that ρ1(r, r) is just the regular density at position r, and if we wanted to,
we could write even more complicated operators such as

ρ2(r′1, r
′
2; r1, r2)

which would be an analogous expression with N − 2 integrals.

For a moment, let us think of positions r′ and r as being discrete. In this case, we
can think of ρ1(r′, r) as actually being a matrix (it has two indices, r′ and r). Since this
matrix is hermitian it can be diagonalized and written in terms of its eigenvalues, which
we call Nα and its eigenvectors which we call φα(r). We thus have

ρ1(r′, r) =
∑
α

Nα φ
∗
α(r′)φα(r) (4.17)

where the eigenvectors are normalized∫
dr|φα(r)|2 = 1

By convention we order the eigenvalues so that N0 is the largest.

Noninteracting BEC at T = 0

For a noninteracting BEC at zero temperature, all of the bosons are in the same
orbital. In this case it is easy to calculate that there is only one nonzero eigenvalue
N0 = N , the number of particles in the system, and φ0 is the single macroscopically
occupied orbital.

Let us consider this case in a bit more detail. For a noninteracting BEC without
a trapping potential at T = 0, all of the bosons are in the single k = 0 eigenstate,
φ0 = 1/

√
V . We can then explicitly calculate the order parameter. The easiest way to

calculate this is to go back to second quantized form of Eq. 4.15. We then have

ρ1(r′, r) = 〈ψ̂†(r′)ψ̂(r)〉 = Nφ∗0(r′)φ0(r) = N/V

the particle density, for all r and r′. See also the more detailed calculation in section 4.4.1
below.

More generally

However, we expect that even for a BEC for 0 < T < Tc, there should be a single
eigenvalue N0 which will be smaller than N but still extensively large (we will demonstrate
this below). Further, even for an interacting system, we can use N0 being extensive as an
indication of the existance of a condensate and φ0 is the condensate wavefunction. Putting
these two together into an order parameters, we have

ψ(r) =
√
N0 φ0(r)
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Figure 4.1: Measure of Off-Diagonal Long Range Order ρ1(r1, r2). For r1 = r2 we always
have ρ1 = n = N/V the density. However, for r1 far from r2 a nonzero ρ1 indicates the
presence of a condensate. For a noninteracting BEC at T = 0 (top line) ρ1 = n for all
|r1− r2|. For a system in the normal phase, T > Tc, we have ρ1 decaying to zero for large
|r1 − r2| as shown in the bottom line. The middle line shows that for a noninteracting
BEC at 0 < T < Tc or for an interacting BEC at any T < Tc, then ρ1 decays to a constant
less than n but larger than zero.

We can make a plot of ρ1 for severeal different cases as shown in Fig. 4.1.

Recall that ρ1(r1, r2) is always just the density n for r1 = r2.

As shown in the figure (and we just discussed) for a noninteracting BEC at T = 0
we have ρ1(r1, r2) is constant as a function of distance |r1 − r2|. For a normal system
without a condensate T > Tc, we have ρ1 decaying to zero for large |r1 − r2|. We will
prove this explicitly below.

Another case shown in the figure, that we will derive below is the case of a nonin-
teracting BEC for 0 < T < Tc. In this case ρ1 decays to a constant larger than zero, but
less than n for large |r1 − r2|.

More difficult to show, however, is the case of an interacting Bose system below its
critical temperature (possibly at T = 0, but possibly at 0 < T < Tc). The behavior here
is similar to that of a BEC at 0 < T < Tc, that is ρ1 decays to a constant larger than zero,
but less than n for large |r1− r2|. Qualitiatively this is again due to the fact that, similar
to temperature, the interactions “kick” some of the bosons out of the single condensed
state. For example, for superfluid Helium at T = 0 at large |r1− r2| the value of ρ1 is less
than 10% of the density.

The fact that the ρ1 correlator becomes a constant for large |r1−r2| in the superfluid
phase is known as Off-Diagonal Long Ranged Order8. It is sometimes abbreviated as
ODLRO. The reason it is called ‘off-diagonal” comes again from thinking about ρ1 as
a matrix with two indices, r1 and r2 which are taken different from each other (hence
off-diagonal). The idea of using this quantity as an indicator of superfluid order is due to

8In comparison, diagonal long range order would be long range order in ρ(r, r) or the density — such
as crystalization.
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Oliver Penrose9 in 1951 and the Nobel Laureate Lars Onsager in 1956.

4.4.1 non-interacting bosons at T > 0

It is easy enough to calculate ρ1 explicitly for a noninteracting Bose system at finite
temperature (we will again assume no trapping potential so the single particle eigenstates
are plane waves). It is again easiest to work with the second quantized definition of ρ1

given in Eq. 4.15. We can also decompose the field operator into Fourier modes

ψ̂(r) =
1√
V

∑
k

ake
ik·r (4.18)

We thus have

ρ1(r′, r) = 〈ψ̂†(r′)ψ̂(r)〉 =
1

V

∑
k,k′

〈a†k′ak〉e
ik·r−ik′·r′ =

1

V

∑
k

〈a†kak〉e
ik·(r−r′) (4.19)

Where we can always write

〈a†kak〉 = nB(εk)

where εk is the energy of the boson in mode k and nB is the Bose factor.

Thus we have explicitly

ρ1(r′, r) =
1

V

∑
k

nB(εk)eik·(r−r
′)

Now for T > Tc we have nB being a smooth function of k. We can then freely
convert the sum into an integral, and get the usual Fourier transform. Since we are
Fourier transforming a smooth function the result ρ1 is smooth and goes to zero for large
(r− r′).

However, for T < Tc we cannot convert the sum into an integral since a macroscopic
number of particles are in the k = 0 state. In this case we need to separate k = 0 from
the sum over k, and then the remainder can be considered a smooth integral.

We then have instead

〈a†0a0〉 = N0(T )

and correspondingly

ρ1(r′, r) =
N0

V
+

1

V

∑
k 6=0

nB(εk)eik·(r−r
′)

where the sum is again a smooth and decaying function.

9Brother of Roger Penrose.
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4.4.2 Current and the Order Parameter

Several times we have treated the order parameter for the condensate as if it is a wave-
function and blithely written things like (See for example, Eq. 2.5)

j(r) =
1

2
(ψ∗pψ − (pψ∗)ψ)

Is this really legitimate? Indeed, we can essentially derive this equation from the definition
of the order parameter as ODLRO.

Let us first write a general expression for the total mass current

J =

∫
dr1

∫
dr2 . . .

∫
drN

1

2
(Ψ∗PΨ− (PΨ∗))Ψ)

where

Ψ = Ψ(r1, . . . rN )

is the many-body boson wavefunction, and

P =
N∑
i=1

pi

is the total momentum.

We realize that since the wavefunction is fully symmetric under interchange between
particles we can write

J = N

∫
dr1

∫
dr2 . . .

∫
drN

1

2
(Ψ∗p1Ψ− (p1Ψ∗))Ψ)

Further we can write the local mass current density as

j(r) = N

∫
dr2

∫
dr3 . . .

∫
drN

1

2
(Ψ∗p1Ψ− (p1Ψ∗))Ψ)r1=r (4.20)

This expression is entirely general and applies to any bosonic system. Since p1 = −i~∇
this can be rewritten as

j(r) =
−i~N

2

∫
dr2

∫
dr3 . . .

∫
drN (Ψ∗∇1Ψ− (∇1Ψ∗))Ψ)r1=r

Then writing

[Ψ∗∇1Ψ− (∇1Ψ∗))Ψ]r1=r

=
[
Ψ∗(r′1, r2, . . . rN )∇1Ψ(r1, r2, . . . rN )− (∇1′Ψ

∗(r′1, r2, . . . rN )))Ψ(r1, r2, . . . rN )
]
r1=r′1=r

= [∇1 −∇1′ ] Ψ∗(r′1, r2, . . . rN )Ψ(r1, r2, . . . rN )
∣∣
r1=r′1=r
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Comparing to the definition of the one-body density matrix in Eq. 4.16 the current density
is thus written as

j(r) =
−i~

2
[∇1 −∇1′ ] ρ1(r′1, r1)

∣∣
r1=r′1=r

(4.21)

Now recall the decomposition of the density matrix in terms of its eigenvalues and eigen-
vectors as in Eq. 4.17, where we have

ρ1(r′, r) = ψ∗(r′)ψ(r) + . . . (4.22)

where ψ =
√
N0 φ0 is the order parameter of the condensate, and the . . . represents many

additional terms where the eigenvalues are small — -terms that do not represent the
condensate.

Using Eq. 4.22 in Eq. 4.21 immediately recovers

j(r) =
1

2
(ψ∗pψ − (pψ∗)ψ) + . . .

o where the . . . are the contributions from the noncondensate part of the system.

4.5 Bogoliubov Theory for the Weakly Interacting Bose Gas

Above we mentioned that we would analyze the effect in more detai. We claimed that the
interactions somehow “kick” bosons out of the condensate leaving ρ1(r, r′) at long distance
(large r− r′) less than the full physical density even at zero temperate.

The approach we follow here, so-called Bogoliubov Theory10 is a controlled approx-
imation accurate in the limit of weak, but non-zero interaction.

For simplicity let us consider the case where there is no external trapping potential
V (r) = 0 so that the single particle eigenstates are plane waves. We will further, for
simplicity, assume the inter-particle interaction is a delta function as in Eq. 4.11. Neither of
these assumptions is required for the method to work, although both make the calculation
easier.

The Hamiltonian in second quantized form, as in Eq. 4.12 is given by

H =

∫
dr ψ̂†(r)

[
−~2∇2

2m
+ V (r)

]
ψ̂(r) +

U

2

∫
dr ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

Since the single particle eigenstaetes are plane waves we can conveniently write the
field operator ψ̂(r) in Fourier modes

ψ̂(r) =
1√
V

∑
k

ake
ik·r (4.23)

10Nikolay Bogoliubov is probably more famous as a mathematician than a physicist. Nonetheless he also
had several important contributions to the physics world, including being one of the B’s in BBGKY from
statistical physics.
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and rewrite the Hamiltonian in the form

H =
∑
k

~2k2

2m
a†kak +

U

2V

∑
k1,k2,k3,k4

a†k1
a†k2

ak3
ak4

δk1+k2−k3−k4 (4.24)

Now we expect that even when we turn on the interactions, the k = 0 mode should be
macroscopically occupied at zero temperateure as it is in a BEC. However the commutator

[a†0a0, Interaction] 6= 0

which means that the interaction must kick some of the particles out of the k = 0 state.
Nonetheless, we still expect macroscopic occupancy of this orbital. Let us thus assume
that the k = 0 orbital is in a coherent state with mean occupancy N0 with 1� N0 < N .
At T = 0 if the interaction were zero, then N0 = N . For sufficiently weak interaction, we
might expect that

N −N0 � N

Post-facto, we will verify that this is true for weak interaction.

Since we have a coherent state, as usual this allows us to replace operators a†0 and

a0 with numbers via the usual substitution

a†0 →
√
N0 a0 →

√
N0

Returning to our Hamiltonian, we now have a small parameter 1/N0 and we can
organize the parts of the Hamiltonian Eq. 4.24 in terms of which has the most factors of
N0 (i.e., the most factors of a†0 or a0). In fact, the kinetic term has no factors of N0 (since
the kinetic energy of the k = 0 state is zero). We thus turn to the interaction term and
try to organize the pieces of the sum in order of which pieces have the most factors of N0.

Looking at the sum over k1,k2,k3,k4, the single term where

k1 = k2 = k3 = k4 = 0

is the largest term, giving us four factors of
√
N0 Thus the value of this term in the sum

is simply the constant
U

2V
N2

0 (4.25)

At next order We look for a term where there are three factors of
√
N0 meaning

three of the k’s are zero and one is nonzero. However, the delta function in the interaction
term of Eq. 4.24 requires that if three of the k’s are zero than the fourth one is too, so no
such term exists.

At next order we look for a term where two of the k’s are zero and two are nonzero.
Necessarily the momenta on the remaining two k’s must appropriately sum to zero. We
can choose the two non-zero k’s to be both creation, both annihilation, or one of each
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(which can be chosen in four different ways). Thus the sum of all these terms can be
written as

UN0

2V

∑
k 6=0

[
4 a†kak + a†ka

†
−k + a−kak

]
(4.26)

We can then look for terms where only one of the k’s is zero. There are such terms,
but these will be smaller by a factor of 1/

√
N0 so we throw these out. (In principle at

the end of the calculation these terms can be considered as a small perturbation on top of
what find).

We then assemble the terms we find. First, the kinetic term from the Hamiltonian
Eq. 4.24, secondly, the zeroth order term Eq. 4.25 and the second order term Eq. 4.26.
Finally we use one additional trick, we write

N0 = a†0a0 = N −
∑
k 6=0

a†kak

plugged into the N0 in Eq. 4.25, we obtain the resulting Hamiltonian

H =
Uρ

2
N +

∑
k6=0

{[
~2k2

2m
+ Uρ

]
a†kak +

Uρ

2

(
a†ka

†
−k + a−kak

)}
where ρ = N/V . This Hamiltonian is quadratic (and therefore solvable), but it has so-
called anomolous terms —those with two creation or two annihilation operators. These
terms allow particles to scatter in or out of the condensate (the state with k = 0). The
scattering terms must conserve total momentum so you can only scatter two-in or two-out
at a time.

4.5.1 Bogoliubov Transform

To solve the quadratic hamiltonian with anomolous terms, we invoke the so-called Bogoli-
ubov transformation (invented 1947, by Bogoliubov). Let us write the following transfor-
mation (

bk
b†−k

)
=

(
cosh θk sinh θk
sinh θk cosh θk

)(
ak
a†−k

)
(4.27)

It is easy to check that if the a’s satistfy canonical commutations as in Eqs. 4.3 and 4.4,
then the b’s similarly satisfy canonical commutations11

[bq, b
†
p] = δq,p

[bq, bp] = [b†q, b
†
p] = 0

11(Sid’s favorite comment): It may look very strange that the matrix in Eq. 4.27 is not a unitary matrix.
We know we are allowed to make unitary changes of basis in quantum physics, but non-unitary transforms
seem problematic. The reason that this is OK here is because we are making a change of basis on operators.
If we work out what happens to the resulting basis states in the Fock space under this transformation, we
will discover that this actually corresponds to a unitary transformation on the Fock space! The only thing
we need for this to be true is that canonical commutations are preserved.
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Making this transformation (with a bit of algebra ADD ALGEBRA AS FOOTNOTE
OR APPENDIX?) the Hamiltonian becomes

H = const +
1

2

∑
k 6=0

[(
~2k2

2m
+ Uρ

)
cosh(2θk)− Uρ sinh(2θk)

] [
b†kbk + b†−kb−k

]
−
[(

~2k2

2m
+ Uρ

)
sinh(2θk)− Uρ cosh(2θk)

] [
b†kb
†
−k + b−kbk

]
If we then choose

tanh(2θk) =
Uρ

~2k2

2m + Uρ
(4.28)

we eliminate the anomolous terms and we diagonalize the Hamiltonian, obtaining

H = const +
∑
k 6=0

Ek b
†
kbk (4.29)

where

Ek = +

√(
~2k2

2m
+ Uρ

)2

− (Uρ)2

∼
√
Uρ

m
~|k|+ . . . for small k

Note that this spectrum of excitations in linear in k at low k and then curves to be
quadratic at large k. Because the dispersion is linear it satisfies the Landau criterion for
superfluidity!

The excitations created by the b†k operators are sometimes known as bogoliubons.
The ground state is obviously given by the state with no bogololiubons present

bk|ground state〉 = 0 for all k 6= 0

Note however, that since we can invert Eq. 4.27, we can write this condition as

(cosh θkak + sinh θka
†
−k)|ground state〉 = 0

and thus,

ak|ground state〉 6= 0

meaning that in the ground state there is some occupation of bosons in k 6= 0 orbitals. As
we predicted previously, the interaction has pushed some of the bosons out of the k = 0
orbital.
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Occupancy of k = 0: Depletion of Condensate

Let us try to calculate how many bosons are in the k = 0 orbital. To do this we write as
above

N0 = N −
∑
k6=0

a†kak

so that in the ground state we have

N0

N
= 1− 1

N

∑
k 6=0

〈GS|a†kak|GS〉 = 1− 1

N

∑
k 6=0

sinh2 θk (4.30)

with a bit of nasty algebra (detailed in the appendix below) it can be shown that

1− N0

N
∼ U3/2

Thus, as we claimed above, for weak interaction, only a few of the bosons are kicked out
of the condensate. If U becomes large, then many bosons are kicked out of the condensate
and we cannot use this expansion technique.

ODLRO

It is useful to explicitly calculate the off-diagonal-long-ranged-order (ODLRO). First, we
write the density matrix (see Eq. 4.19

ρ1(r, r′) =
1

V

∑
k

〈a†kak〉e
ik·(r−r′)

=
N0

V
+

1

V

∑
k 6=0

〈a†kak〉e
ik·(r−r′) (4.31)

Note that if we take r = r′ the second term is precisely the expression we evaluated for the
depletion of the condensate, so that ρ1(r, r) = N/V as expected. Here the second term
is the Fourier transform of a smooth function which goes to zero for r far from r′. Thus
ρ1(r, r′) for r far from r′ goes to N0/V .

Appendix: Some nasty algebra

To show the previous result, we first note that from Eq. 4.28 we know tanh 2θ. We then
have

sech22θ = 1− tanh2 2θ

so
1√

1− tanh2 2θ
= cosh 2θ
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Then we use
1

2
(cosh 2θ − 1) = sinh θ

so that we obtain

N0

N
= 1− 1

2N

∑
k 6=0

[
1

1− tanh2 2θk
− 1

]
=

1

2N

∑
k 6=0

 1

1−
(

Uρ
Uρ+~2k2/2m

)2 − 1


Changing the sum to an integral

1−N0

N
=

V

2N

∫
dk

(2π)3

 1

1−
(

Uρ
Uρ+~2k2/2m

)2 − 1

 = 1− 4πV

2N(2π)3

∫
0
k2dk

 1

1−
(

Uρ
Uρ+~2k2/2m

)2 − 1


where in the last step we have switched to spherical coordinates. Finally, we rescale
variables by defining k =

√
2mUρ/~2z such that we have

1− N0

N
= (
√

2mUρ/~2)3 4πV

2N(2π)3

∫
0
z2dz

 1

1−
(

1
1+z2

)2 − 1

 ∼ U3/2

as claimed.

For the very brave

The Bogoliubov result is not actually dependent on working with coherent states where
N is indefinite. In fact one can write down a Bogoliubov wavefunction for fixed N . The
form of the wavefunction can be written as

K̂ =

∫
dr

∫
r′ϕ(r, r′)ψ̂†(r)ψ̂†(r′) (4.32)

|Ψ〉 = (K̂)N/2|0〉 (4.33)

where K̂ creates two bosons in some wavefunction ϕ. The Bogoliubov result is obtained
by minimizing the energy over all possible shapes of the wavefunction ϕ. While it is
algebraically messy, one can obtain all the same results.
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Chapter 5

Feynman Theory of Helium-4

For a strongly interacting Bose gas, the Bogoliubov theory fails to be quantitatively accu-
rate, and we need another approach. Feynman came up with a truly ingenious approach1

for understanding strongly interacting Bose system, with the particular application of su-
perfluid Helium-4 in mind. We will follow this method2 in order to elucidate the physics
of superfluidity further. The question we would like to answer is ”what do the low energy
excitations of a strongly interacting Bose gas look like?”.

5.1 Ground State and Low Energy Excitations

First let us consider the (T = 0) ground state for the superfluid at rest in first quantized
wavefunction form. we can write it as

Φ0(r1, r2, . . . , rN )

This is some very complicated function of the arguments r1, . . . , rN since, due to interac-
tions between the bosons, there will be significant correlations between the positions of
the particles. Note however, that the wavefunction must be symmetric in exchange of any
two particle coordinates by bosonic symmetry.

1Most people agree that Feynman could easily have been given a Nobel prize for his work on superflu-
idity, had he not won the prize for quantum electrodynamics.

2The Nobel Laureate Murray Gell-Mann joked that Feynman’s method consisted of three steps:

1. Write down the problem

2. Think very hard

3. Write down the solution

While obviously he was joking, this does characterize much of Feynman’s work. Feynman (similar to
Landau) used physical arguments to simply state what the answer has to be, rather than having to
perform lengthy calculations (although apparently in private, Feynmann did plenty of lengthy calculations
that he then hid from the world to maintain the appearance of being a competely intuitive genius). The
negative point of this type of approach is that while it is easy to teach a calculational method, it is hard
to teach someone to come up with brilliant physical insights.

57
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Figure 5.1: Compression Waves = Longitudinal Phonon

Even if we don’t know the form of the function Φ0 we can still construct from it a
wavefunction for a superfluid flowing. This will take the form

Ψ(r1, r2, . . . , rN ) = Φ0(r1, r2, . . . , rN )

N∏
i=1

eiθ(ri) (5.1)

where θ(r) is a function of position which must be well defined modulo 2π (and it must
be single valued if the amplitude of Φ0 nowhere vanishes).

For a uniformly flowing supefluid we can choose

θ(r) = k · r

for some momentum ~k per particle.

We can check that the velocity of the fluid matches our expectation by looking at
the expectation of the current operator p (See Eq. 4.20) Being that Φ0 is defined to be
the fluid at rest, we must have

j(r)Φ0 = 0

and thus one easily shows that

j(r)Ψ = ~n∇θ = n~k

with n the density, as expected.

Thus given a ground state wavefunction representing a stationary fluid we can write
a wavefunction for a flowing superfluid. However, this is not the type of excitation we
are interetsted in. So let us now consider low energy excitations given that there is no
superflow.

Claim: In absence of superflow, the only low energy excitations of an interacting
Bose gas are (longitudinal) phonons. i.e., compression waves.

A depiction of compression waves is given in Fig.5.1

We will next argue why this claim is true. We constrast this situation with that of a
system of fermions. For fermions (which we will discuss later) the ground state is a Fermi
sea (k states filled up to some Fermi surface). In this case we can have many different
low energy excitation associated with exciting some fermion from slightly below the Fermi
surface to slightly above.
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Figure 5.2: Left: A wavefunction Φ0 which changes sign as a function of some coordinate
written as x (but is meant to be some combinations of the positions {ri}. Middle: The
absolute value of Φ0. Except for (the set of measure zero) precisely at the cusp, this gives
the same argument in Eq. 5.2 as Φ0 itself. Right: Smoothing the wavefunction over a scale
δ will always reduce the energy a little bit.

Point 1.1: . The ground state wavefunction with no superflow, Φ0(r1, r2, . . . , rN ),
can be chosen real and positive everywhere.

Firstly, since the Hamiltonian is time-reversal invariant (H = H∗), given that the
ground state is unique, we must be able to take Φ0 = Φ∗0. Thus we have Φ0 real. We
would now like to show that Φ0 does not change sign.

Since Φ0 is assumed to be the ground state, it must minimize the energy

E = 〈Φ0|H|Φ0〉 (5.2)

=

∫
dr1 . . .drN

 ~2

2m

∑
i

|∇iΦ0(r1, . . . , rN )|2 +
1

2

∑
i 6=j

U(ri − rj)|Φ0(r1, . . . , rN )|2


We now want to show that Φ0 for the ground state can always be taken everywhere
positive. To show this we first note that if Φ0 changes sign, then

E(Φ0) = E(|Φ0|)

The reason for this is that, as shown in Fig. 5.2, except for positions {ri} that are a set
of measure zero, both |Φ0|2 and |∇Φ0|2 are unchanged if you replace Φ0 with |Φ0|. Thus
the energy of Eq. 5.2 is unchanged.

Given that Φ0 and |Φ0| have the same energy, let us only consider |Φ0| for the
moment. Here, we can have a cusp where the wavefunction reaches zero. However, now
we argue that we can always reduce the energy of the wavefunction by smoothing the cusp
a little bit. Consider smoothing the cusp over a distance scale δ as shown in the right of
Fig. 5.2. Let us estimate the energy change from doing this smoothing.

Roughly, the slope is reduced from dΦ0/dx to (say for simplicity) zero, so the kinetic
part of the energy (in 1d) (integrating over x) is changed decreased by roughly δ(dΦ0/dx)2.
On the other hand, the magnitude of Φ0 is increased from small (call it zero) to δ(dΦ0/dx).
Thus the potential part of the energy is increased proportional to δ3(dΦ0/dx)2. For small
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Figure 5.3: Particle in a box. Top: Ground state wavefunction is everywhere positive.
Bottom: First excited state — the most positive point is far from the most negative point
to minimize the gradient energy.

energy δ the decrease in kinetic energy always wins, and we conclude that the ground
state Φ0 can be taken everywhere strictly positive.

Point 1.2: Any excited state must change sign so that it is orthogonal to the ground
state. For a low energy excited state, one must keep gradients small, so the most positive
configuration must be “far” from the most negative configuration.

As a demonstration of this, let us consider the simple quantum mechanical problem
of a single particle in a box as shown in Fig. 5.3. The ground state is everywhere postive.
The first excited state must change signs to be orthogonal to the ground state. But to
keep the gradient energy low, the most positive point (marked + in the figure) must be
far from the most negative point (marked - in the figure).

What do these principles mean for a many-particle wavefunction? First, we realize
that the first exctited wavefunction must change signs. But again we want to keep gra-
dients small, so that the postive region should be “far” from the negative region. What
do we mean by “far” in the case of a many-particle wavefunction? This means “far” in
the Nd dimensional parameter space {ri} (with N the number of particles and d the
spatial dimension). We might naively think that we should move all of the particles as
far as possible. However, this isn’t really correct, because the particles are indistinguish-
able. Suppose for example, we move all the particles to very far positions as in the left of
Fig. 5.4. While this moves every particle “far” from its original position, it is equivalent to
a different motion where each particle only moves a small distance, as shown on the right
of Fig. 5.4 (due to the fact that the particles are indistinguishable). In fact any motion
which leaves the local density unchanged cannot have moved all the particles very far from
their original positions.

However, if we were to move all the particles so as to change the density locally,
as in Fig. 5.1, this cannot be done simply by moving each particle a small distance –
many particles need to be moved a large distance in a way that cannot be reduced by
indistinguishibility. Thus two configurations with different density profiles are genuinely
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Figure 5.4: Left: Moving particles “far” from their initial positions. Right: Since particles
are indistinguishable, one can get to the same configuration by moving each particle only
a little bit.

“far” from each other in the Nd dimensional parameter space. (Of course changing the
density profile too much from uniform will be energetically expensive, and cannot be
part of a low energy excitation). So we should expect that two different density should
correspond to the pieces of the wavefunctions with the most positive and most negative
values. (I.e., perhaps the wavefunction takes its most positive value when the configuration
looks exactly like Fig. 5.1, and then takes its most negative value when the high and low
density regions are interchanged).

Point 2: A good ansatz for making a low energy excited state from a ground state
is to change a single quantum number (to make sure it is orthogonal to the ground state)
and try to leave everything else unchanged.

Suppose we know a ground state Φ0. We would like to find the lowest energy excited
state Ψ which minimizes

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

subject to the constraint of being orthogonal to the ground state

〈Ψ|Φ0〉 = 0 (5.3)

Let us try the approach of the approach proposed in Point 2 on the simple case of
the harmonic oscillator.

For a harmonic oscillator we know the ground state is Φ0 ∼ e−ax
2
, and the ground

state is even parity (reflects around x = 0). The simplest way we can change the parity
quantum number is just by multiplying the wavefunction by the function x, giving a
trial wavefunction Ψ ∼ xΦ0. which has odd parity and then necessarily must satisfy the
orthogonality condition Eq. 5.3 on account of having different parity from the ground state.
This trial wavefunction is indeed very low energy because qualitatively it is as much like
the ground state as it can possibly be, and yet is orthogonal to the ground state (Indeed, in
this particular case we have actually guessed the exact first excited state wavefunction!).
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Trial Excited State

We thus use the same general idea to write a trial wavefunction for the lowest energy
excited state in an interacting Bose gas. We propose the following

|Ψk〉 =
1√
N
ρk|Φ0〉 (5.4)

where Φ0 is the ground state and ρk is the density operator at wavevector k given explicitly
by

ρk =
∑
i

eik·ri = ρ†−k

= Fourier Transform[ρ(r)]

where

ρ(r) =
∑
i

δ(r− ri)

is the usual density operator.

Let us now list the reasons why this trial excited state wavefunction |Ψk〉 is likely
to be an accurate one

1. ρ is symmetric in exchanging particle (switch positions of particles i and j) so Ψk

has the correct bosonic symmetry.

2. ρk changes the momentum quantum number. As described in Point 2 above, this
means that the proposed excited state is necessarily orthogonal to the ground state
for any k 6= 0.

3. For small k, the operator ρk is fairly smooth. This means that multiplying by ρk
does not ruin any good correlations that are built into the ground state wavefunction
Φ0.

4. The operator ρk creates a density wave as in our disucssion in Point 1.2. Taking a
simple case where k is in the x̂ direction, we can check that the prefactor

∑
j e

ikxj

is maximally positive when all x are of the form (2π/k)n for some integer n and it
is maximally negative when all x are of the form (2π/k)(n+ 1/2), corresponding to
the two opposite density waves. Of course putting all particles on these particular
positions would result in too high a denisty to be low energy, but nonetheless, this
argument shows where the wavefunction is positive and where it is negative, and
why the positive and negative regions are “far” from each other.

5. The trial wavefunction does not correspond to a superflow (see Eq. 5.1).

6. The trial wavefunction does not change the local density much, so that it should not
change the interaction energy much either.
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7. Finally (to be shown below) this trial wavefunction matches up with the low energy
excitations in Bogoliubov theory which is correct at least in the weak interaction
limit.

Let us now confirm item 7, that we would get the same excited state wavefunction
in Bogoliubov theory.

First, let us translate the density operator into second quantized notation. We can
write

ρ(r) = ψ̂†(r)ψ̂(r)

then Fourier transform using the usual

ψ̂†(r) =
1√
V

∑
q

e−iq·ra†q

which allows us to write the Fourier transformed density operator

ρk =

∫
dr eik·r

1

V

∑
q,q′

e−i(q
′−q)·ra†q′aq

=
∑
q

a†k+qaq

Using the same principles we used in section 4.5 the largest terms are those that include the
q = 0 modes which are macroscopically occupied. With the usual replacement a0, a

†
0 →√

N0 we obtain

ρk ∼
√
N0

(
a†k + a−k

)
Now from Eq. 4.29 we have that the effective hamiltonian can be written as

H = const +
∑
k 6=0

Ekb
†
kbk

so we can write the low energy excited states as

|Ψk〉 = b†k|Φ0〉

where Φ0 is the ground state, meaning the Bogoliubon vacuum. We can, however, also
use Eq. 4.27 to rewrite b† in terms of a† and a. For small q we have θq in Eq 4.27 being
large which means sinh θ ≈ cosh θ and we have

b†k ∼ a
†
k + a−k

Thus for the weakly interacting system, a single bogoliubon excitation is precisely the
same as Ψk where we just apply the density operator to the ground state!
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5.2 Single Mode Excitation Spectrum

So we have proposed a trial wavefunction Eq. 5.4 for the low energy excitations of our
interacting Bose gas in terms of the ground state Φ0. Unfortunately, we do not actually
know the ground state Φ0. Remarkably we can still make progress in calculating the energy
of the excited state Ψk. What we would like to calculate is the energy of the excitation
compared to the ground state which we write as

∆k = Ek − E0 =
〈Ψk|H − E0|Ψk〉
〈Ψk|Ψk〉

≡ f(k)

S(k)
(5.5)

where here we have defined the numerator to be called f and the denominator to be called
S. Further, we have realized that these quantities will be a function only of the magnitude
k = |k|.

Let us attack the denominator first. We have

S(k) = 〈Ψk|Ψk〉 =
1

N
〈Φ0|ρ†kρk|Φ0〉

this quantity is known as the structure factor, and it is directly measured by x-ray and
neutron scattering3. We can simplify this result by using

ρk =
∑
i

eik·ri = ρ†−k (5.6)

We then obtain4

S(k) = 〈Ψk|Ψk〉 =
1

N

〈
Φ0

∣∣∣∑ie
−ik·ri∑

je
ik·rj

∣∣∣Φ0

〉
=

1

N

〈
Φ0

∣∣∣∑i,je
−ik·(ri−rj)

∣∣∣Φ0

〉
= Fourier Transform

[〈
Φ0

∣∣∣∑i,jδ(r− (ri − rj))
∣∣∣Φ0

〉]
Experimental neutron diffraction measurements of the structure factor of Helium-4 are
given in Fig. 5.5 The peak in the structure factor is roughly the analog of a Bragg peak for
a crystal — it occurs at a wavevector of roughly 2π/a where a is the typical inter-particle
spacing.

3This is not quite the same structure factor we study in our elementary solid state courses when we
study scattering from crystals, although it is very closely related. See next footnote

4In elementary solid state physics courses, we define the structure factor to be

S̃(k) ∼ 〈
∑
j

eik·rj 〉,

and the scattering intensity is ∼ |S̃|2. However, in a fluid this S̃(k) is zero for any k 6= 0 since all positions
are equally likely. Instead we are now calulating the expectation of the square of this quantity, with the
average outside of the square.
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Figure 5.5: The structure factor of superfluid Helium. Figure from A. Isihara, Physica
106B (1981) 161-164.

Let us now turn to the numerator of Eq. 5.5. We have

f(k) =
1

N

〈
Φ0|ρ†k(H − E0)ρk|Φ0

〉
=

1

N

[〈
Φ0|ρ†kHρk|Φ0

〉
−
〈

Φ0|ρ†kρkH|Φ0

〉]
=

1

N

〈
Φ0| ρ†k [H, ρk]|Φ0

〉
(5.7)

where in going to the second line used the fact that the Φ0 is an eigenvalue with eigenenergy
E0.

On the other hand, we equivalently could have written

f(k) =
1

N

〈
Φ0|ρ†k(H − E0)ρk|Φ0

〉
=

1

N

[〈
Φ0|ρ†kHρk|Φ0

〉
−
〈

Φ0|Hρ†kρk|Φ0

〉]
=
−1

N

〈
Φ0|[H, ρ†k] ρk|Φ0

〉
=
−1

N

〈
Φ0|[H, ρ†−k] ρ−k|Φ0

〉
=
−1

N

〈
Φ0|[H, ρk] ρ†k|Φ0

〉
(5.8)
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where in going to second last line we have used the fact that, due to isotropy of the fluid
we expect f(k) = f(−k) and in going to the last line we use that ρ†k = ρ−k.

Putting together Eq. 5.7 and 5.8 we obtain the double commutator form

f(k) =
1

2N

〈
Φ0

∣∣∣[ρ†k, [H, ρk]
]∣∣∣Φ0

〉
(5.9)

We now must determine the double commutator, which will turn out to be a simple number
rather than an operator! To do this we notice recall the Hamiltonian has three terms, a
kinetic term K̂, a one body potential term V̂ and a two body interaction term Û (it would
not matter if we had three or four body terms etc). We write

H = K̂ + V̂ + Û

where

K̂ =
∑
i

−~2∇2
i

2m

V̂ =
∑
i

V (ri)

Û =
1

2

∑
i,j

U(ri − rj)

And recall that

ρk =
∑
i

eik·ri = ρ†−k (5.10)

We now want to calculate [H, ρk]. Here ρ only contains the operator r (not the conjugate
operator ∇) and this then commutes with both U and V which also only contain r (and
not ∇). However, ρk does not commute with the kinetic term, so we simplify

[H, ρk] = [K̂, ρk]

=

∑
i

−~2∇2
i

2m
,
∑
j

eik·rj


=
−~2

2m

∑
j

[
∇2
j , e

ik·rj
]

=
−~2

2m

∑
j

eik·r
(
−k2 + 2ik · ∇j

)
We then want to further calculate the double commutator[

ρ†k , [H, ρk]
]

=
−~2

2m

∑
j

[
ρ†k , e

ik·rj
(
−k2 + 2ik · ∇j

)]
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The −k2 term is a scalar so it commutes and we have[
ρ†k , [H, ρk]

]
=
−~2

m

∑
j

[
ρ†k , e

ik·rj (ik · ∇j)
]

=
−~2

m

∑
j

[∑
i

e−ik·ri , eik·rj (ik · ∇j)

]

=
−~2N

m

[
e−ik·r , eik·r (ik · ∇)

]
=

~2k2N

m
(5.11)

which is simply a scalar rather than an operator, as claimed. Thus plugging into Eq. 5.9
we obtain

f(k) =
~2k2

2m
We note that this double commutator calculation is used in several other common contexts,
such as in the derivation of the well-known f -sum rule, and Kohn’s theorem. (Don’t worry
if you don’t know about these! We will run into it again in section 8.3.2 below).

Now plugging back into our original formula for the excitation energy, Eq. 5.5 we
have

∆k =
f(k)

S(k)
=

~2k2

2mS(k)
(5.12)

This is a rather remarkable result! In this approxiation5, the low energy excitation spec-
trum is completely determined by the structure factor!

In Fig. 5.6 the top curve is the prediction of the Feynman theory using Eq. 5.12
with the experimentally measured structure factor S(k) as input. The bottom curve is the
experimentally measured excitation spectrum (using inelastic neutron scattering). The
structure of the two curves is quite similar.

Note that in the long wavelength (small k) limit the Feynman theory matches the
experimental results exactly. At higher k, the Feynman theory gives an excitation energy
which is higher than the real excitation energy. This is to be expected. In fact, the
Feynman theory can be taken to be a rigorous upper bound: What we have done is a
variational calculation using ρk|Φ0〉 as the trial state — even though this isn’t exactly
the eigenstate (except in the long wavelength limit where it becomes exact). In the space
of states orthogonal to the ground state, the exact state we are looking for is the lowest
energy state, so our trial state is necessarily higher in energy than the exact state.

The minimum in energy at intermediate k is known as the roton minimum6 , and it

5It is an approximation here because we are using a trial wavefunction for the excited state.
6The name “roton” is a historical accident. Landau’s early guess was that the observed low energy

excitations must have something to do with the rotation of the fluid — since all fluids must be able to
rotate, and the superfluid component has no curl (Landau did not know about vortices at that time). The
excitation was thus named the “roton”. Later it became clear that the roton excitation is just a minimum
in the phonon spectrum and is unrelated to rotation. Unfortunately, the name “roton” stuck.
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Figure 5.6: Feynman Theory and Low energy excitations of Helium. Figure from Pines
and Nozieres. Top curve is prediction of Feynman theory. Bottom curve is experimental
measurement of the excitation spectrum. Curves in between are modifications of the
Feynman theory.
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corresponds (approximately) to the peak in the structure factor (See Fig. 5.5) at k roughly
2π/a with a the interparticle spacing.

In fact, Landau predicted this minimum before Feynman’s theory. He based his
prediction on specific heat data. Knowing that the spectrum is linear E(k) = ~vk at
small k, the usual Debye calculation gives a specific heat Cv ∼ T 3 at low T . However,
the experiments showed at higher T an additional contribution that appeared to turn on
roughly as ∼ e−Er/(kbT ) for some constant Er. Landau relized that a spectrum of the shape
shown in Fig. 5.6 would give such a term where Er is the energy of the roton minimum.
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Chapter 6

Ginzburg-Landau Theory

6.1 Neutral Superfluids

Let us begin by recalling the Gross-Pitaevskii energy we derived earlier for weakly inter-
acting (uncharged) Bose gases in Eq. 4.13 which we rewrite here

〈H〉 =

∫
dr

(
~2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2 +

U

2
|ψ(r)|4

)
(6.1)

To anyone who has studied the Landau theory of phase transitions (and the associated
Ginzburg-Landau1 theory of fluctuations) this form is not surprising. Near a phase tran-
sition we typically expand a free energy order by order, writing down all terms that are
allowed by symmetry. In the case of a neutral superfluid with a complex order parameter
we generally expect a free energy functional of the form

F [ψ(r)] =

∫
dr

[
~2

2m
|∇ψ|2 + α2|ψ|2 + α4|ψ|4

]
(6.2)

where |ψ|2 is interpreted as the superfluid density2. Not only does this agree with Gross-
Pitaevskii, but on symmetry grounds, this must be the form of the free energy near the
phase transition.

1Vitali Ginzburg won a Nobel prize in 2003 for his eary work in the 1950s on what is now called
the Ginzburg-Landau theory of superconductors. (We will come to this later in the current chapter).
Ginzburg’s Nobel biography is well worth a read — as a Jew in Stalin’s USSR, he barely skirted death on
several occassions!

2Generally we might have thought that the coefficient of the gradient term might have been an arbitrary
fit parameter, but we fix it using the fact that if we write ψ = |ψ|eik·x we want ~k to represent a particle
momentum.

71
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Figure 6.1: Left: The Ginzburg-Landau potential above Tc. Here the minimum is at ψ = 0
indicating no superfluid density. Right: The Ginzburg-Landau potential below Tc. Here
the minimum is at a nonzero value of ψ indicating finite superfluid density.

6.1.1 Spatially Uniform Solution

To begin with, let us consider a uniform system — so that the gradient is zero. As in the
usual theory of phase transitions we have

α2 = a(T − Tc)

with a > 0 and α4 > 0 as well for stability (i.e, so that for large enough ψ the free energy
always increases.

Often we will think of the non-gradient terms of the free energy as being a potential

V (ψ) = α2|ψ|2 + α4|ψ4|
= a(T − Tc)|ψ|2 + α4|ψ4|

with a > 0.

For T > Tc (so α2 > 0) the potential V (ψ) looks like the left of Fig. 6.1, where the
minimum is at |ψ| = 0 meaning that the ground state has no supefluid density.

On the other hand, for T < Tc (so α2 < 0) the minimum is at some finite nonzero
value of |ψ| (which we label ψ0) meaning there is a finite superfluid density ψ2

0 in the
ground state.

It is simple to minimize V (|ψ|) to obtain

|ψ|2 =
|α2|
2α4

= ψ2
0 = ns (6.3)
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Figure 6.2: Left: The Ginzburg-Landau potential below Tc drawn as a function of the
complex (2d) field ψ. The two orthogonal directions in the horizontal plane can be taken
to be the real and imaginary parts of ψ. The minimum lies at the bottom of the trough
(the bottom of the rim of the hat)

which is the density of the superfluid fraction.

Since ψ is actually a complex field, it should really be drawn as the so-called Mexican
hat potential shown in Fig. 6.2. Note that the potential V (ψ) is a function of |ψ| only and
is independent of the complex phase of ψ. This means that the ground state is degenerate
— the ground state has magnitude ψ0 but all possible complex phases have the same
energy. In Fig. 6.2 we see this as the symmetry of the picture under rotation around the
central z-axis. In particular, the minimum of the potential is a (degenerate) circle around
the bottom of the rim of the Mexican hat.

Whenever we have multiple global ground states related to each other by a continu-
ous symmetry (the result of spontaneously broken continuous symmetry) we should have
a Goldstone boson (or “Nambu-Goldstone” boson3). The boson in this case is the low en-
ergy excitation associated with the ground state locally reorienting this degree of freedom.
In this case the Goldstone boson is nothing more than phase fluctuations of ψ (without
changing the magnitude of ψ). In other words, the phase changes slowly as a function of
position. These excitations are the superfluid phonons, or bogoliubon excitations.

6.1.2 Spatial Dependence: Ginzburg Landau Theory

Let us now return to the free energy Eq. 6.2 and reintroduce the spatial derivative (i.e., no
longer assume ψ has no spatial dependence). Here we will assume we are in the superfluid
phase, i.e., T < Tc. To derive an equation for ψ we take the functional derivative of Eq. 6.2

3Named for Yoichiro Nambu, a Nobel Laureate, for his work on spontaneous symmetry breaking, and
Jeffrey Goldstone, who generalized Nambu’s discovery. Nambu joked that he won the Nobel prize mainly
by outliving his enemies. He was 87 when he won the prize.
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to minimize the free energy

δF

δψ∗
= 0

− ~2

2m
∇2ψ + α2ψ + 2α4|ψ|2ψ = 0

which is a non-linear Schroedinger equation (See Eq. 4.13). Recalling that in a uniform
system below Tc we have |ψ0|2 = |α2|/(2α4), it is useful to define a new field

f = ψ/|ψ0|

so that in the uniform system we just have f = 1.

Writing ψ = f |ψ0| and plugging into our nonlinear Schroedinger equation we obtain

− ~2

2m
∇2f + α2f + 2α4|ψ0|2|f |2f = 0 (6.4)

Dividing through by α2 and using |ψ0|α4 = |α2|/2 we obtain

ξ2∇2f + f − f |f |2 = 0 (6.5)

where

ξ =

√
~2

2m|α2|
(6.6)

is known as the Ginzburg-Landau coherence length. This is the natural length scale
associated with the nonlinear Schroedinger equation. It is effectively a stiffness length for
twising the phase or magnitude of the field ψ.

At low temperatures, the Ginzburg-Landau coherence length for superfluid 4He is on
the order of ξ ≈ 1 Angstrom. However, note that at the critical temperature α2 = a(T−Tc)
changes sign (therefore going through zero) so as we approach Tc we must have ξ diverging
as

ξ ∼ |T − Tc|−1/2

Note that Ginzburg-Landau theory is a mean field theory. A more accurate analysis
of the problem will obtain a different exponent4.

Despite the fact that our equation is nonlinear (and therefore hard to solve) some
exact solutions are in fact possible.

Solution 1. Uniform solution:

f = 1 everywhere

4This is 3d, XY universality class and ν = .671...
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Figure 6.3: The healing of the order parameter from a hard wall is a tanh function.

(This one is obvious)

Solution 2. Hard wall boundary condition: We

f = tanh

(
x√
2ξ

)
(6.7)

This solution, shown roughly in Fig.6.3

f → 1 at large x

f → 0 at x→ 0

The proof that the tanh form in Eq. 6.7 satisfies the nonlinear Schroedinger equation 6.5
is a bit of an exercise in hypergeometric functions. We leave this to the reader.

Solution 3. A Single Vortex

We consider a vortex line going along the z-axis. In cylindrical coordinates, we
impose

f = |f(r)|eiθ

Plugging this into our nonlinear Schroedinger Equation 6.5, using

∇2f =

[
1

r

∂

∂r
r
∂

∂r
+

1

r2

(
∂

∂θ

)]
f

we obtain

ξ2

[
1

r

∂

∂r
r
∂

∂r
− 1

r2

]
|f |+ |f | − |f |3 = 0

This leaves us with something that is unfortunately not analytically solvable. However,
we can obtain two limits.

Small r: First, if we consider small r, we know that f needs to vanish as r → 0.
Thus we can throw out |f |3 term. We then focus on the most singular terms which are
those within the brackets. It is clear these can be made zero by using

|f | = αr + . . .
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where the . . . terms are terms higher order in r which one obtains when you reinstate the
terms we just threw out. Thus we conclude that |f | ∼ r for small r

Large r: We know far from a vortex, we should get the bulk solution |f | = 1 so we
look for a perturbation to this by substituting |f | = 1 − y. Keeping only terms linear in
y and looking in the large r limit where the derivatives are suppresed we obtain

y = ξ2/(2r2) + . . .

so

|f | = 1− ξ2/(2r2) + . . .

6.2 Charged Superfluids (i.e., Superconductors)

The same approach can be applied to charged superfluids with the additional complication
that we need to keep to keep track of the electromagnetic field. We can write a free energy
functional now in the form

F [ψ,E,B] =

∫
dr

[
1

2m∗
|(−i~∇− e∗A)ψ|2 + α2|ψ|2 + α4|ψ|4

]
+

∫ ′
dr

[
B2

2µ0
+ ε0

E2

2

]
(6.8)

and as usual α4 > 0 and α2 = a(T − Tc) with a > 0. Here we have minimally coupled
the momentum operator to the vector potential, and we have added the usual energy of
an electromagnetic field (the second line). Note that the integral on the second line has a
prime on it, this is to point out that integral of the electromagnetic field extends over all
of space – the field energy still needs to be considered in regions outside of the physical
sample, which may be finite.

As in the case of the neutral superfluid, below Tc we have

|ψ| = ψ0 =

√
|α2|
2α4

=
√
n∗s

with n∗s the number of particles in the superfluid (superconducting) fraction (where here
we are assuming a uniform solution with no applied vector potential to make more precise
analogy with the neutral superfluid).

6.2.1 Anderson-Higgs Mechanism

As in the case of the neutral superfluid, one might expect that there would be a Goldstone
mode associated with changing the phase of the order parameter — i.e., moving the field
around the rim of the Mexican hat as a function of position. But in fact, there is no
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such low energy mode of the superfluid in a superconductor! This is due to the so-called
“Anderson-Higgs” mechanism5 which we will now discuss.

It is perhaps more natural to discuss the Higgs mechanisms in terms of Lagrangians
rather than free energies — since that makes it easier to keep track of dynamics. However,
so far we have been working in terms of free energies, and we will therefore continue using
this approach since it is easier to compare to what we have done earlier. However, one
really must be careful here since one can draw incorrect conclusions about the dynamics.67.
For those who are worried about honesty we do a brief Lagrangian derivation in the chapter
appendix.

First we note that the free energy is invariant under the gauge transform:

ψ → eiαψ

e∗A → e∗A +∇α/~

with α real. This gauge transform can be a function of both time and position α(t, r).

Recalling that for T < Tc we have

|ψ| = ψ0 =

√
|α2|
2α4

which minimizes the potential V (ψ). Here ψ0 is the so-called Vacuum Expectation Value
of the field, or VEV in high-energy language. Let us now consider fluctuations around
this minimum.

We write
ψ = (ψ0 + h)eiχ (6.9)

5Perhaps the history of the Higgs mechanism starts with Nambu, who wrote a key paper in 1960
starting to understand the ideas of spontaneous breaking of a gauge symmetry. Then in 1962, Anderson
fully described what we now call the Higgs mechanism in the context of superconductors. In 1964, in Higgs’
first paper (in the first paragraph) he credits Anderson saying (a) This is nothing more than extending
what Anderson did to the electro-weak interactions and (b) Anderson himself suggested that a similar
mechanism might exist in high energy. More detailed papers appeared the same year expanding further on
the idea by Brout and Englert; and by Guralnik, Hagen, and Kibble. Anderson probably was entitled to
part of the Nobel shared by Higgs and Englert (Brout had passed away before the prize was awarded), but
Anderson already had a prize for what is now called “Anderson Localization”, which is totally unrelated
(except for the fact that both require someone very smart to figure them out).

6The right way to do this is to consider F to be the Hamiltonian for ψ and write a Lagrangian density
as L = |∂tψ|2 −H with H the Hamiltonian density. And here lies a crucial subtlety. The dynamical term
is |∂tψ|2 which looks relativistic rather than iψ∗∂tψ which looks more like the non-relativistic lagrangian.
The reason for this form is that superconductors have a natural particle-hole symmetry (i.e., they are
described by a “relativistic” 2-spinor) as we will see in chapter 11. For a chargeless unpaired superfluid,
however, we should use the nonrelativistic version! . This issue is discussed further in the chapter appendix

7In quantum mechanics, the dynamics of the Hamiltonian are not defined unless you specify the commu-
tation relations of the operators (or in classical mechanics, specify the canonical coordinates). For example,
if we write H = p̂2/(2m) + (κ/2)x̂2 this looks like a Harmonic oscillator, but it only has that dynamics
once we specify that p and x are canonical coordinates so dp/dt = −∂H/∂x and dx/dt = ∂H/∂p. Or in
quantum mechanics we specify commutations between p̂ and x̂. However, if we start with a Lagrangian,
we can derive the canonical commutations!
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where h and χ are both real. Here, h is the fluctuation of the magnitude of ψ, and χ is
fluctuation of the angle around the “rim” of the Mexican hat. Near the bottom of the rim
the energy should be quadratic in h describing deviation up the hill and away from the
bottom of the rim. Inedeed,

α2|ψ|2 + α4|ψ|4 = α2(ψ0 + h)2 + α4(ψ0 + h)4 = const + 2|α2|h2 + . . .

Now we would like to plug Eq. 6.9 into the free energy Eq. 6.8. However, before doing
this, let us choose a gauge that absorbes the phase χ in Eq. 6.9. I.e., we gauge transform
to make ψ real

ψ → ψ′ = e−iχψ = ψ0 + h (6.10)

e∗A → e∗A′ = e∗A− ~∇χ

With this transformation we have

F =

∫
dr

[
1

2m∗
|(−i~∇− e∗A′)(ψ0 + h)|2 + 2|α2|h2 + . . .

]
+

∫ ′
dr

[
B2

2µ0
+ ε0

E2

2

]
(6.11)

Note that both the electric and magnetic fields corresponding to A′ are the same as those
corresponding to A (the fields are gauge invariant).

This free energy can be rewritten as

F =

∫
dr

[(
~2

2m∗
|∇h|2 + 2|α2|h2

)
+
ψ2

0(e∗)2

2m∗
A′

2
+ . . .

]
+

∫ ′
dr

[
B2

2µ0
+ ε0

E2

2

]
(6.12)

One might naively expect there would have been terms i(∇h) ·A′ but such terms have to
cancel on account of being imaginary (they do!).

We will now examine the “dynamics” implied by this free energy. As mentioned
above, one has to be very careful about deducing dynamics from a free energy and for less
hand-waving arguments, see the chapter appendix.

Let us first consider the terms involving h. This field is massive, meaning that there
are no low energy excitation, the mass here being given by the α2 term8.

The term with A′2 represents a mass for the electromagnetic photon. Like the h2

term, this term gives a finite energy to any nonzero value of the electromagentic field, and
hence is a mass. We should compare this to the case of conventional electromagnetism
where we have only the B2 and E2 terms.

B2 = (∇×A)2

E2 = (−∇A0 − ∂tA)2

8To see this, we see that any nonzero value of h gives a positive energy. The lowest energy we can get
for a normalized function h(r) is 2|α2| if h is uniform in space.



6.2. CHARGED SUPERFLUIDS (I.E., SUPERCONDUCTORS) 79

T > Tc T < Tc
Oscillations of ψ in real and complex direciton Oscillation of h in real direction only
2 polarizations of massless photon 3 polarizations of massive photon

4 total degrees of freedom = 4 total degrees of freedom

Table 6.1: Conservation of total number of degrees of freedom in the Higgs mechanism.

Since both of these have derivatives, the energy of the electromagnetic field goes to zero at
long wavelength (we should know this since the energy of a photon is 2π~c/λ). However,
now with the A′ term added, the energy of a photon is finite even at very long wavelenth.

What does it mean that the photon is massive? What is means is that even a
long wavelength photon costs energy when it is inside a superconductor. If we imagine
a photon outside a superconductor, when it tries to go into the superconductor it will
experience an energetic barrier and will be repelled — this is precisely the Meissner effect:
electromagnetism is expelled from superconductors!

What has happened here? The so-called Higgs mechanism is this process by which
the Goldstone mode associated with the phase of the order parameter disappears (we got
rid of it by absorbing the phase in Eq. 6.10), but in the process the photon becomes
massive9. Note also that where a massless photon has only two polarizations (due to the
fact that it moves at the speed of light), a massive photon which moves slower than the
speed of light (like a phonon) has three possible polarizations — inlcuding a longitudinal
mode. Thus, although we lose a degree of freedom from the oscillation of the field ψ, we
gain a degree of freedom in a new oscillation mode of the photon. As shown in Table 6.1
the total number of degrees of freedom is the same above and below Tc.

A comment I feel compelled to add before leaving the discussion of Higgs mechanism:
Particularly in the media, one often hears people say that the Higgs boson “gives” mass
to particles10. This is not true. The Anderson-Higgs boson in this case is the field h.
However, it is the vacuum expectation value (VEV) ψ0 that gives mass to photon. The
Higgs boson represents the oscillations of the ψ field that remain once it has aquired a
VEV (And further these oscillations become massive since the massless goldstone mode
disappeared when we fixed the phase).

One final comment to remove some possible confusion is regarding the non-existence
of a Higgs mode for superfluid Helium. In Helium we have a mexican hat potential
(Fig. 6.2), and we concluded that there is a low energy (Goldstone) mode associated with
long wavelength phase twists around the bottom rim of the hat. Why then do we not
have a high energy “Higgs” mode associated with oscillations that go “up the Hill” of the
potential? Indeed we do not have such a mode. We know this because we calculated the

9The easy to remember catch phrase is that the gauge boson has become massive because it ate the
goldstone boson... with the obvious reference being that one becomes massive when one eats. There may
be other mechanisms by which the gauge boson gets some exercise and loses weight (that is a joke).

10It is also often said that the Higgs mechanism gives mass to all the particles in the universe. This is
also not true. Hadrons get their mass mainly from gluon energy!
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spectrum of excitations for example, in section 4.5 or for homework (question 5), and we
did not find such a gapped mode! The reason for this absence is hidden in footnote 6:
For the superconductor, due to particle-hole symmetry (discussed later in chapter 11) the
dynamical terms of the action takes a different form from the dynamical terms for the
superfluid and so the analogy of a superconductor being simply a charged superfluid is
not really perfect here!11

6.2.2 Equations of Motion

As in our Gross-Pitaevskii approach, one can differentiate the free energy to obtain equa-
tions of motion.

δF

δψ∗
= 0

yielding the nonlinear Schroedinger equation coupled to a vector potential[
1

2m∗
(−i~∇− e∗A)2 + α2 + 2α4|ψ(r)|2

]
ψ(r) = 0

Similarly we can differentiate with respect to the vector potential in our fixed gauge

δF

δAµ
= 0

and after some exercize in functional differentiation we obtain

∇×B

µ0
− ε0

∂E

∂t
=

e∗

2m∗
[ψ∗ {(p− e∗A)ψ} − {(p + e∗A)ψ∗}ψ]

and from Maxwell’s equation on the left we can identify that the right hand side must
be the electrical current density j as we had previously claimed. If the ground state ψ is
uniform, we thus recover the London equation

j =
(e∗)2

m∗
|ψ|2A =

(e∗)2

m∗
n∗sA

where we have now identified |ψ|2 to be the superfluid density.

6.2.3 Energetics from Ginzburg-Landau theory: Type I and Type II
superconductors revisited

From the Ginzburg-Landau potential

V (ψ) = α2|ψ|2 + α4|ψ|4

11A fun exercise is to use the method of homework questoin 5 to calculate the spectrum of a relativistic
uncharged superfluid, and see that we do indeed develop an additional excitation mode of finite energy!
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recall from Eq. 6.3 that we derived that the minimum free energy occurs at

|ψ|2 = ψ2
0 =
|α2|
2α4

= n∗s

where we have identified this quantity as the superfluid density (we have inserted the ∗

as previously to again indicate that we do not know how many electrons might be bound
together to form one boson).

Recall also from Eq. 3.8 the London penetration depth is given by

λ =

√
m∗

(e∗)2n∗sµ0
=

√
2α4m∗

(e∗)2|α2|µ0
(6.13)

which gives us the decay length of a magnetic field when it penetrates into a supercon-
ductor.

On the other hand, we also derived in Eq. 6.6 a phase stiffness length (or coherence
length)

ξ =

√
~2

2m∗|α2|
(6.14)

Note that both of these lengths scale as

ξ and λ ∼ 1√
|α2|

∼ |T − Tc|−1/2 (6.15)

when we are close to Tc.

Note that this exponent of −1/2 is a so-called mean-field exponent. A more careful
renormalization group calculation will give a different exponent. However, it turns out
that mean field theory tends to be extremely good for superconductors, except when one
gets exceedingly close to the critical temperature12.

The free energy density is given by

min(F )/V = F [ψ0]/V = α2|ψ0|2 + α4|ψ0|4

=
−α2

2

4α4
(6.16)

This energy is the energy that is gained by allowing ψ0 to become nonzero — i.e., it is
the condensation energy per unit volume. Back in Eq. 3.18 we already calculated the

12The reason that mean field theory works so well is that that the coherence length ξ in a superconductor
is extremely large compared to micscopic length scales. The typical fluctations are of energy kbT over a
size ξD with D the dimensionality of space giving an energy density for the fluctuations of kBT/ξ

D ∼
|T − Tc|D/2. We should compare this mean fluctuation energy to the mean field ground state energy
density which is α2

2/(4α4) ∼ |T − Tc|2 (See Eq. 6.16). Close enough to Tc the fluctuation always becomes
larger than the mean field energy (for D < 4) so mean field theory always fails. However, if the prefactor
y in ξ = y|T − Tc|−1/2 is extremely large, as it is in superconductors, then one must go very close to Tc
before this failure happens.



82 CHAPTER 6. GINZBURG-LANDAU THEORY

Figure 6.4: The critical field scales linearly with T −Tc close to Tc, at least within a mean
field theory calculation.

condensation energy per unit volume and using thermodynamics we related it to the
critical field Hc as

condensation energy per volume =
µ0H

2
c

2
=

α2
2

4α4

Thus in terms of the Ginzburg-Landau parameters we obtain

Hc = |α2|
√

1

2µ0α4
∼ (T − Tc) (6.17)

as shown in Fig. 6.4

In Eq. 6.17 we have the combination |α2|/
√
α4 and it is useful to try to construct

this combination out of the known quantities of the coherence length ξ in Eq. 6.14 and
the penentration depth λ in Eq. 6.13. If we take the combination

1

ξλ
=
|α2|√
α4

(
e∗

~

)
√
µ0 ,

we note that a factor of 2m∗ has cancelled here. Recalling that the superconducting flux
quantum is φ0 = 2π~/(e∗) we can rearrange the prior two equations to get

Hc =
1

ξλ

φ0

2πµ0

√
2

(6.18)

What this means is that if we draw a box of area λ on one side and ξ on the other side,
Hc, the magnetic field necessary to completely destroy superconductivity, is the magnetic
field where we have roughly one flux quantum penetrating this area as shown in the left
of Fig. 6.5.

Now recall from the end of section 3.1.5 that the distinction between Type I and
Type II superconductors depends on the energy per unit length ε, or “tension” of a vortex
line. To remind you we have the lower critical field (where magnetic field first can penetrate
a superconductor)

Hc1 =
ε

2φ0
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Hc Hc1

Figure 6.5: Pictoral Descriptions of Critical Fields. Left: Hc can be described as a field
such that one flux quantum penetrates a box of size λ by ξ. Right: Hc1 can be described
as a field such that one flux quantum penetrates a box of size λ by λ.

and if this quantity is lower than Hc then we have a Type II superconductor with a vortex
(Abrikosov) phase for Hc1 < H < Hc2, but if Hc1 > Hc then no vortex phase exists. It
is thus useful to try to make an estimate of the vortex line tension ε, or energy per unit
length of the vortex.

Roughly the energy of a vortex is due to the fact that the superconductivity is
destroyed in the vortex core. Since the healing length of the order parameter is the
coherence length, this means the core should be roughly size ξ. Thus the energy per unit
length of the core is the condensation energy denisty H2

c /(2µ0) times the area of the vortex
core, πξ2. We thus have

Energy

Length
= ε =

H2
c

2µ0
πξ2 ≈ H2

c

µ0
ξ2

where here we are dropping order unity factors (since we are not going to get them right
anyway!). We thus have

Hc1 =
ε

2φ0
≈ µ0H

2
c ξ

2

φ0
≈ φ0

λ2

1

µ0
(6.19)

where we are again dropping order one factors and in the last step we have used the
expression Eq. 6.18 for Hc. The meaning of this result is that Hc1, the lowest field where
a vortex can penetrate a superconductor, is given by the magnetic field necessary such
that a single flux quantum penetrates a square area of size λ by λ, as shown in the right
of Fig. 6.5.

Comparing Eq. 6.18 to 6.19 we see that in order for Hc1 to be less than Hc we must
have

λ

ξ
& 1

which should be the necessary condition for a Type II superconductor. (We have dropped
constants of order unity, so we should not expect to get the precise value correct.)

Conventionally one defines the dimensionless ratio known as the Ginzburg-Landau
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Figure 6.6: The order parameter heals over a short length scale ξ whereas the magnetic
field is screened over a longer scale λ.

parameter

κ =
λ(T )

ξ(T )
= 2

√
α4

µ0

m∗

~e∗

which is temperature independent (at least whenever Ginzburg-Landau theory is valid).

A more precise calculation can be done to give the condition for a Type II super-
conductor is that κ > 1√

2
.

In order to have a vortex we must have a type II superconductor, meaning, κ & 1.
This means the London penetration depth, the screening length for magnetic fields, is
longer than the coherence length, the healing length for the order parameter. Thus around
a vortex core, the order parameter heals quickly whereas the magnetic field is screened
slowly. This is roughly depicted in Fig. 6.6.

In fact a more precise calculation will show that the energy of an isolated vortex
will have a log κ correction that we ignored. By calculating the energy of the vortex core,
we found that the energy per unit length is (See Eq. 6.19)

ε ≈ 2µ0H
2
c ξ

2

However, the actual result includes a term of the form

µ0H
2
c ξ

2 log(λ/ξ)

To understand where this term comes from, we roughly say that at radius less than λ
we can neglect the screening due to the electromagnetism and the order parameter around
the vortex core will be similar to what it is for a neutral superfluid. In this case, the
order parameter is ψ ∼ eiθ so there is a velocity v ∼ ∇θ ∼ 1/r in the θ̂ direction. The
Ginzburg-Landau kinetic energy density will give us something of the form

KE =
mv2

2
∼ 1

r2
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we then have a total energy

E ∼
∫
d2r

1

r2
∼
∫ λ

ξ
dr

1

r
∼ log(λ/ξ)

where we have cut off the integral at ξ because below this, the order parameter drops
and we also cut off at λ because above this radius the screening makes the current drop
exponentially.

6.3 Lagrangian Formulations

6.3.1 Nonrelativisitic Neutral Superfluid

Let us start by writing an appropriate Lagrangian density for a neutral (nonrelativistic)
bose superfluid. This will look like the Ginzburg Landau free energy (Eq. 6.2), except
(1) there is a dynamical term with a time derivative and (2) the sign of the free energy is
flipped. We have

L = i~ψ∗∂tψ −
[
~2|∇ψ|2

2m
+ α2|ψ|2 + α4|ψ4|

]
Writing the Euler-Lagrange equations for this gives us

i~∂tψ = −~2∇2

2m
ψ + α2ψ + 2α4|ψ|2ψ

which is the time-dependent Ginzburg-Landau equation. It is a homework assignment to
derive the excitation spectrum of this equation. We find a single gapless acoustic mode.
You might try deriving the same result by plugging

Ψ = (|ψ0|+ h)eiχ (6.20)

into this equation (with h and θ both real) and expanding for small v and small χ, where
ψ0 =

√
−α2/(2α4) is the magnitude of the order parameter at the bottom of the mexican

hat.

6.3.2 Relativisitic Neutral Superfluid

Now let us consider the relativistic version of a (neutral) bose superfluid. We will write
this in relativistic notation for simplicity (and drop factors of ~ etc). We start with our
Lagrangian density

L = (∂µψ∗)(∂µψ)− α2|ψ|2 − α4|ψ|4

The Euler-Lagrange equations give us

∂µ∂
µψ + α2ψ + 2α4|ψ|2ψ = 0
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If we plug in the form of Eq. 6.20 and expand for small h and small χ we obtain two
equations (one for the real and one for the imaginary part of the Euler-Lagrange equation)
which are given by

(∂µ∂
µ + 2|α2|)h = (∂2

t −∇2 + 2|α2|)h = 0

(∂µ∂
µ)χ = (∂2

t −∇2)χ = 0

These correspondingly have spectra

ω =
√
q2 + 2|α2|

ω = |q|

The latter is a gapless (massless) mode, corresponding to the “Goldstone” mode (ie motion
around the rim of the mexican hat), the former is gapped (massive) with minimum energy√

2|α2|.

6.3.3 Electromagnetism

Before looking at the case of a charged superfluid, let us consider pure electromagnetism.
We can the field strength tensor in terms of the vector potential as Fµν = ∂µAν − ∂νAµ.
The Lagrangian density can then be written as

L = −1

4
FµνF

µν

The Euler lagrange equations ∂µFµν = 0 then generate the free space maxwell equations
∂tE = ∇ × B and ∇ · E = 0. (The remaining maxwell equations are guaranteed by the
fact that we are writing the fields E and B in terms of a vector potential).

6.3.4 Charged Relativistic Superfluid

We couple the relativisitic superfluid to electromagnetism by using the covraiant derivative

Dµ = (∂µ − ieAµ)

So that our Lagrangian can now be written as

L = (Dµψ∗)(Dµψ)− α2|ψ|2 − α4|ψ|4 −
1

4
FµνF

µν

where we have added the Lagrangian for electromagneism at the end. Here as in Eq. 6.9
and 6.10 we choose a gauge to absorb the phase χ given by

eA′µ = eAµ + i∂µχ

Then expanding around the minimum (i.e., for small h) we obtain a new Lagrangian

L = (∂µh)(∂µh) + 2|α2|h2 + |ψ0|2A′2 −
1

4
FµνF

µν + . . .
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Where F is now the field strength for A′ which is the same as the field strenght of A by
gauge invariance. The first two terms in this Lagrangaian are the massive higgs mode.
Applying Euler-Lagrange for h we obtain

(∂µ∂
µ − 2|α2|)h = (∂2

t −∇2 − 2|α2|)h = 0

which gives us the massive field with spectum

ω =
√
q2 + 2|α2|

The last two terms in this Lagrangian, are known as the “Proca” lagrangian for electro-
magnetism, and they have massive dynamics. It is easy enough to derive the euler lagrange
equations

∂µF
µν = |ψ0|2Aν

or
∂µ(∂µAν − ∂νAµ) = |ψ0|2Aν

To check that this is massive, lets attempt a plane wave solution Aν = Bνeikµx
µ
, then lets

go to the long wavelength limit where the spatial part of k is zero, and k0 = ω so we get

ω2 = |ψ0|2

as the lowest frequency solution we can have. I..e, there is a mass gap.



88 CHAPTER 6. GINZBURG-LANDAU THEORY



Chapter 7

Interacting Fermions

7.1 Why study fermions

Having spent the entire course so far discussing bosons, we now turn our attention to
fermions, and interacting fermions in particular.

Why should we study interacting fermions? There are several good reasons for
this

Electrons (which are fermions) are the world1. The physics of every metal,
every semiconductor, every insulator, is completely controlled by the behavior of its elec-
trons. In fact essentially all of chemistry is nothing more than the study of the behavior
of electrons in different environments.

Usually when a condensed matter physicist says they are studying fermions, they
mean they are studying electrons. There is one notable exception2 to this: the fermion 3He.
This fermionic isotope3 of Helium is a favorite of condensed matter. As with the bosonic
version, the light mass of Helium prevents it from forming a solid at low temperatures, and
instead we get a quantum fluid — or Fermi liquid. However, as compared to electrons, it
has short range interactions rather than long range Coulomb interactions, and this makes
its physics somewhat simpler in many ways4. An enormous amount has been learned from

1You can imagine all the electrons getting together and holding hands and singing “We are the world...!”.
At this point, anyone reading this footnote probably thinks I have gone crazy, but I’ve been typing these
notes for a lot of hours in a row, and yes, maybe I’m going a bit batty.

2In the modern era of cold atomic gases, there are now experiments on fermionic cold atoms too.
3Helium-3 (3He) was discovered experimentally in 1934 by Mark Oliphant at Cambridge. A mere few

milligrams of the material became available for experiments as an offshoot of the post-war nuclear program.
Now it is much more plentiful due to the fact that it is a waste product of nuclear missiles (Tritium, a
fuel of hydrogen bombs, has a half-life of 12 years, and decays into 3He). The price of Helium 3 fluctuates
between 100 and 10000 dollars per litre, depending on the global supply at the time.

4One interesting feature we will not discuss in depth is that at extremely low temperaturures (meaning
sub milli Kelvin) 3He actually becomes a superfluid. The experimental discovery of this in 1972 earned
Lee, Osheroff and Richardson a Nobel prize in 1996. Theoretical work on the subject earned a Nobel prize

89
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the study of this fermion. We will return to discussion of this below in section 9.1.

We need to understand strongly interacting fermions. In all of our introduc-
tory courses on solid state physics, we learn about metals, semiconductors, and insulators
completely ignoring the interactions between electrons. But in fact in typical materials,
the interaction energy is on the order of the kinetic energy, or even larger. It seems crazy
to have ignored it! So why on earth is it OK for us to ignore interactions altogether in
these simple pictures. At some level the interactions must have some effect — what are
these effects?

Eventually we want to study superconductivity!. We have so far treated
superconductivity crudely as simply thinking about bosons with charge e∗ = 2e, but this
is completely wrong for a number of reasons:

� Electrons repel each other very strongly. It seems crazy to think of them forming
pairs6.

� Even if you could manufacture some weak attraction between fermions, to make a
true boson that you could condense, you would need a binding radius smaller than
the inter-electron distance. This would require a binding energy on the order of the
Fermi energy, which is huge!7

7.2 Some Mathematical Preliminaries Regarding Fermions

Although it is possible to do almost every calculation in first quantized notation, it becomes
rapidly extremely messy to do so. It is really better to just bite the proverbial bullett
and introduce second quantization and then talk in that language. The preliminaries
introduced here are the fermionic analogs of the preliminaries introduced in section 4.1 for
bosons.

for Tony Leggett5 in 2003. Similar to electons pairing at low temperature to superconduct, Helium 3 forms
pairs at low tempertaure in order to form a superfluid.

5See also comment about Leggett’s opinion of number non-conserving order parameters in section 4.4.
Tony Leggett was an undergraduate at Oxford, in Classics!. (More properly the degree was called “greats”
or something like that at the time). After his undergrad degree he managed to convince a tutor to let him
study physics, which he says he struggled with at first. In his Nobel biography he tells an entertaining
story about rowing in his first year at Oxford (since everyone was doing it) and feeling like he was actually
doing well, until they swapped him for the coxswain.

6Landau famously said “You cannot repeal Coulomb’s law!”
7This very strong binding is precisely what happens to create the boson 4He out of two neutrons, two

protons, and two electrons. However, with electrons interacting with other electrons, there is no analogous
strong attraction mechanism.
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7.2.1 Second Quantization

Orthonormal Single Particle Basis

Suppose we have a set of orthonormal orbitals which we will label i, j, k, . . .. What we mean
by this is wavefunctions ϕi(r, σ), ϕj(r, σ), ϕk(r, σ), . . .. Here note that the wavefunction is
a function of both position and particle spin. The orthonormality condition is8

〈i|j〉 =
∑
σ

∫
dr ϕ∗i (r, σ)ϕj(r, σ)

we will frequently abbreviate this kind of integral as

〈i|j〉 =

∫
d(1) ϕ∗i (1)ϕj(1)

where here (1) is meant to indicate positions and spins (if we have particles with spin).

Many-Fermion Slater Determinant

A many-body fermionic wavefunction must be fully antisymmetric. We can write down
a convenient basis of fully antisymmetric states using so-called Slater determinants9. We
write

Ψ(1̃, 2̃, . . . , M̃) =
1√
M !

∣∣∣∣∣∣∣∣∣
ϕ1(1̃) ϕ1(2̃) . . . ϕ1(M̃)

ϕ2(1̃) ϕ2(2̃) . . . ϕ2(M̃)
...

...
...

ϕM (1̃) ϕM (2̃) . . . ϕM (M̃)

∣∣∣∣∣∣∣∣∣
Here for clarity, the numbers with tildes over them 1̃, 2̃, . . . are the position and spin
variables, whereas the subscripts 1, 2, . . . are orbital indices. If the constituent orbitals are
orthonormal then the Slater determinants are properly normalized

〈Ψ|Ψ〉 =

∫
d(1̃)d(2̃) . . . d(M̃)Ψ∗(1̃, 2̃, . . . , M̃) Ψ(1̃, 2̃, . . . , M̃) = 1 (7.1)

where again the integrals d(1̃) means both to integrate over space and sum over spin.
Further, two Slater determinants made from different sets of orthonormal orbitals will be
orthogonal.

8The observant reader will realize this is nothing more than a completeness relationship

〈i|j〉 =
∑
x

〈i|x〉〈x|j〉

where x is the position and spin basis.
9Slater was a professor at MIT for many years.
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Fermionic Creation Operators

We define a set of Fermionic creation operators c†i corresponding to the orbitals ϕi. These
operators are defined by the following statement: Applying creation operators to the
vacuum gives a Slater determinant of the corresponding orbitals. In particular

c†1c
†
2 . . . c

†
M |0〉 =

1√
M !

∣∣∣∣∣∣∣∣∣
ϕ1(1̃) ϕ1(2̃) . . . ϕ1(M̃)

ϕ2(1̃) ϕ2(2̃) . . . ϕ2(M̃)
...

...
...

ϕM (1̃) ϕM (2̃) . . . ϕM (M̃)

∣∣∣∣∣∣∣∣∣
Let us look at the normalization condition Eq. 7.1. In terms of these operators we have

1 = 〈Ψ|Ψ〉 = 〈0|cM . . . c1 c†1 . . . c
†
M |0〉 (7.2)

We should thus think of c†i as an operator that adds a fermion to orbital i, and corre-
spondingly ci is an operator that removes a fermion from orbital i. So in Eq. 7.2 we start
on the far right with the vacuum, we add a fermion in orbital M and then in M −1 and so
forth until we add a fermion in orbital 1, then continuing towards the left we remove the
fermions in the opposite order until we are back to the vacuum. Alternately we can think
of the ci operators as just being creation operators that have been hermitian conjugated
so that they act on the dual space to the left. I.e., 〈0|ci is the dual (hermitian conjugate)

to the wavefunction c†i |0〉, and both represent one particle created in an orbital.

Anticommutations

Note that the fermionic creation operators must anticommute

c†ic
†
j = −c†jc

†
i

This is because if we switch the order of creation of two orbitals, this corresponds to
switching two rows of the Slater determinant — which incurs a minus sign. Similarly, we
can conclude

cicj = −cjci

Further, we have
c†ic
†
i = 0

since you cannot put two fermions in the same orbital (or equivalently, if two rows of a
Slater determinant are the same, the determinant vanishes). Similarly we have the dual
statement

cici = 0

meaning that you can only annihilate a particle, at most, once.

Finally we note that
c†ici + cic

†
i = 1 (7.3)
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To see this is true we apply this expression to an arbitrary |state〉. We can decompose the
|state〉, into two parts, one in which orbital i is filled and one in which orbital i is empty
(there are no other possibilities for fermions). If the orbital is filled then

c†ici|state〉 = |state〉

since the fermion in orbital i is removed and then put back. On the other hand

cic
†
i |state〉 = 0

since it is trying to create another fermion in orbital i which is already filled.

On the other hand, if orbital i is empty we have

cic
†
i |state〉 = |state〉

since we can add a particle to orbital i then remove it again. And also we have

c†ici|state〉 = 0

since we are trying to annihilate a particle from an orbital that is already empty. Putting
these statements together we find that Eq. 7.3 is satisfied independent of whether it acts
on a filled or empty orbital.

We can summarize many of these results by defining anticommutator brackets. For
any operators let us define

{A,B} = AB +BA

All of the previous results in this subsection are summarized with the following state-
ments10:

{ci, cj} = {c†i , c
†
j} = 0 (7.4)

{ci, c†j} = δij (7.5)

7.2.2 Change of Basis

As in the bosonic case we can consider changing the basis for our orbitals. Let us suppose
we have two sets of orthonormal basis orbitals. One set we call {|α〉} and the other set

10The observant reader will notice that in fact we have not yet shown Eq. 7.5 for i 6= j. This is required
by consistency. To see this let us try writing (with i 6= j)

c†j |0〉 = c†jcic
†
i |0〉

But also

c†j |0〉 = cic
†
i c
†
j |0〉 = −cic†jc

†
i |0〉

Since these two lines must equal each other, we must have c†jci = −cic†j



94 CHAPTER 7. INTERACTING FERMIONS

we call {|i〉}. We can derive creation operators in a new basis in terms of the creation
operators in the old basis (this is entirely analogous to Eq. 4.5 for bosons)

c†α =
∑
i

〈i|α〉c†i

A useful example of such a basis change is from tight binding orbitals to plane waves
on a lattice (where we leave the spin unchanged in this particular case).

c†r;σ =
∑
k

〈k, σ|r, σ〉c†k;σ =
∑
k

e−ik·rc†k;σ

Often we would like to use continuum fields r rather than lattice points, in which case
we write ψ̂†σ(r) instead of c†σ(r). In this case the fields ψ̂ and ψ̂† obey the anticommutations

{ψ̂†σ(r), ψ̂σ′(r
′)} = δ(r− r′)δσ,σ′

If we have an orbital basis ϕi(r, σ) we can write the creation operators in this basis in
terms of the ψ̂ operators as

c†i =
∑
σ

∫
drϕi(r, σ)ψ̂σ(r)

=

∫
d(1)ϕi(1)ψ̂†(1)

Important Example: Fermi Sea As an example, let us consider a sytem of k
states filling a Fermi sea. We can write

|Fermi Sea〉 =
∏
|k|<kf

∏
σ=↑,↓

c†k,σ|0〉 (7.6)

We note that there is some presumed fiducial11 ordering of operators in these products.
Without an ordering we cannot establish the sign of the wavefunction. Fortunately, we
may never need to actually specify the ordering, but we should be very careful to keep
track of any changes to the ordering, since any exchange incurs a minus sign.

7.2.3 Writing our Hamiltonian in Second Quantized Form

We will typically be concerned with a Hamiltonian of the form

H = H0 +Hint

where12

H0 =
∑
i

[
p2
i

2m
+ U(ri)

]
=
∑
i

ĥi

11Fiducial means essentially “accepted as a fixed reference”.
12I apologize that here I’ve used U for single particle potential and V for interaction, whereas in prior

sections it was the other way around. I hope this does not create too much confusion!
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is the single particle Hamiltonian of particles in a trapping potential U(r) and

Hint =
1

2

∑
i 6=j

V (ri − rj)

is the interaction between particles. This might be, for example, a Coulomb interaction if
we are considering electrons.

We now want to rewrite these in second quantized form.

To do this we can write the particle density,

ρ(r) =
∑
σ

ψ̂†σ(r)ψ̂σ(r)

so that we can write the interaction as

Hint =
1

2

∫
d(1)

∫
d(2) : ρ(1)V (1− 2) ρ(2) :

=
1

2

∫
d(1)

∫
d(2) : ψ̂†(1)ψ̂(1) V (1− 2) ψ̂†(2)ψ̂(2) :

As in section 4.3 we have added colons : to indicate that the expression should be normal
ordered which implies we should move all the creation operators to the left (and remember
to add a minus sign for each exchange). To justify this we consider a system with a single
fermion — without the normal ordering colons, this single fermion would have a nonzero
self-interaction.

We can thus rewrite the interaction term as

Hint =
1

2

∫
d(1)

∫
d(2)ψ̂†(1)ψ̂†(2) V (1− 2) ψ̂(2)ψ̂(1) (7.7)

The single particle term, we can write as

H0 =

∫
d(1) ψ̂†(1)

[
−~2∇2

2m
+ U(r)

]
ψ̂(1) (7.8)

To see that this is correct, we rewrite ψ† in terms of some single particle basis |α〉.

ψ̂†(1) =
∑
α

ϕ∗α(1)c†α

so that we have
H0 =

∑
α,β

hαβc
†
αcβ (7.9)

where

hα,β = 〈α|ĥ|β〉 =

∫
d(1) ϕ∗α(1)

[
−~2∇2

2m
+ U(r)

]
ϕβ(1)
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It is most convenient at this point (although certainly not necessary) to choose a
basis |a〉 that are eigenvectors of the operator ĥ with eigenvalues ε0a, so we have

ĥ|a〉 = ε0a|a〉

Thus we can write

H0 =
∑
a

ε0a c
†
aca (7.10)

The meaning of this expression is quite clear. The operators n̂a = c†aca counts the number
of fermions (0 or 1) in orbital a, and if there is a fermion in the orbital, it is assigned an
energy ε0a.

It is then useful to write the interaction part of the Hamiltonian Eq. 7.8 in an orbital
basis to obtain

Hint =
1

2

∑
α,β,γ,δ

vαβγδ c
†
αc
†
βcδcγ (7.11)

where the matrix element vαβγδ is given by

vα,β,γ,δ = 〈αβ|V |γδ〉 =

∫
d(1)

∫
d(2) ϕ∗α(1)ϕ∗β(2)V (1− 2)ϕγ(1)ϕδ(2) (7.12)

Note carefully the ordering of the indices in Eq. 7.11 (the last two indices in the two sets
of subscript are switched). To see where this comes from compare Eq. 7.7 to Eq. 7.12.
We will continue to use this convention, although other conventions are possible as well.

Obviously the matrix element 〈αβ|V |γδ〉 in Eq. 7.12 uses a two-particle basis

|γδ〉 → ϕγ(1)ϕδ(2)

which is not properly symmetrized for fermions. The symmetrization is automatic though
once we put these matrix elements into Eq. 7.11 using the fermionic creation operators.

Note also that the matrix element has a number of obvious symmetries including

vαβγδ = vβαδγ (7.13)

The Hamiltonian H = H0 +Hint with Hint written in the form of Eq. 7.11 and H0

written in the form of Eq. 7.9 or Eq. 7.14 will be our object of study for the rest of this
chapter. This form is extremely general and can be used for study of any interacting Fermi
system, such as electrons in a metal, electrons in an atom, Helium 3, or even neutrons in
a neutron star.

We will use several different “first pass” approximations (first order perturbation
theory, Hartree approximation, Hartree-Fock, etc). Sometimes these approximations will
give the same results, but sometimes they will not.
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Figure 7.1: (Ignore the lined paper!). This depicts filling all orbitals up to the chemical
potential.

7.3 First Order Perturbation Theory

Let us work in a basis such that the single particle Hamiltonian H0 is diagonal. We thus
have

H0 =
∑
a

ε0a c
†
aca (7.14)

Ignoring the interaction (“zeroth” order in interaction) the ground state is just to fill up
all orbitals below the chemical potential µ.

|Noninteracting Ground State〉 = |GS0〉 =

[ ∏
a occupied

c†a

]
|0〉 (7.15)

where here an orbital a is occupied if

ε0a < µ

as depicted schematically in Fig.7.1. As in Eq. 7.6, there is some presumed ordering of
orbitals in Eq. 7.15 which we will not specify.

Next we want to include the interaction term. We write this term as above in the
form (Same as Eq. 7.11)

Hint =
1

2

∑
α,β,γ,δ

vαβγδ c
†
αc
†
βcδcγ (7.16)

At first order in perturbation theory the correction to the energy is

δE = 〈GS0|Hint|GS0〉

We now have to evaluate this expectation. We could do this by commuting a bunch of
operators around, but there is a simple “shortcut” way of thinking:

δE = 〈0|
∏

e occupied

ce |︸ ︷︷ ︸
same filled state

1
2

∑
abcd

vabcd c†ac
†
b︸︷︷︸

return same two

cdcc︸︷︷︸
remove two

|
∏

f occupied

c†f |0〉︸ ︷︷ ︸
1filled state

Here we note that the initial ket and final bra are exactly the same state. This means
whichever particles are removed by cdcc have to be returned by c†ac

†
b. There are exactly

two ways in which this can happen: Either a matches c and b matches d,

c†a c
†
b cd cc
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or a matches d and b matches c

c†a c
†
b cd cc

We thus obtain

δE = 〈Hint〉 =
1

2

∑
a,b occupied

(vabab − vabba) (7.17)

It is clear that the two terms should have opposite signs since one commutation will make
them look the same. To be more precise about the signs, note that in the first case (were
a matches c) we can write the contribution as

〈0|
∏

e occupied

ce | c†ac
†
b cbca |

∏
f occupied

c†f |0〉 = 〈state|state〉

so we end up with a positive sign. On the other hand, to get the second case into this
form we need to anticommute two of the operators and thus pick up an minus sign.

This approach, can at least in principle, be extended systematically to higher order
perturbation theory.

7.3.1 Hartree and Fock Terms

The two terms in Eq. 7.17 have different meanings. Let us study them one at a time.

Hartree, or Direct, Term

Using Eq. 7.12 the first term in Eq. 7.17 is given by

vabab =

∫
d(1)

∫
d(2)|ϕa(1)|2|ϕb(2)|2V (1− 2) (7.18)

This is known as the Hartree13 or Direct interaction term. This is simply the interaction of
the density in orbital a with the density in orbital b. If we keep only this term in Eq. 7.17
we have what is known as the Hartree approximation, which is somewhat simpler than
the full first order perturbation calculation.

Self-Consistent Hartree We can also consider doing a self-consistent version of
this calculation. This is a common approach known as self-consistent Hartree. It amounts
to solving the Schroenger equation in a potential which includes the interaction from all
the other electrons in the system14. In other words we write

U eff (r) = U(r) +

∫
dr′

∑
n occupied

|ϕn(r′)|2V (r− r′)

= U(r) +

∫
dr′ 〈ρ(r′)〉 V (r− r′)

13Douglas Hartree was a British Numerical expert. He has a unit, the Hartree, named after him (which
is e2/(4πε0a0) = 2Ry ≈ 27.2eV).

14Self-consistent Hartree for bosons is precisely the Gross-Pitaevskii equation! See discussion near
Eq.4.13.



7.3. FIRST ORDER PERTURBATION THEORY 99

The procedure for implementing self-consistent Hartree is as follows:

1. Solve the Schroedinger equation in the presence of the potential U eff (r)

2. Fill the lowest N orbitals, and calculate 〈ρ(r)〉

3. Recalculate U eff

4. Go back to step 1, and repeat until converged.

Fock, or Exchange, Term

Using Eq. 7.12 the second term in Eq. 7.17 is given by

vabba =

∫
d(1)

∫
d(2) ϕ∗a(1)ϕ∗b(2)V (1− 2)ϕb(1)ϕa(2) (7.19)

Note in particular that this term is zero unless the orbitals a and b overlap15. Note in
particular that this means that orbital a and b need to overlap both in space and in spin
space16. Eq. 7.19 is known as the Fock17 or exchange term. This term cannot be described
as simply some sort of effective potential that an electron moves in, as the Hartree term
was. Note also that if the potential V (r) is repulsive, the Fock term (which enters in
Eq. 7.17 with a minus sign) is attractive.

Further Comments on First Order Perturbation Theory

It should be noted that, despite the fact that we have a Hartree term and a Fock term, what
we have calculated so far (Eq. 7.17) is NOT the Hartree-Fock approximation (admittedly
the nominclature is confusing).

We should also note that first order perturbation theory can also be used to (ap-
proximately) calculate the energy shift, due to interactions, of excited states. Again, if we

15If the support of ϕa and ϕb (meaning the region where they are nonzero) is disjoint then there is no
value of the variable 1 for which the integrand is nonzero

16For example, since ∫
d(1)ϕ∗a(1)ϕb(1) =

∫
dr
∑
σ

ϕ∗a(r, σ)ϕb(r, σ)

If we work with orbitals having a definite spin, the two orbitals would have to have the same spin for this
to be nonzero.

17Vladimir Fock was the creator of the idea of second quantization in 1932 (although some of the ideas
were presented by Dirac as early as 1927). Fock is immortalized through the idea of “Fock space”. Much
of Fock’s later career was devoted to philosophy of science. He became a defender of relativity in a
hostile Marxist world. Unfortunately, some of the Marxist philosophers thought that modern physics was
“Bourgeois” and therefore dangerous to the state. Fock was forced to become a philosopher, speak their
language, and clarify what is physics and what is philosophy. It is unclear how well Soviet physics would
have survived were it not for Fock.
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begin with the noninteracting system, we can write an excited state as

|Excited〉 = c†jci|GS0〉

where i is one of the orbitals which is filled in the noninteracting ground state, and j is one
of the orbitals which is empty in the noninteracting ground state. Without interactions
the energy of this excited state is

E0
excited = ε0j − ε0i + E0

groundstate

Again we can calculate the energy shift due to interactions as

δE = 〈Hint〉 =
1

2

∑
a,b occupied

(vabab − vabba)

with the expectation given in the excited state, meaning that the sum over occupied states
includes orbital j but not orbital i.

7.4 Hartree-Fock Approximation

The so-called Hartree-Fock approximation is a self-consistent mean-field theory approach.
It is often the first approach a theorists tries, and it is used extensively in condensed
matter physics, but also in nuclear physics, atomic physics, molecular chemistry18, and so
forth.

Let us briefly recall the (Weiss) mean field method for understanding ferromagnets.
Here we have a Hamiltonian like the Heisenberg Hamiltonian

H =
J

2

∑
〈i,j〉

Si · Sj

where, for example, the sum is over neighboring spins i, j. To handle this interaction
we average one of the spins and leave the other one un-averaged,. So we have instead a
Hamiltonian for a single spin given by

hj = J
∑

j neighbors i

Si · 〈Sj〉

with 〈Sj〉 = 〈S〉 is the average of the spin on any site. We can then solve the single site
problem, and we need to “self-consist” meaning that the solution of the single-site problem
should give us 〈S〉.

We hope to use the same mean-field idea to handle the interaction term of our
Hamiltonian. We thus take

Hint =
1

2

∑
α,β,γ,δ

vαβγδ c
†
αc
†
βcδcγ (7.20)

18A Nobel Prize in chemistry was awarded to John Pople in 1998 for developing numerical Hartree Fock
methods for simulating molecules.
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and we replace it with

Heff
int =

1

2

∑
α,β,γ,δ

vαβγδ

[
〈c†αcγ〉c

†
βcδ + 〈c†βcδ〉c

†
αcγ − 〈c†αcδ〉c

†
βcγ − 〈c

†
βcγ〉c

†
αcδ

]
(7.21)

Here we have taken all possible (nonzero) averages of two operators and left two other
operators unaveraged19 Note also that due to the symmetry Eq. 7.13 the first two terms in
the square brackets are identitical to each other and the last two terms are also identical
to each other.

We can thus write a more abbreviated form

Heff
int =

∑
α,δ

fαδ c
†
αcδ (7.22)

where
fαδ =

∑
β,γ

〈c†βcγ〉 [vαβδγ − vαβγδ] (7.23)

Including the single-body terms hαβ (See Eq. 7.9) we have

Heff =
∑
αδ

[hαδ + fαδ] c
†
αcδ (7.24)

The two equations Eq. 7.23 and 7.24 constitute the Hartree-Fock approximation. Our
procudure for solving these two equations at the same time is iterative (similar to the
above described, self-consistent Hartree approach). While in principle one can produce
a solution in any basis, it is convenient to successively change basis as we iterate to
convergence. We thus follow the following procedure

1. Let εµ be the eigenvalues of hαδ + fαδ with corresponding eigenvectors |µ〉.

2. Change to this eigenbasis by defining

c̃†µ =
∑
α

〈α|µ〉c†α

In this basis, the Hamiltonian is of the form

Heff =
∑
µ

εµc̃
†
µc̃µ

3. Fill the lowest N states with our fermions (Assuming we have an N fermion system)

|Ψ〉
∏

lowest N

c̃†µ|0〉

19When we get to superconductivity, we will also consider the possibility of needing terms like 〈c†c†〉 and
〈cc〉. However if we insist on a system with a definite number of particles, such expectations are strictly
zero.
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4. Recalculate fαδ in this new ground state using Eq. 7.23. Note that this recalculation
is why we wanted to work in the diagonal basis. In this basis we have

〈c†µcν〉 = δµν ×
{

1 if µ is filled
0 if µ is empty

We thus have20

fαδ =
∑

µ occupied

[vαµδµ − vαµµδ] (7.25)

5. Go back to step 1 and repeat until convergence. When it converges, the old basis
and the new basis match. This means, that in this basis, h+ f is already diagonal.
Thus we have

εµ = hµµ + fµµ = hµµ +
∑

ν occupied

[vµνµν − vµννµ]

The first term in the square brackets being from the Hartree term and the second
term being from the Fock term.

Note that if we were to follow exactly the same procedure, but using only the first
(Hartree) of the two v terms, we would have the self-consistent Hartree approximation, as
described above.

The energies εµ can be thought of as the Hartree-Fock ionization energies. I.e.,
this is the energy (in Hartree-Fock approximation) required to remove the electron in
the µ orbital. This results is known as Koopmans’ theorem21. The total energy of the
Hartree-Fock system is given by

Etotal =
∑
µ filled

[
hµµ +

1

2
fµµ

]
(7.26)

The factor of 1/2 here is similar to what occurs in Weiss mean field theory. In writing
down the total energy of the system, one does not want to overcount the energy of spin
i interacting with spin j and also spin j interacting with spin i. It is quite similar here.
Simple addition of all of the εµ Hartree Fock ionization energies would count interaction
of each particle µ with all the other particles ν but then would again count the interaction
of each ν with µ. Thus we need to introduce the factor of 1/2 in the interaction.

20Note here that the value of fαδ depends on what basis we have chosen for the indices α, δ, µ. On each
iteration of Hartree-Fock, the basis changes, and f correspondingly changes until convergence.

21Tjalling Koopmans is a Nobel laureate in the field of economics (never mind that economics was not
one of the original subjects that Nobel had established prizes for — so it is strictly speaking a Nobel
memorial medal, not a Nobel prize). He did his work on Hartree-Fock in 1934 when he was a 24 year old
grad student, but shortly thereafter switched fields to economics. His prize in 1975 was awared for the
theory of optimal allocation of resources. Apparently his own resource was more optimally allocated in
the field of economics. The word “Koopman” in dutch means “Trader” or “Merchant”, possibly justifying
his attraction to the field of economics.
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7.4.1 Hartree-Fock as Optimal Slater Determinant

We claim that the solution of the Hartree-Fock equations provides the best (lowest en-
ergy) variational wavefunction in the form of a single Slater determinant. This optimal
wavefunction is

|HF〉 =
∏
µ filled

c†µ|0〉

for the Hartree-Fock orbitals µ. This brings us to an equivalent definition of the Hartree-
Fock approximation:

Hartree-Fock is an approximation by which one finds the optimal ground state
wavefunction in the form of a single Slater determinant.

Proof that this statement is equivalent to the Hartree-Fock equations derived as a
mean field theory above (Eq. 7.23 and 7.24) is nontrivial. We will present it here.

Proof:

Consider a basis of orbitals µ and a single Slater determinant (or “filled Fermi sea”)
made of these orbitals.

|GS〉 =
∏
µ filled

c†µ|0〉

We would like to find a condition such that |GS〉 is a variational minimum. To find this
condition we want to try varying the basis µ and seeing if the energy decreases. So let us
imagine switching to a new basis

c̃†α =
∑
µ

〈µ|α〉c†µ =
∑
µ

Uαµc
†
µ (7.27)

where U is a unitary matrix. Note that we are only concerned with a change of basis
which mixes filled and empty orbitals. If we change basis in a way that that mixes two
filled orbitals with each other, or in a way that mixes two empty orbitals with each other,
the resulting Slater determinant remains unchanged22,23. At the same time we want the

22Let us see an example of this. Suppose we make the basis transform

c̃†a = (c†1 + c†2)/
√

2

c̃†b = (c†1 − c
†
2)/
√

2

It is easy to check that if both orbitals are filled, the basis change does not change the resulting Slater
determinant:

c̃†ac̃
†
b|0〉 = c†1c

†
2|0〉

However if we only fill one of these two orbitals

c̃†a|0〉 6= c†1|0〉 6= c†2|0〉

Thus to change the Slater determinant, we need to mix a filled state with an empty state.
23We should be cautious that rewriting a determinant of orbitals in terms of an equivalent set of orbitals

can sometimes incur an overall sign to the wavefunction if we somehow reorder the orbitals in the process.
We will not care about this sign as it does not change the energy of the wavefunction.
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variation to be very small, so we can write

U = eiεM

with M = M † a Hermitian matrix24. With ε small, we have

U = 1 + iεM + . . .

which we plug into Eq. 7.27 to give

c̃†µ = c†µ + iε
∑
ν

Mµνc
†
ν + . . .

Here, as mentioned above, to have any change in the resulting Slater determinant we are
only interested in M that mixes filled and empty orbitals. Thus we can assume that Mµν is
nonzero only if either µ is filled and ν is empty or ν is filled and µ is empty. (in particular
µ 6= ν).

Thus we consider trial states of the form

|Ψ〉ε =
∏
µ filled

c̃†µ|0〉

=
∏
µ filled

(
c†µ + iε

∑
ν empty

Mµνc
†
ν

)
|0〉 (7.28)

where the sum over ν must be only over unoccupied states, such that we have µ occupied
and ν unoccupied (or equivalently M is simply zero for all other cases). We now want to
expand this product order by order in ε. We get

|Ψ〉ε =

[ ∏
µ filled

c†µ|0〉

]
+ iε

∑
ν empty; µ filled

Mµνc
†
νcµ

[ ∏
λ filled

c†λ|0〉

]
+ . . .

Let us walk through this result in some more detail. The first term in brackets, the product
of the c†µ is the product of all of the first terms in Eq. 7.28. This just gives the unperturbed
ground state |GS〉 (ie., the ε = 0 wavefunction). The order ε1 term is more complicated.
To get this term from the product of Eq. 7.28 one chooses only a single µ in the product
where instead of taking the first term c†µ one instead chooses the Mµν term25. We write
this term in a creative way, by starting with |GS〉 (the term in square brackets on the

far right) and removing the orbital µ with cµ and then putting in the sum over Mµνc
†
ν

instead. As a shorthand we can write

|Ψ〉ε = |GS〉+ ε|δΨ〉+ . . .

24Let us check that exponentiating a hermitian matrix gives a unitary matrix. For a matrix to be unitary
we must have UU† = 1. So let us check (eiεM )(eiεM )† = (eiεM )(e−iεM ) = 1.

25If a sign occurs in reordering creation operators this can be absorbed into M .
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where
|δΨ〉 = iε

∑
ν empty; µ filled

Mµνc
†
νcµ |GS〉 (7.29)

At this linear order in ε it is easy to see that

〈δΨ|GS〉 = 0

since δΨ always has some orbitals ν filled which are not filled in the ground state, GS.
This then implies that

ε〈Ψ|Ψ〉ε = 1 +O(ε2)

Finally we turn to the variational condition. We would like our wavefunction to be
at an extremum of the energy. Thus we want

∂E

∂ε

∣∣∣∣
ε=0

= 0

which we write as
∂

∂ε

∣∣∣∣
ε=0

ε〈Ψ|H|Ψ〉ε
ε〈Ψ|Ψ〉ε

= 0

where this condition should now be true for any hermitian matrix M that mixes filled and
unfilled orbitals. Note that the denominator of this fraction we just found to be 1 up to
corrections of order ε2 so we can throw this out. Expanding our condition and taking the
ε derivative gives us the condition

0 = 〈δΨ|H|GS〉+ 〈GS|H|δΨ〉 = Re〈GS|H|δΨ〉

And indeed since this needs to be true for any matrix M in Eq. 7.29, we can equivalently
state the condition

Re〈GS|Hc†νcµ|GS〉 = 0

where µ is filled in the ground state GS and ν is empty in the ground state GS. Writing
H out explicitly we get

Re〈GS|

∑
αβ

hαβc
†
αcβ +

∑
αβγδ

1

2
vαβγδc

†
αc
†
βcδcγ

 c†νcµ |GS〉 = 0 (7.30)

Let us attack this term by term. In the first term, we have

〈GS|c†αcβc†νcµ |GS〉

Since µ is occupied (filled) and ν is unoccupied (empty) in |GS〉, this expression can only
be nonzero if µ = α and ν = β.

〈GS|c†α cβ c
†
ν cµ |GS〉 = δνβδαµ
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Thus the first term in the correlator Eq.7.30 is simply hµν .

We next examine the second, more complicated, term in Eq. 7.30. This has the
form

〈GS| c†αc
†
βcδcγ c

†
νcµ |GS〉

Now there are four different ways in which this can be nonzero, which we now list here.
For all of these we must have µ initially filled and ν initially empty.

〈GS| c†αc
†
βcδcγ c

†
νcµ |GS〉 → +δαµδβδδγν δ initially filled

〈GS| c†αc
†
βcδcγ c

†
νcµ |GS〉 → +δαγδβµδδν γ initially filled

〈GS| c†αc
†
βcδcγ c

†
νcµ |GS〉 → −δαµδβγδδν γ initially filled

〈GS| c†αc
†
βcδcγ c

†
νcµ |GS〉 → −δαδδβµδγν δ initially filled

Putting these results together we obtain the condition

hµν +
1

2

∑
x occupied

[vµxνx + vxµxν − vµxxν − vxµxν ] = 0

Now using the symmetry of v given in Eq. 7.13 we find that the first two v terms are the
same and the last two v terms are the same thus giving us

hµν +
∑

x occupied

[vµxνx − vµxxν ] = 0

for all µ filled and ν empty. We recognize the sum over x as being precisely fµν as given
in Eq. 7.25. So our condition is

hµν + fµν = 0

for µ initially filled and ν initially unfilled. Thus if we started with a Hartree-Fock basis,
where h+f is diagonal, this condition in necessarily satisfied (since it will only be nonzero
for µ = ν). Thus we conclude that the solution to the Hartree-Fock equations indeed
produces a single Slater determinant with its energy extremized! QED. �. Yay. etc.

7.5 Application of Hartree-Fock to Translationally Invari-
ant Fermions

We now would like to apply Hartree-Fock theory to a very simple, but also very important
case — the translationally invariant interacting Fermi gas.
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This situation is supposed to model electrons in metals, but we have thrown away
the crystal lattice for simplicity and just kept the electrons. (So, for example, we will have
a perfectly spherical Fermi sea, as compared to what we get in real metals). Note that if
we completely throw away the positive ions in the crystal lattice, the Coulomb energy of
all the electrons interacting with each other becomes infinite. To avoid this problem, one
usually smears out a neutralizing positive charge which we keep along with the electrons,
so that the entire system is charge neutral (but still completely translationally invariant).
This model is known as the “jellium” model26 (with the idea that the positive charge is
like a smeared out jelly that has been spread evenly around the system).

Another way to handle the problem coming from the infinite Coulomb interaction is
to just consider fermions with shorter range interaction V (r). While this does not apply
to real electrons, it does apply to Fermi systems such as 3He.

Whether we use a jellium background or not, our Hamiltonian will always be of the
form

H = H0 +Hint

where

H0 =
∑
k,σ

~2k2

2m
c†kσckσ

is the kinetic (single particle, noninteracting part) of the Hamiltonian, and

Hint =
1

2

∑
(k1σ1)(k2σ2)(k3σ3)(k4σ4)

v(k1σ1)(k2σ2)(k3σ3)(k4σ4) c†k1σ1
c†k2σ2

ck4σ4
ck3σ3

Note when comparing to the form written in Eq. 7.11 the indices we used as a, b, c, d are
now replaced by the combined indices (k1σ1), (k2σ2), (k3σ3), (k4σ4). The matrix element
is given by

v(k1σ1)(k2σ2)(k3σ3)(k4σ4) = 〈k1σ1; k2σ2|V (r− r′)|k3σ3; k4σ4〉

Here the kets are normalized (but unsymmetrized) plane wave state of two particles

〈rσ3; r′σ4|k3σ3; k4σ4〉 =
1

V
eik3·r+ik4·r′

with V the volume of the system. Thus we have

v(k1σ1)(k2σ2)(k3σ3)(k4σ4) = δσ1σ3δσ2σ4

∫
dr

∫
dr′

1

V2
e−ik1·r−ik2·r′eik3·r+ik4·r′V (r− r′)

= δσ1σ3δσ2σ4

1

V
δk1+k2,k3+k4 Ṽ (k4 − k2)

26The Jellium model (including the name) was constructed by Conyers Herring. Herring was an ex-
tremely important condensed matter physicist in the mid 1900s — and his influence was often in the
background of other great works. Herring was the first head of the famous Bell Labs theory department.
Many years later, when Bell Labs was closing down its fundamental research effort, I was the last head of
the Bell Labs theory department – a rather dubious distinction I’m afraid.
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Figure 7.2: Left: The interaction in Eq. 7.31 drawn as a diagram. Middle: connecting up
the legs of the diagram to make the Hartree contribution. Right: Connecting the legs up
to make the Fock contribution.

where

Ṽ (k) =

∫
dre−ik·rV (r)

We can thus rewrite

Hint =
1

2V
∑

(k1,σ1),(k4,σ4),q

c†k1σ1
c†(k4−q)σ4

ck4σ4
c(k1−q)σ1

Ṽ (q) (7.31)

Note that there is another, potentially more physical way to write this expression

Hint =
∑
q

: ρ(q)Ṽ (q)ρ(−q) :

where ρ is the density written in Fourier space

ρ(q) =
∑
k,σ

c†(k+q)σckσ = FourierTransformq[ψ̂†(r)ψ̂(r)] (7.32)

Although we don’t intend to express our perturbation theory in terms of Feynman
diagrams, it is occassionally useful to write these diagrams anyway — not the least reason
being that one will often see these diagrams in the literature, and it is useful to be able
to convert the diagram into physical expressions. The interaction 7.31 can be written
diagrammatically as shown in the left of Fig. 7.2. When we make the Hartree-Fock ap-
proximation, we want to average one creation and one annihilation operator to give 〈c†acb〉,
and this can be done in two ways, corresponding to the direct and exchange (Hartree and
Fock) terms.

The first possibility is the direct or Hartree term

c†k1σ1
c†(k4−q)σ4

ck4σ4
c(k1−q)σ1
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and the second is the exchange or Fock term

c†k1σ1
c†(k4−q)σ4

ck4σ4
c(k1−q)σ1

We will examine these one at a time.

Note that we are going to assume that the ground state is in the form of a Fermi
sea

|FS〉 =
∏

σ,k<kF

c†kσ|0〉

and we will justify this assumption post-facto.

Direct (Hartree) Term

We have

HHartree =
1

V
∑
q

∑
k1,σ1

〈c†k1σ1
c(k1−q)σ1

〉

 ∑
k4,σ4

c†(k4−q)σ4
ck4σ4

Ṽ (q)

Here we examine the expectation. If we are taking the expection in a Fermi sea state, we
have

〈c†k1σ1
c(k1−q)σ1

〉 = δq,0 × nF (k)

where

nF (k) =

{
1 |k| < kF
0 otherwise

(7.33)

is the Fermi occupation factor at zero temperature for the Fermi sea where kF is the Fermi
wavevector. Thus the expression in the square brackets is∑

k1,σ1

〈c†k1σ1
c(k1−q)σ1

〉

 = Nδq,0

with N the total particle number. We then get

HHartree =
N

V
Ṽ (0)

∑
k4,σ4

c†k4σ4
ck4σ4

This is nothing more than a shift of the chemical potential and is therefore trivial. Indeed,
if one considers a jellium model where the positive charge is neutralized by a uniform
background charge, Ṽ (0) = 0, and this term vanishes exactly. Diagramatically, this is
expressed by the diagram in the middle of Fig. 7.2.
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Exchange (Fock) Term

Here we have

HFock =
−1

V
∑
k1,σ1

 ∑
k4,σ4,q

〈c†(k4−q)σ4
c(k1−q)σ1

〉Ṽ (q)

 c†k1σ1
ck4σ4

We again examine the expectation in the Fermi sea ground state giving us

〈c†((k4−q)σ4
c(k1−q)σ1

〉 = δσ1,σ4δk1,k4 nF (k4 − q)

so the Fermi occupation factor here is unity only if |k4 − q| < kF and is otherwise zero.
We can then write the Fock term as

HFock =
∑
k,σ

ΣFock(k) c†kσckσ

where ΣFock is known as the self-energy and is given by

ΣFock(k) = − 1

V
∑
q

Ṽ (q)nF (|k− q|)

Diagrammatically this result is shown in the far right of Fig. 7.2.

Putting the Hartree-Fock pieces together

Adding together the Hartree and Fock contributions we get the effective Hartree-Fock
Hamiltonian

HHF =
∑
k,σ

εHF (k) c†k,σckσ (7.34)

where

εHF (k) =
~2k2

2m
+
N

V
Ṽ (0) + ΣFock(k) (7.35)

What is crucial to note here is that Eq. 7.34 is “diagonal” in the variables k and σ. This
means we have the correct Hartree-Fock eigenstates. Recall that we were supposed to
iterate Hartree-Fock until we converge to diagonal. Here we simply guessed the right
starting wavefunction, and we found it was diagonal immediately. This may seem surpris-
ing, but actually it is not. Before we turned on the interaction, we had a translationally
invariant system with a ground state which was a simple Fermi sea. When the interaction
was turned on, we did not ruin translational invariance, and this greatly constrains what
kind of wavefunctions we can write down. In particular, each Hartree-Fock eigenstate
must be an eigenstate of momentum. As a result, the Hartree-Fock best single Slater
determinant is simply the filled non-interacting Fermi sea. And in this case, Hartree-Fock
just gives a modification to ε(k). This results is the same as what we would get for first
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order perturbation theory in this case, although that is not always true for Hartree-Fock
in non-translationally invariant systems.

It is worth looking at the three terms in Eq. 7.35. The first term is simply the
noninteracting kinetic energy. When we sum this up over the entire Fermi sea in Eq. 7.34
we obtain (this is an easy exercise to show!)

E0 =
3

5
NE0

F (7.36)

where E0
F is the noninteracting Fermi energy. The total Hartree energy summed over all

of the particles is

EHartree =
1

2

N2

V
Ṽ (0) (7.37)

with V the volume of the system as usual; and the total Fock energy summed over all the
particles is

EFock =
−1

2V
∑
q,q′,σ

nF (q)nF (q′)Ṽ (q− q′) (7.38)

Note that this rather intuitive expresion gives only interaction between aligned spins, as
is required for the Fock term. The factors of 1/2 in Eq.7.37 and 7.38 are included to avoid
overcounting as described in Eq. 7.26.

7.5.1 Hartree-Fock Effective Mass

The interesting physics of a metal is often the low energy physics compared to EF , since
EF for a metal is often huge. We are thus interested in the low energy excitations near
the Fermi surface.

For a noninteracting Fermi gas we can expand around the Fermi surface and write

ε0(k) = EF +
~kF
m

~(|k| − kF )

= EF + vF ~(|k| − kF )

where we have defined the Fermi velocity to be

vF = ~kF /m

Note that we are dropping terms which are (|k| − kF )2 and higher powers being that we
are assuming we are close to the Fermi surface.

For an interacting Fermi system we can write instead

ε(k) = E∗F +
~kF
m∗

~(|k| − kF )

where we have defined an effective mass m∗ by

~2

m∗
=

∂2

∂k2
εHF (k)

∣∣∣∣
k=kF
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For example, for 3He, the effective mass ranges from 2-6 times the bare mass of the Helium
atom, depending on the pressure applied to the system.

Effective Mass for Coulomb Interaction

We now return to the Coulomb interaction, which is slightly troublesome due to its long
range nature. We start with

V (r) =
e2

4πε0|r|
which we Fourier transform to get27

Ṽ (k) =

∫
dre−ik·r

e2

4πε0|r|
=

e2

ε0|k|2
(7.39)

Here we note that Ṽ (0) (which we need for the Hartree energy) is divergent for the Coulomb
interaction. This is a result of having not included the neutralizing positive (jellium)
background. If we put this in, it will fully cancel Ṽ (0) and we don’t have to worry about
this divergence.

Let us now calculate the Fock self-energy

ΣFock(k) = − 1

V
∑
q

Ṽ (q)nF (|k− q|)

=
e2

ε0

1

V
∑
|k′|<kF

1

|k− k′|2
=
e2

ε0

∫ |k′|=kF

0

dk′

(2π)3

1

|k− k′|2
(7.40)

which is sketched in Fig. 7.3. For k = 0 it is easy to calculate that Σ = e2kf/(ε02π2). And
it is also easy to see that Σ must decay for very large k. However, what is not as obvious
is that the self energy has a log-divergent slope at kF . The calculation that shows this is
given just below.

Given the log divergent slope, m∗ then goes to zero at the Fermi surface. The reason
for the log divergence is the long-ranged Coulomb interaction. Over long distances, other
electrons rearrange themselves to cancel the Coulomb potential, and this is not properly
accounted for in simple Hartee-Fock. This rearrangement of charges to remove the long
range Coulomb interaction is known as screening and will be treated in some detail in the
next chapter.

27On dimensional grounds, and by rotational invariance we know that it has to be proportional to 1
|k|2 ,

so let us call the result α
|k|2 . To get the prefactor right it is useful to look at the inverse Fourier transform

V (r) =

∫
dk

(2π)3
eik·r

α

|k|2

Then take the laplacian

∇2V (r) = α

∫
dk

(2π)3
eik·r = αδ(r)

and by Gauss’ law we can then fix the prefactor α = e2/ε0.
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Figure 7.3: A plot of the self-energy in the case of the Coulomb interaction

Figure 7.4: A plot of the self-energy in the case of the Coulomb interaction

7.6 Appendix: Showing the Log Divergence at The Fermi
Surface

We want to calculate the self energy Eq. 7.40 as k approaches the Fermi surface. Let
us consider k (without loss of generality) in the x direction and approaching the Fermi
surface kF , as shown in Fig. 7.4. We divide the integral over k′ into an integral in the x
direction and an inegral in the directions perpendicular to x, which we call k′⊥.

ΣHF (k) =

∫
dk′⊥

∫
dk′x

1

|k− k′|2

=

∫ kF

−kF
dk′x2π

∫ √k2
F−(k′x)2

0
dk′⊥k

′
⊥

1

|k − k′x|2 + k2
⊥

≈ 2π

∫ kF

−kF
dk′x log(|k − k′x|2/cutoff)

∼ (k − kF ) log(|k − kF |)

Thus we have
∂εHF
∂k

∼ log(|k − kF |)

and
1

m∗
∼ ∂2εHF

∂k2
∼ 1

|k − kF |
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Chapter 8

Screening and Linear Response

In the previous chapter we had some problems with the long-rangedness of the Coulomb
interaction. While we will not completely solve this problem here, we understand that
the solution comes from allowing other particles to respond to the potential created, thus
screening the long range interaction. Indeed, we know that if we try to put a postive
charge in a metal at one point and a negative charge at another point (so as to keep the
total charge neutral) the other charges in the metal should rearrange so as to make the
metal look overall neutral everywhere — at least when looked at from far away.

More generally we are interested in how a system responds to any arbitrary pertur-
bation. We will study this at various levels of sophisitication.

8.1 Thomas-Fermi Screening

Let us consider a uniform electron gas and we imagine there is some potential U(r) that
the electrons feel. We thus have a Hamiltonian which is

H =
∑
i

p2
i

2m
+ U(ri)

Let us further assume that U(r) varies slowly in space and 〈U〉 = 0 for simplicity. For
example, we might assume that U(r) = U0 cos(q · r) with small |q|.

To determine what happens in this situation we start by thinking locally: Locally
we have a Fermi sea which is filled up to the chemical potential µ. If the potential U
increases, this pushes some of the electrons above the chemical potential and the density
drops by

δn(r) = −D(EF )U(r) (8.1)

where D(EF ) is the density of states per unit volume. This is shown in Fig. 8.1.

115
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Figure 8.1: Left: States are filled up to the chemical potential µ. Right: If an additional
potential U is added to the system, some states are pushed above the chemical potential,
and the local density drops by D(EF )U where D is the density of states per unit volume.

In this situation, we sometimes call the quantity −D(EF ) in Eq. 8.1 a response
function1.

At this point, we are still ignoring interactions between the electrons, we are only
keeping the interaction between the electrons and the potential U . With more careful
thought, we realize that the interaction beween electrons should matter. When the elec-
trons move around in response to the potential U , they then create a new electrostatic
potential that the other electrons then should respond to. Thus we need to consider some
sort of self-consistent approach. First, however, we should convert our response equation
into an equation that explains how charge moves around, rather than how density moves
around.2

δρ(r) = −e δn(r)

The potential felt by an electron moving in an electrostatic potential φ(r) is

U(r) = −eφ(r)

Thus, our above response equation Eq. 8.1 can be rewritten as a charge response to an
electrostatic potential

δρ(r) = −e2D(EF )φ(r) (8.2)

Now if there is a change in density, there is a resulting change in the electrostatic
potential. The resulting electrostatic potential is given by Gauss’ law

∇2φ =
−δρ
ε0

=
e2

ε0
D(EF )φ (8.3)

1Later we will call this quantity the response function χ0 (up to some factors of e). The superscript 0
indicating that it does not yet include interaction between electrons, but only interaction of electrons with
the potential U .

2This is going to be one of those times when we really wish we could go back in time and tell Benjamin
Franklin to switch the definition of positive charge so that the electron is positive! The minus signs here
are a common source of error!
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where we have used Eq. 8.2 in going to the second line. This resulting equation for φ
is precisely the self-consistent Hartree equation: Electrons respond to a density which is
created by all the other electrons.

It is useful now to define the so-called Thomas-Fermi3 wavevector4

k2
TF =

e2

ε0
D(EF ) (8.4)

So that our self consistent screening equation 8.3 is just

∇2φ = k2
TFφ

Such an equation has a characteristic decay of the form

φ ∼ e−kTF |r|

The potential decays exponentially because it is screened by other electrons. To be more
precise, let us consider the field near a point charge of strength Q inserted into our system
of electrons. The resulting electrostatic potential is given by the Yukawa5 form

φ =
Q

4πε0|r|
e−kTF |r| (8.5)

This potential solves the equation

∇2φ = k2
TFφ+

Q

ε0
δ(r)

where the second term on the right represents the source charge that is inserted.

Let us now estimate the Thomas-Fermi wavevector. The density of states in a
noninteracting Fermi liquid is given by6

D(EF ) =
3

2

n

EF
=
mkF
~2π2

3Llewelyn Thomas invented this in 1927, frighteningly soon after Fermi-Dirac statistics was invented
(1925).

4It is worth checking that kTF does indeed have the dimensions of a wavevector. First, note that
D(EF ) is is a density of states per unit volume, so it has dimension 1/(Energy −Volume). Next note that
e2/(ε0 × length) is an energy. The rest is easy.

5Yukawa won a Nobel prize in 1949 for his work on nuclear forces.
6To derive this E ∼ k2

F ∼ n2/3, so dE/dn = (2/3)E/n, and dn/dE = (2/3)E/n. We also need
EF = ~2k2

F /(2m) and an expression for the density in terms of kF which is given by

n = 2
1

(2π)3

4

3
πk3

F

where the prefactor of 2 is for two spin states, the 2π factors are the usual factor that comes with k space
integration, and the remaining factor is volume of sphere with radius kF .
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We thus have

kTF =

√
D(EF )e2

ε0
=

√
mkF e2

~2π2ε0
=

√
4

π

√
kF
a0

where a0 is the Bohr radius. Now in a typical metal we have a screening length 1/kTF ≈
a0 ≈ 1 Angstrom which is very short. However, in a semiconductor, this screening length
can be 10-100 Angstroms or more due to a small kF and a large a0 (the small kF coming
from a low density of electrons, and the large a0 coming from a low mass and a large
effective dielectric constant).

The Thomas-Fermi approximtion is a good first approach for understanding screen-
ing. In particular it removes the long range singularity of the Coulomb interactions.
However, there are some things that are obviously wrong with the Thomas-Fermi ap-
proach. The main problem is that it is an “instantaneous” approximation, whereas if we
add a charge to a system it actually takes some time for the electrons to rearrange so as
to screen the charge. This time delay can turn out to be very important. This brings us
to the topic of dynamical screening and dynamical response.

8.2 Response More Generally

We will now consider response functions more generally — including time dependent
response. Let us generally write our Hamiltonian

H = Ĥ0 + δĤ(t)

where δĤ(t) is the small perturbation applied to the system (and Ĥ0 is the Hamiltoninan
in the absence of the perturbation). Although we will here be interested in the response of
an interacting Fermi liquid to a perturbation, the same principles we use here are far more
general and can be applied to many other systems. It is always conventient to assume
that the perturbation goes to zero at time t = −∞ and turns on slowly.

An important example of such a perturbation (for our electron system) would be a
weak time dependent externally applied electrostatic potential, in which case we have

δĤ(t) =

∫
dr (−eφext(r, t)n̂(r)) (8.6)

However, we could perturb the system with many other things, such as a magnetic field,
or pressure, etc, and much of the calculation of response will be similar.

We now want to ask how the system responds to this perturbation. To probe this
response we measure some observable operator B̂. So we are interested in

〈B̂〉t = 〈ψ(t)|B̂|ψ(t)〉

where |ψ(t)〉 is the time dependent many-particle wavefunction.
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An example here is that we might be interested in the density operator

B̂ = δn(r).

So, for example, if we perturb (in Eq. 8.6) with the potential φ(r, t) we might ask what is
the resulting change in density at some later time.

One key priniciple to keep in mind is that of causality: If a perturbation occurs at
time t we should only have a response at times t′ > t.

Time Dependent Perturbation Theory

So how are we going to find the general response 〈B̂〉t? The strategy here is to assume
the perturbation δĤ(t) is small and use time dependent perturbation theory.

Let us start with the time dependent Schroedinger equation.

i~
∂

∂t
|ψ(t)〉S =

[
H0 + δĤ(t)

]
|ψ(t)〉S

The subscript S here indicates that the kets are in the Schroedinger representation. Also
note that inside the square brackets is the full Hamiltonian — which is a combination of
the bare part H0 and the small perturbation.

We now switch to so-called “interaction” representation.

|ψ(t)〉I = eiH0t/~|ψ(t)〉S

In this representation, operators have an additiona time dependence

B̂ → B̂I(t) = eiH0t/~ B̂S e
−iH0t/~

δĤ → δĤI(t) = eiH0t/~ δĤS e
−iH0t/~

In this representation, the Schroedinger equation becomes

i~
∂

∂t
|ψ(t)〉I = δĤ(t) |ψ(t)〉I (8.7)

Note that in this representation, if δH = 0 then |ψ〉I is actually time independent.

We can now write out a formal solution of the Schroedinger equation in the form

|ψ(t)〉I = |ψ〉I0 −
i

~

∫ t

−∞
dt′δĤI(t

′)|ψ〉I0 +

(
i

~

)2 ∫ t

−∞
dt′
∫ t′

−∞
dt′′δĤI(t

′)δĤI(t
′′)|ψ〉I0 + . . .

(8.8)
where |ψ〉I0 is the wavefunction in the absence of the perturbation, in the interaction
rep (and it is therefore a time independent ket). We can confirm that Eq. 8.8 solves
the Schroedinger equation Eq. 8.7 by plugging the expansion into both sides of the
Schroedinger equation.
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We will now make use of the fact that δĤ is small and we will truncate the expansion
at first order, throwing away terms of order (δĤ)2 and higher. We can then use the time
dependent wavefunction in Eq. 8.8 to calculate the time dependence of some operator to
be observed

〈B̂〉t = 〈ψI(t)|B̂I(t)|ψI(t)〉

=

[
I0〈ψ|+

i

~

∫ t

−∞
dt′ I0〈ψ|δĤI(t

′)

]
B̂I(t)

[
|ψ〉I0 −

i

~

∫ t

−∞
dt′δĤI(t

′)|ψ〉I0
]

= I0〈ψI |B̂I(t)|ψI〉I0 −
i

~

∫ t

−∞
dt′ I0〈ψ| [B̂I(t), δĤI(t

′)]|ψ〉I0

The first term in the last line is just the value of 〈B〉t in the absence of the perturbation.
Thus we have a change in the value of B given by

〈δB̂〉t = − i
~

∫ t

−∞
dt′ 〈[B̂I(t), δĤI(t

′)]〉

where the expectation is taken in the unperturbed state |ψ〉I0 as above. This formula is a
general linear response equation, otherwise known as the Kubo formula7. The importance
of this type of formula can hardly be overstated, as it is used universally to calculate the
response of a system to a perturbation.

It is crucial to note that the response here is linear in the perturbation (hence the
name “linear response”). Linearity gives us the important principle that response of a
sum of perturbations is the sum of the responses of each individual perturbation. This
will allow us to decompose a general perturbation into a convenient basis of elementary
simple perturbations, which will simplify the calculation greatly.

Example of Externally Applied Potential

Let us go back to the main example we want to study: the density response to an externally
applied potential. The perturbation is generally of the form

δĤS(t′) =

∫
dr
(
−eφext(r, t′)n̂S(r)

)
(8.9)

with the operators being expressed here in the Schroedinger representation. The operator
we would like to measure is again the density operator

B̂ = n̂S(r) (8.10)

It is often easier to work in Fourier space. By using Parseval’s theorem8 we have

δĤS(t) =
−e
V
∑
k

φext(k, t
′) n̂S(−k) (8.11)

7Named for the Japanese physicist Ryogo Kubo who constructed this general formula in 1957.
8Named for Marc-Antoine Parseval des Chênes who published it in 1799 without proof, stating that it

was self-evident.
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with V the volume as usual. Since we are considering linear response, we can imagine
applying a single wavevector perturbation k — and if we have an initial perturubation
which is a sum of different wavevectors we can just add up the responses to each wavevector
at the end of the calculation.

We also write the quantity we want to measure (the density) in k-space

δB = δn̂S(k)

again in the Schroedinger representation.

We can then write our Kubo formula as

〈δn(k)〉t =
ie

~V

∫ t

−∞
dt′ 〈[n̂I(k, t), n̂I(−k, t′)]〉φext(k, t′) (8.12)

=

∫ ∞
−∞

dt′ χ̃(k, t− t′)φext(k, t′) (8.13)

where

χ̃(k, t− t′) = θ(t− t′) ie
~V
〈[n̂I(k, t), n̂I(−k, t′)]〉

and

θ(x) =

{
1 x > 0
0 x < 0

is the usual step function. The insertion of the step function in Eq.8.13 implements the
correct boundary conditions given explicitily in Eq. 8.12. The function χ̃ is known as the
linear response function (or the susceptibility or the linear response kernel) and note that
it is translationally invariant in time. I.e., if we perturb a system at time 0 and measure
at time a, this is the same as perturbing at time b and measuring at time a+ b.

Note that here on the left hand side of Eq. 8.12, we have indicated the response at
wavevector k which was the same wavevector which we perturbed with on the right. In
other words we are assuming that the response is diagonal in wavevector. It turns out
that this is necessarily true in any tranlationally invariant system — a system that is
perturbed at some wavevector k, in linear response theory, will only only respond at the
same wavector. We will prove this statement below.

Our next step is to realize that the integral in Eq. 8.13 is a convolution in the t
variables. As is usual with a convolution, it is then conventient to Fourier transform.
Further, we remember that since we are thinking about linear response, we can always
decompose the perturbation into a sum of pieces and think about the response to each
piece separately. Thus let us just think about a perturbation at a fixed frequency

φext(k, t) = e−iωtφext(k, ω)

If we have a more complicated time dependence we can always sum over many frequencies.

Note that we had previously decided that to make sure things are well-behaved, we
want to make sure the perturbation is turned off at time t = −∞. Thus we write instead

e−i(ω+iε)t (8.14)
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where ε is an infinitesimle positive number. This will then properly vanish at t = −∞.
We will often not write the +iε but we should remember that it is there.

The integral Eq. 8.13 in Fourier space instead reads

δn(k, ω) = χ(k, ω)φext(k, ω)

where the response χ is given by

χ(k, ω) =

∫ ∞
−∞

dt eiωt χ̃(k, t)

=
ie

~V

∫ ∞
0

dt eiωt 〈[n̂I(k, t), n̂I(−k, 0)]〉 (8.15)

Note that the +iε we added to ω in Eq. 8.14 regularizes this integral at t = +∞.

Eq. 8.15 has two terms in the commutator. We will consider one of these terms
explicitly (and we assume the reader can fill in the rest of the calculation for the second
term!). We will assume we are at temperature T = 0 and that the system is initially
in the ground state, which we write as |GS〉. The first term in the commutator is (with
subscripts I and being interaction representation, and unsubscripted being Schroedinger
representation)

I〈GS|n̂I(k, t)n̂I(−k, 0)|GS〉I = 〈GS|n̂(k)e−iH0t/~n̂(−k)eiH0t/~|GS〉
=

∑
m

〈GS|n̂(k)e−iH0t/~|m〉 〈m|n̂(−k)eiH0t/~|GS〉

where we have inserted a complete set of eigenstates |m〉 in the last line (their correspond-
ing energies will be taken to be Em with EGS being the ground state energy). Here, and
hereafter, we have returned to the Schroedinger representation but for simplicity we no
longer put subscripts S on kets and operators.

We now make use of the fact that n̂(−k) = n̂†(k) to write

〈GS|n̂(k, t)n̂(−k, 0)GS〉 =
∑
m

ei(EGS−Em)t 〈GS|n̂(k)|m〉 〈m|n̂†(k)|GS〉

At this point we think back to the claim made after Eq. 8.13: That a perturbation at
wavevetor k will only elicit a response at the same wavevector k. We can now see why
this is the case. Reading this equation from right to left: We start with the grounds state
|GS〉 which we assume has momentum zero. The operator n̂†(k) adds momentum −~k
to the ground state and generates an excited state |m〉 with momentum −~k. Then the
operator n̂(k) removes this momentum and returns us to the ground state. If we had
measured a response at a different wavevector k′ 6= k, the operator n̂(k′) would not be
able to return us to the ground state and we would end up getting zero, as claimed.

We thus have the result

χ(k, ω) =
ie

~V

∫ ∞
0

eiωt
∑
m

{
ei(EGS−Em)t/~|〈GS|n̂(k)|m〉|2 − e−i(EGS−Em)t/~|〈GS|n̂(−k)|m〉|2

}
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where the second term in the brackets is from the other term of the commutator. Taking
the integral now gives

χ(k, ω) =
−e
~V
∑
m

{
|〈GS|n̂(k)|m〉|2

ω + iε− (Em − EGS)/~
− |〈GS|n̂(−k)|m〉|2

ω + iε− (EGS − Em)/~

}
(8.16)

We now are left with the problem of calculating the matrix elements such as 〈GS|n̂(k)|m〉.
This depends entriely on what particular Hamiltonian we are working with. So far, what
we have written is entirely general, and it is still exact at linear response level.

The linear response calculation we have done can be generalized to give the response
of any measured operator to any perturbation at linear order. For example, we can
generalize the perturbation of Eq. 8.9 to couple to any operator Â

δH(t) =

∫
drφext(r, t)Â(r)

where φext is not necessarily an electrostatic potential, and we can measure the respnonse
in any operator B̂(r). If we again Fourier transoform to frequency and wavevector we can
very generally write

δB(k, ω) = χBA(k, ω)φext(k, ω)

and essentially the same calculation will give the response function

χAB(k, ω) =
1

~V
∑
m

{
〈GS|B̂(k)|m〉〈m|Â(−k)|GS〉
ω + iε− (Em − EGS)/~

− 〈GS|Â(−k)|m〉〈m|B̂(k)|GS〉
ω + iε− (EGS − Em)/~

}

8.3 Lindhard Response Function (Response of Noninteract-
ing Electrons)

Let us return to the density-response function Eq. 8.16. While this is a very general
equation it is usually very hard to know what the eigenstates |m〉 and eigenenergies Em
are for a complicated system. So, let us consider a very system to start with: free electrons.
We take

H0 =
∑
i

p2
i

2m

only. (In principle, one might want to include interactions in the Hamiltonian — which
we will do later, at least in some approximation. However, writing down a complete set
of eigenstates is extremely hard when we have interactions, whereas it is fairly easy for
the noninteracting case). In this noninteracting case, the ground state |GS〉 is simply the
filled Fermi sea. We can write the density operator again as (See Eq. 7.32, with apologies
that we changed notation for ρ to n̂)

n̂(k) =
∑
q,σ

c†(k+q)σcqσ = FourierTransformk[ψ̂†(r)ψ̂(r)] (8.17)
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Figure 8.2: The relevant excitations for this calculation are excitations of a single electron
out of the Fermi sea.

We thus see that n̂(k) can excite a single electron out of the Fermi sea. Thus, the inter-
mediate states |m〉 are all of the form

|m〉 = c†(k+q)σcqσ|GS〉

with |q| < kF and |k + q| > kF as shown in Fig. 8.2. The corresponding energy difference
is given by

Em − EGS =
~2|k + q|2

2m
− ~2|q|2

2m
= ε0k+q − ε0q

where ε0q = ~2|q|2/(2m) as usual, the superscript 0 indicating that this is the energy of
noninteracting electrons. Plugging these results into Eq. 8.16, and using χ(k) = χ(−k)
we obtain (See chapter appendix for the relevant algebra!)

χ0(k, ω) =
−e
V
∑
q,σ

nF (q)− nF (q + k)

~(ω + iε)− (ε0q+k − ε0q)
(8.18)

with nF the Fermi function, which is simply a step function at the Fermi surface at zero
temperature (See Eq. 7.33). The superscript 0 here on χ0 indicates that we are thinking
about noninteracting electrons. This rather important result is known as the Lindhard
response function9.

Aside: Green’s function language

For those who like to think in Feynman diagrams and Green’s functions it is sometimes
useful to rephrase our result in this language. For those who are not familiar with this
technique, it is OK to mostly ignore it (it is not examinable in this course) and skip down
to section 8.3.1. It is simply useful to be able to speak different languages sometimes.

First, the “source” for the response function is the density n̂(k), which we think of

in the form of Eq. 8.17 which therefore includes terms of the form c†(k+q)σcqσ. We write
this diagrammatically as the vertex shown in the left of Fig.8.3 We then also write the

9Named for Jens Lindhard who wrote it down for the first time in 1954 — rather late for such an
important result to be first discovered, although perhaps this is not surprising being that the Kubo formula
had not yet been discovered at this time.
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Figure 8.3: Left: Vertex representing a density operator. Right: Bubble representing
density-density response

Greens’ function for the electron as

G(k,Ω) =
1

Ω− (ε0k − µ) + iεsgn(ε0k − µ)

which we write as a line with an arrow. The response function χ0 is then given by the
diagram in the right of Fig. 8.3. This diagram corresponds to the integral over the Green’s
functions

χ0(k, ω) =
∑
q

∫
dΩ G(q,Ω)G(k + q, ω + Ω)

Carrying out the integrals here will generate precisely the same result as Eq 8.18 (up to a
prefactor which I may have dropped).

For complicated diagrams, meaning high order perturbation theory calculations,
these Green’s functions and diagrammatics are a very useful bookkeeping tool. However,
at this level it is easier to just do the calculation directly without bothering with diagrams.
Nonetheless, it is useful to draw the diagram, because one often sees it in the literature,
and it is good to know what it means!

8.3.1 Interpretations

We now would like to interpret the result we have derived Eq. 8.18. We will look at some
properties of χ0, partially to understand it, and partially as a sanity check that we have
gotten a reasonable answer!

Imaginary Dissipative Part

First, let us examine the imaginary part of χ. What does it mean that our response
function has an imaginary part rather than all real? This simply means that the re-
sponse is dissipative – energy is absorbed by they system (this is precisely analogous to a
conductivity being real rather than imaginary).

To find out when χ0 has an imaginary part recall that

lim
ε→0+

1

x+ iε
= −iπδ(x) + P(

1

x
)
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Figure 8.4: The region of q,ω space where there is an imaginary part of χ. This is precisely
the region where Eq. 8.19 can be satisfied.

with P here the principle part, thus giving the imaginary and real part of the expression.
In Eq. 8.18, it is implied that we are taking a limit of ε→ 0+. Thus the response has an
imaginary part when

~ω = ε0q+k − ε0q where


|q + k| > kF and |q| < kF

OR
|q + k| < kF and |q| > kF

(8.19)

In Fig. 8.4 we sketch the region of k, ω space where this condition is satisfied. This is the
region of k, ω space where we can add a wavevector k to the system and get an excitation
of energy ω.

Let us make a few quick calculations to determine the rough shape of this region.
First we notice that that the longest vector across the Fermi surface is the diameter which
is k = 2kF . It is impossible to make any zero energy excitations (ie., from the Fermi
surface to the Fermi surface) for wavevectors larger than this. This is why the shaded
region in Fig. 8.4 has a boundary at ω = 0 and k = 2kF . Secondly it is useful to look at
what happens for small k. Here we can have the condition

~ω = ε0q+k − ε0q =
~2|k + q|2

2m
− ~2|q|2

2m

but for small k we need to have q ≈ kF to satisfy the conditions in Eq. 8.19. Thus we can
write

~ω ≈ ~kF
m

k cos θ

where θ is the angle between k and q. The largest ω is then given by cos θ = 1 or

ω = vFk

with vF = ~kF /m the Fermi velocity, which is shown in Fig. 8.4.
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Low Frequency, Small k

Let us look at the limit ω → 0 with small k. We then have

χ0(k, ω) =
e

V
∑
q,σ

nF (ε0q)− nF (ε0q+k)

(ε0q+k − ε0q)

where nF is now a step function in energy at the chemical potential µ. If k is small, then
the difference in the denominator is small, as is the difference of the arguments of nF in
the numerator, and we can view the fraction on the right as being a derivative. Since the
derivative of a step function is a delta function, we then have

χ0(k, ω) =
e

V
∑
q,σ

δ(εq − µ)

= e

∫
dεD(ε)δ(ε− µ) = eD(µ)

where in going to the second line, we have replaced a sum over q as an integral over energy
times a density of states D(ε). The final result here is just the density of states, which is
the static compressibility10 we derived previously (See Eq. 8.2).

8.3.2 High Frequency ω � EF and small k

Another limit we can consider is that of high frequency.

Explicit Limit

Here we expand the denominator of Eq. 8.18 for large ω obtaining

χ0(k, ω) =
−e
V
∑
q,σ

nF (q)− nF (q + k)

~ω

 1

1− (ε0q+k−ε0q)

~ω

 (8.20)

The leading term in this expansion replaces the square brackets with unity, but then the
sum over q vanishes. For the next term it is useful to write for small k,

(ε0q+k − ε0q) ≈ k · ∇qε
0
q

and similarly
nF (q + k)− nF (q) ≈ k · ∇qnF (q)

We thus have

χ0(k, ω) =
e

V(~ω)2

∑
q,σ

(k · ∇qnF (q))(k · ∇qε
0
q) (8.21)

=
−e
V(~ω)2

[∑
q,σ

nF (q)

] [
(k · ∇q)2ε0q)

]
(8.22)

10See section 9.5.1 footnote 9 for why we call this compressibility.
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In obtaining the second line, we have integrated by parts (convert to integral, integrate by
parts and convert back to a sum). The quantity in the second square bracket is ~2k2/(m)
and is q independent. The quantity in the first square bracket can thus be summed alone
to just give N . We thus have in this limit of large ω

χ0(k, ω) =
−ek2n

mω2
(8.23)

where n is the electron density. In fact this result is extremely general — independent of
many details of the system, as we will see next.

More general f-sum rule approach

The limit can be obtained by invoking the so-called f -sum rule. We return to the primitive
integral form of our response function (See Eq. 8.15)

χ(k, ω) =
ie

~V

∫ ∞
0

dt ei(ω+iε)t〈[n̂(k, t), n̂(−k, 0)]〉

Where

n̂(k, t) = eiHt/~n̂(k)e−iHt/~

and here we would like to be completely general, so we consider any Hamiltonian H at
this point (which may include electron-electron interactions, for example).

Since we are interested in high frequency, we equivalently want to look at small
times t. Thus we expand for small t to write

n̂(k, t) ≈ n̂(k) +
it

~
[H, n̂(k)] + . . .

so that we have11

χ(k, ω) =
ie

~V

∫ ∞
0

dt ei(ω+iε)t it

~
〈[[H, n̂(k, t)], n̂(−k, 0)]〉

This double commutator is familiar from our discussion of the Feynman theory of superflu-
ids. In Eq. 5.11 we discovered that this double commutator is independent of interactions
between particles and yields the constant ~2k2N/m. Thus we can perform the integral to
obtain the same result

χ =
−ek2n

mω2
(8.24)

11The term 〈[n(k), n(−k)]〉 has to give zero for a rotationally invariant ground state.
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Drude Theory Approach

In fact one can get the same result out of simple Drude theory for a translationally invariant
system. Translational invariance here means there should be no scatterers. Let us start
with the current conservation equation (with the overdot being time derivative)

˙δn(r, t) +∇ · j(r, t) = 0

where here δn is the local change in particle density and j is the local particle current.
Let us rewrite this in terms of its frequency and wavevector Fourier modes

−iω δn(k, ω) + ik · j(k, ω) = 0

which we can write as

j‖ =
ω δn

k
(8.25)

We can then use the equations of motion when an electric field is applied

mv̇ = −eE

where the velocity is related to the current density by

j = n̄v

with n̄ the average density12. We thus have

mj̇ = −en̄E = en̄∇φ

again moving to Fourier space we have

−iωmj‖(k, ω) = ien̄k φ(k, ω)

Plugging in Eq. 8.25 we obtain

δn(k, ω) =
−k2n̄e

mω2
φ(k, ω)

8.4 Response of Interacting Electrons: RPA

In the last section we have been considering non-interacting electrons. We have the charge
density response to an applied potential

δn(q, ω) = χ0(q, ω)φext(q, ω)

12We would also have a term δnv but this is order (small)2, since both δn and v are assumed small.
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where the superscript 0 indicates noninteracting. We would like to put the interactions
back into the system in the simplest way possible. What do the interactions do? Well, if
a nonuniform density δn occurs, this will induce a Coulomb interaction

φinduced(r, t) =

∫
dr′V (r− r′)δn(r′, t) (8.26)

where we will assume here that the interaction V is of Coulomb form

V (r) =
−e

4πε0r

although our approach will work for any form of V .

Equation 8.26 is a convolution so we can write it more simply in Fourier space

φinduced(q, ω) = Ṽ (q)δn(q, ω) (8.27)

where Ṽ is the Fourier transform of V (r).

Now the system must respond to both the externally applied φext and the induced
φinduced. A simple approximation is to assume the system responds like a noninteracting
system — and let the entire effect of the interaction be included in the fact that we let
the system respond to both the external and the induced potentials. Thus we write

δn(q, ω) = χ0(q, ω) [φext(q, ω) + φinduced(q, ω))]

= χ0(q, ω)
[
φext(q, ω) + Ṽ (q)δn(q, ω))

]
We can then solve this to obtain

δn(q, ω) =
χ0(q, ω)

1− χ0(q, ω)Ṽ (q)
φext(q, ω)

or equivalently

δn(q, ω) = χRPA(q, ω)φext(q, ω)

where

χRPA(q, ω) =
χ0(q, ω)

1− χ0(q, ω)Ṽ (q)
(8.28)

This approximation of the response function of an interacting system is known as the
RPA approximation13 or time-dependent self-consistent Hartree approximation, since we
are simply treating the effect of the interaction as being an effective potential (Eq. 8.26)
that the electrons respond to, analogous to the Hartree approximation we used previously
in section 7.3.1.

13RPA stands for “Random Phase Approximation”. However these words mean almost nothing now.
The approximation was first used by Bohm and Pines in 1952, and it was derived in a very roundabout
way which is no longer used. In that language it was related to random phases, but this is only of historical
interest.
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Figure 8.5: The RPA diagrams or bubble sum

One way of understanding the RPA approximation is to expand the denominator
and write

χRPA = χ0 + χ0Ṽ χ0 + χ0Ṽ χ0Ṽ χ0 + . . .

which is shown in diagrammatic language in Fig. 8.5. The physical interpretation of this
series is as follows: In the first term, χ0, the electrons directly respond to the external
perturbation. In the second term, χ0Ṽ χ0 the electrons responsd to the perturbation
and build up a density which creates a potential and then the electrons respond to this
potential. And so forth.

8.4.1 Relation to Dielectric Constant

The response function χ is closely related to the relative dielectric constant. Recall that

E =
1

εr
D

meaning that14

φtotal =
1

εr
φext

But we have

φtotal = φext + φinduced

=
[
1 + Ṽ χ

]
φext

This equation is exact, so long as one uses the exact response function χ in the equation.
So we have the exact result

εr =
1

1 + Ṽ χ

Note that εr in principle depends on frequency and wavevector.

Using the RPA approximation for χ we substitute in to obtain

εr =
1

1 + Ṽ χ0

1−V χ0

= 1− V χ0 (8.29)

14Recall that D is the field applied normal externaly to a material, whereas E is the physical field.
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Static Limit

It is useful to look a the static ω = 0 limit. Recall that in this limit (Eq. 8.2)

χ0 = eD(EF )

and we have the Coulomb interaction in Fourier space (Eq. 7.39)

Ṽ (k) =
−e
ε0k2

We thus plug into Eq. 8.29 to get

εr(k) = 1 +
e2

ε0k2
D(EF ) = 1 +

k2
TF

k2

where kTF is the Thomas-Fermi wavevector, Eq. 8.4.

We can then try to find out what happens if we insert a test charge of charge Q into
our system. We then have

φext(k) =
Q

ε0k2

which gives us

φtotal(k) =
1

εr
φext =

Q/ε0
k2
TF + k2

Fourier transforming this immediately gives

φtotal(r) =
Q

4πε0|r|
e−kTF |r| (8.30)

matching the Yukawa form we derived in Eq. 8.5.

8.4.2 High Frequency, Low k response: Plasmons

Let us consider interactions in the small k high frequency limit. As we derived above (in
several ways!) we have the noninteracting response (Eq. 8.23) given by

χ0 =
−en̄k2

mω2

If we plug this into the RPA equation (Eq. 8.28) we discover that the denominator 1− Ṽ χ0

diverges when

1 = Ṽ χ0 =
e

ε0k2

en̄k2

mω2

or

ω =

√
e2n

ε0m



8.4. RESPONSE OF INTERACTING ELECTRONS: RPA 133

Figure 8.6: Displacing all of the mobile charges by a distance x builds up a surface charge
ρsurface = n̄xe.

The divergence in χ indicates an excitation mode of the system — in other words, the
system responds at finite amplitude to even an infinitessimly small amplitude perturbation
if you perturb it in resonance with the excitation energy. This particular excitation mode
is known as plasma oscillation or plasmon (when we think of it as a quantized object like
a phonon or photon).

There is actually a very simple physical explanation for the plasmon. We consider
a big cube of our material — with mobile negative charges and a stationary positive
background. Now let us imagine moving all of our negative charge a distance x in the x
direction. This builds up a charge on the two x faces of our cube as shown in Fig. 8.6.
The surface charge density that is built up is n̄xe. We thus have a capacitor formed by
the two charged faces. We may recall that from Gauss’ law ∇ · E = ρ/ε0 we can obtain
the electric field from a capacitor

E = ρ/ε0 = n̄xe/ε0

The electric field then applies a force

F = −eρ/ε

to all of the electrons. Newtons law then gives us

mẍ = −eρ/ε0 =
−n̄e2

ε0
x

thus resulting in harmonic motion with frequency

ω =

√
e2n

ε0m .

It is important to note that this result holds with the mass m not being renormalized
by any interactions (We discussed mass renormalization in the previous chapter, but that
does not matter here). The reason the mass remains unrenormalized is because the plasma
frequency describes the motion of the center of mass of all of the electrons in the system,
and this is completely independent from the details of interaction between electrons. This
is quite related to the argument leading up to Eq. 8.24, that the high frequency response
is unchanged by interactions between particles.
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Figure 8.7: The excitation spectrum of an electron gas in three dimensions, with Coulomb
interaction between particles. This is qualitiatively similar to Fig. 8.4 except that the
Coulomb interaction gives an isolated plasma mode at small k and high frequency. In
RPA calculation, the upper edge of the particle-hole excitation band is at ω = vF q with
vF the unrenormalized Fermi velocity. However, in more detailed calculations this will be
modified to ω = v∗F q with a renormalized effective mass. However, the frequency of the
plasma mode remains unrenormalized.

In Fig. 8.7 we sketch the excitation spectrum of a three dimensional electron gas with
Coulomb interactions. The spectrum is qualitatively similar to the noninteracting fermion
spectrum shown in Fig. 8.4 except for the addition of the plasma mode at ωplasmon at
small wavevector k. In the RPA calculation, the upper edge of the particle-hole excitation
band is at ω = vF q with vF the unrenormalized Fermi velocity. In a more detailed
calculation this will be modified to ω = v∗F q with a renormalized effective mass. However,
the frequency of the plasma mode remains unrenormalized.
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8.5 Chapter Appendix: Deriving Lindhard Screening ex-
pression

We start with Eq. 8.16. Making use of inversion symmetry of the system we have χ(k, ω) =
χ(−k, ω) so we can write

χ(k, ω) =
−e
~V
∑
m

{
|〈GS|n̂(−k)|m〉|2

ω + iε− (Em − EGS)/~
− |〈GS|n̂(k)|m〉|2

ω + iε− (EGS − Em)/~

}
=
−e
~V
∑
m

{
|〈m|n̂(k)|GS〉|2

ω + iε− (Em − EGS)/~
− |〈m|n̂(−k)|GS〉|2

ω + iε− (EGS − Em)/~

}
(8.31)

Conisder the first term in the brackets of Eq. 8.31. Writing

n̂(k) =
∑
q,σ

c†q+k,σcq,σ

the intermediate state is clearly |m〉 = c†q+k,σcq,σ|GS〉. We can thus write the first term
of the sum as

−e
~V
∑
q,σ

Θ(|q + k| > kF ) Θ(|q| < kF )

ω + iε− (εk+q − εq)/~
(8.32)

with Θ the step function.

Similarly consider the second term in the brackets of Eq. 8.31. The intermediate
state is |m〉 = c†q−k,σcq,σ|GS〉. So we can write the second term in the sum as

e

~V
∑
q,σ

Θ(|q− k| > kF ) Θ(|q| < kF )

ω + iε− (εq − εq−k)/~

In this second term we now shift summation variables q→ q + k. So the term becomes

e

~V
∑
q,σ

Θ(|q| > kF ) Θ(|q + k| < kF )

ω + iε− (εq+k − εq)/~

Summing this with Eq. 8.32 yields

χ(k, ω) =
−e
~V
∑
q,σ

Θ(|q + k| > kF ) Θ(|q| < kF )−Θ(|q| > kF ) Θ(|q + k| < kF )

ω + iε− (εk+q − εq)/~

This form is equivalent to that of Eq. 8.18 except that the numerators look differnt. By
looking at all four cases where |q| is greater or less than kf and |q + k| is greater or less
than kF it is easy to see that these numerators are in fact identical, thus completing the
calculation.
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Chapter 9

Landau Fermi Liquid Theory

9.1 Background

What we have done so far (first order perturbation theory, Hartree-Fock, RPA) is fairly
accurate for weakly interacting Fermi systems. However, real physical fermion systems
usually have strong interactions1. Whether we are talking about metals, 3He, neutron
stars, or semiconductors2, we typically have the interaction larger than the Fermi energy

Einteraction > EF

As a result the calculations we have done so far cannot be used quantitatively3, although
they can be used for qualitative inspiration. Despite this strong warning, we almost
always get away with ignoring interactions completely. Indeed, almost all of semiconductor
physics (including the whole semiconductor industry) is built on the idea of mostly non-
interacting electrons. Why does this make any sense at all? I’m glad you asked!

Understanding of strongly interacting fermions really began with experiments on
3He. This system is much simpler than systems of electrons because of the absence of
long ranged Coulomb interactions. In 1953-1954, William Fairbank4 manged to cool 3He
to below about 1K which is less than the Fermi energy EF ≈ 5K. At low temeperature he

1In recent years people have been able to make cold atomic Fermi gases where one can tune the
interaction strength, and almost turn it off if desired. A huge amount of the pioneering research on cold
fermionic atomic systems was done by Debbie Jin, who very sadly died of cancer at the young age of 47 in
2016.

2One might think that the low density of semiconductors might help. However, this turns out not to
be true. The interaction is on the scale of e2/(εa) where a is the distance between fermions, whereas the
kinetic energy is on the scale ~2/(2ma2), so as we make the density lower, in fact the ratio of interaction
to Fermi energy actually increases!

3There is an exception: At small enough q and high enough ω, RPA becomes exact even for strongly
interacting systems.

4Fairbank was at Duke university at the time (where he recruited Fritz London in 1952). A few
milligrams of 3He was supplied by Oak Ridge National Lab, where much of the research for the American
nuclear project was being done. This small amount was plenty for conducting the key experiments.

137
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was able to see evidence of the Fermi-Dirac distribution. In particular, he measured

Cv ∼ T

χ ∼ indep of T

where here χ means the pauli paramagnetic susceptibility (and as usual Cv is heat ca-
pacity). Both of these relations are indicative of fermions. However, in both cases, the
proportionality constants did not match the predictions of the noninteracting fermion
model. Now in our discussion of Hartree-Fock approximation above, we already have seen
that the particle mass can be renormalized by interactions. However, this alone does not
fix the problem in a consistent manner5. .

9.2 Basics Idea of Fermi Liquid Theory

In 1956, Landau, in one of his classic papers6, explained how we should understand in-
teractions of fermions. This work, based on brilliant intuition, set the language for our
understanding of Fermions, and was fully justified many years later using both perturba-
tion theory and renormalization group methods.

9.2.1 Landau’s Conjecture

Landau conjectured that interacting fermions should be just like noninteracting fermions,
but “dressed” by interactions. What he meant by this is that

� The ground state shold be a “dressed” Fermi sea

� Low energy excitations, can be described in terms of quasiparticle excitations of the
ground state. These are “dressed” versions of the noninteracting excitations of the
Fermi sea.

The key question here is what we mean by “dressed”. Here we mean that it needs to
include a cloud of interactions with its surroundings. This very vague statement we will
make more definite by the following argument:

Landau Adiabaticity Argument

Let us imagine starting with the noninteracting case adiabatically turning on the inter-
actions. Since this is a procedure that can be implimented using a Hamiltonian that we

5If one were to try to just replace the mass with an effective mass, one would require two different
effective masses to explain the two different experiments!

6Titled, “The Theory of Fermi Liquids”. This is a rather remarkable paper. It is only 6 pages long and
has only a single citation (to the experiment by Fairbank).
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Figure 9.1: Top: turning on interaction adiabatically turns a noninteracting Fermi sea into
the interacting “dressed” ground state. Bottom: If we start with a Fermi sea plus a single
particle outside the Fermi sea, when we turn on the interaction, we obtain a quasiparticle.

Figure 9.2: Fluid backflow around a moving object.

modify in time, it must be representable using a unitary (time evolution) operator. The
result of this procedure gives the dressed Fermi sea. This is depicted as a cartoon in the
top of Fig. 9.1. Similarly, we can start with a single fermion added to the noninteracting
Fermi sea and adiabatically turn on the interaction. Here we get a dressed Fermi sea with
a dressed additional particle outside of the Fermi sea as shown in the bottom of Fig. 9.1.
We call this dressed additional particle a quasiparticle.

Here it is key to realize that in turning on the interaction, the quantum numbers
of the system do not change — in particular, the momentum and spin are unchanged.
Thus the dressed quasiparticles are in one-to-one correspondence with the noninteracting
particles. However, in contrast to the noninteracting particles, the quasiparticles carry
with them a cloud of interactions with their environment. This is very much like the idea
of backflow around a moving object in a fluid as shown in Fig. 9.2.

Why does this picture of dressed quasiparticles make sense? To answer this we
should ask the opposite question: how could this picture fail? (Of course one could always
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Figure 9.3: Two different depictions of quasiparticle decay of a single particle added above
a Fermi surface.

have a first order transition when the interaction turns on and the new ground state could
be something completely different, like a crystal, but let us assume that such a first order
transition does not occur.) The only way our picture of dressed particles can fail is if the
introduction of interactions lets the quasiparticle decay into multiple other quasiparticles
— then the idea that we have a “single-particle” excitation will fail.

Let us think about what would have to be the case if such a decay were to happen. Of
course we need to conserve both energy and momentum. If we have an initial momentum
of our additional particle is k1 above the Fermi surface (|k1| > kF ), we can imagine that it
decays into two quasipartcles with momenta k2,k4 above the Fermi surface and a quasihole
with momentum k3 below the Fermi surface. Such a process is shown in Fig. 9.3.

The key claim here is that due to phase space restrictions associated with energy
conservation, the scattering lifetime for such a process is

τ ∼ |k1 − kF |−2 (9.1)

so if we are considering quasielectrons or quasiholes very close to the Fermi surface, they
are very long lived, i.e., they do not fall apart. If a particle is “close enough” to the Fermi
surface it lives essentially forever, meaning it is in an eigenstate.

Here is a quasiproof of the statement Eq. 9.1. In the process shown in Fig. 9.3, all of
the particles have energy vF |k − kF | with their given k, independent of whether they are
quasiparticles or quasiholes (a quasihole below the Fermi surface costs positive energy).
We then enforce that the intitial energy must be the same as the final energy, so that in
calculating the scattering rate using Fermi’s golden rule we will have integrals of the form

1

τ
∼
∫ ∞

0
dε2

∫ ∞
0

dε3

∫ ∞
0

dε4 δ(ε1 − (ε2 + ε3 + ε4))
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Figure 9.4: The region that conserves energy is the area of triangular piece of a plane a
distance ε1 out along each axis.

where ε1 is the initial energy and ε2, ε3, ε4 are the three final energies of the three final
particles. As shown in Fig. 9.4 the value of this integral is equal to the area of a triangular
region in (ε2, ε3, ε4) space which intersects each axis at a value ε1. Thus we obtain

Area ∼ ε21 ∼ |k1 − kF |2

Thus the scattering rate decreases as we approach the Fermi surface and we have well
defined quasiparticles7.

9.3 Properties of the Dressed Fermi Liquid

Let us then ask what the dressing of the Fermi liquid looks like in more detail. As written
figuratively in Fig. 9.1, the dressing is given by some unitary transformation U . So that
the interacting ground state can be written in terms of the noninteracting ground state

|GS〉 = U |GS0〉

Similarly we can write creation operators for the dressed quasiparticles c̃†k,σ by dressing

the noninteracting quasiparticles c†k,σ

c̃†k,σ = Uc†k,σU
†

Now notice that the occupation of these dressed quasiparticles in the ground state is simply
a step function, since

nqp(k, σ) = 〈n̂qp(k, σ)〉 = 〈GS|c̃†k,σ c̃k,σ|GS〉

= 〈GS0|U †Uc̃†k,σU
†Uc̃k,σU

†U |GS0〉

= 〈GS0|c†k,σck,σ|GS0〉 = nF (k)

It is much more complicated to find the occupancy of the noninteracting plane wave
orbitals in the interacting ground state. Generally, this will be a hard task. However, at

7There has recently been a lot of study of so-called non-Fermi liquid cases where the quasiparticle is
not well defined because 1/τ > ε. Certain models of high temperature superconductors have this property,
for example.
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Figure 9.5: An interacting Fermi liquid still has a step in the occupation at kF , although
the step is not as big as for a noninteracting Fermi system.

least if the interaction is weak, we can apply perturbation theory to write the interacting
ground state in terms of the noninteracting one:

|GS〉 = η

|GS0〉+
∑
n6=GS

|n〉〈n|V |GS0〉
En − EGS

+ . . .

 (9.2)

= η

|GS0〉+
∑

q1,q2>kF ;q3,q4<kF

c†q1
c†q2

cq4cq3 |GS0〉 vq1,q2,q3,q4

Eq1 + Eq2 − Eq3 − Eq4

+ . . .


where η is a factor included to keep the wavefunction properly normalized (and we have
dropped spin indices for simplicity).

Now when we calculate the occupation of the original orbitals we have

n(k, σ) = 〈n̂(k, σ)〉 = 〈GS|c†k,σck,σ|GS〉

= 〈GS0|U †c†k,σck,σU |GS0〉

and the unitary transform is precisely the series shown in Eq. 9.2. The key thing to note
here is that, at least perturbatively, there must remain a step in the occupation n(k)
coming from the first term in the series. It is a less pronounced step than for a purely
noninteracting system, but it is a step nonetheless as shown in Fig. 9.5.

This brings us to an important fact about interacting Fermi systems. (We can even
generalize our consideration now to arbitrary band structures in crystals, not just simple
spherically symmetric systems).

Let us define a Fermi surface to be the locus of points in k-space where there is a
discontinuity in n̂(k).

Luttinger’s Theorem:8 The volume of the Fermi sea in k-space is unchanged by
interactions.

8Joaquin (Quin) Mazdak Luttinger discovered this (partially with John Ward) in 1960. Those who
know field theory know Ward from the famous Ward identities, which are key to the derivation of this
theorem.
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In a rotationally invariant system, this means kF is unchanged by interactions.

9.4 Landau Free Energy Functional

Given this quasiparticle concept, how are we going to describe the physics of a Fermi liquid.
The general idea is to always describe a system by the occupation of the quasiparticle states
np,σ. (Above we called this nqp(k, σ) to distinguish it from the noninteracting particle
occupation. Here we will drop the qp and also write this as a function of p rather than k
as is more conventional in the field.) Remember that we are describing the quasiparticle
occupancy here!

As mentioned above, at T = 0 we expect to have the usual step function occupancy

T = 0 n0
p,σ =

{
1 |p| < pF
0 |p| > pF

The superscript 0 means this is the occupancy in equilibrium (i.e., unperturbed). At finite
temperature we would have a Fermi function instead of a step function.

Let us now consider small perturbations to this distribution such that any excited
quasiparticle or quasihole stays near the Fermi surface. We can then Taylor expand

δnp,σ = np,σ − n0
p,σ

We the expect the change of free energy to be given by

F − F0 ≈
∑
p,σ

(εp − µ)δnp,σ + . . .

Since we are near the Fermi surface we have

εp − µ = v∗F (|p| − pF )

where we have linearized around the Fermi surface. Note in particular that we are using
the effective mass here

v∗F = pF /m
∗

which tells us the energy of a single quasiparticle above (or below) the Fermi surface. Here
our intuition is from Hartree-Fock, where we learned that the effective mass of a particle
can be renormalized by interactions.

A key realization by Landau is that the energy difference F − F0 is second order in
small quantities: Both |p| − pF is small and δn is also small. As a result, to be consistent,
we must consider other terms of roughly the same size — i.e., the next terms in the Taylor
expansion giving

F − F0 =
∑
p,σ

(εp − µ)δnp,σ +
1

2

∑
p,p′,σ,σ′

fσ,σ′(p,p
′)δnp,σδnp′,σ′ + . . . (9.3)
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The quantity fσ,σ′(p,p
′) is some arbitrary interaction between a quasiparticle with mo-

mentum p with spin σ and another quasiparticle with momentum p′ with spin σ′. What
is crucial here is that this allows for a shift in energy, but it does not allow for scattering
— i.e, changing momentum! (The reason for this being the idea that the quasiparticle is
very close to being an eigenstate when it is near the Fermi surface).

Aside: We’ve been thinking in terms of spins σ which can be ↑ or ↓. However, more
generally we would have to consider cases when the spin is polarized in the x-direction. As
such we would write a density matrix δnα,β(p) rather than just a density. So for example,
the spin of the quasiparticle would be

〈−→s 〉 = Tr[−→σ β,αδnα,β]

and the interaction function would be a more complicated fα,β;γ,δ(p,p
′). Fortunately, we

will never need to deal with this more complicated situation. end of aside

Differentiating Eq. 9.3 we can obtain the energy of a quasiparticle ε̃ when it is in
the presence of other quasiparticles

δF

δnp
= ε̃q,σ − µ = εp − µ+

∑
p′,σ′

fσ,σ′(p,p
′)δnp′,σ′

The term including f here gives the energy shift of the quasiparticle due to the presence
of other quasiparticles!

We now implement a number of simplifications.

1. We assume p and p′ are both near the Fermi surface, so that

fσ,σ′(p,p
′) = fσ,σ′(p̂, p̂

′)

with p̂ being the direction of p.

2. Further assuming rotational invariance we have

fσ,σ′(p,p
′) = fσ,σ′(θp̂,p̂′)

with θ being the angle between p̂ and p̂′.

We can then further decomposte f into harmonics

fσ,σ′(θ) =
∑
l>0

fl,σ,σ′Pl(cos θ)

fl,σ,σ′ =
2l + 1

2

∫ 1

−1
Pl(cos θ)fσ,σ′(θ) dcos θ

where Pl is the Legendre polynomial.

In particular, this implies

f0,σ,σ′ =
1

4π

∫
sphere

dΩ̂ fσ,σ′(θΩ̂)
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3. We further assume our system is spin rotationally invariant this means that

fl,↑↑ = fl,↓↓

fl,↑↓ = fl,↓↑

So that it is convenient to define the symmetric and antisymmetric combinations

fsl =
1

2
(fl,↑↑ + fl,↑↓)

fal =
1

2
(fl,↑↑ − fl,↑↓)

Finally we note that f has dimensions of energy (everything else in the least term
of Eq. 9.3 is dimensionless). It is then convenient to define a dimensionless quantity. Let
us define the density of states

D∗(εF ) =
Vm∗pF
~3π2

Note that this quantity has dimensionsl of 1/energy, and represents the density of states
for quasiparticles (having a factor of m∗ in it rather than m). We can then define the
dimensionless quantities

F s,al = D∗(εF )fs,al

known as Fermi liquid coefficients. These parameters along with m∗ and kF completely
describe our Fermi liquid. Note that not all these parameters are completely independent:
in particular we will see that m∗ is related to F s1 .

These Fl parameters describe the energy renormalizations associated with making
a deformation of the Fermi surface in the shape of the lth spherical harmonic The s
superscript means both spin Fermi surfaces are deformed in the same way whereas the a
superscript means the two Fermi surfaces are deformed in opposite ways.

Aside: Although the following may look complicated, I think it clarifies a number
of issues (Ref: See book by Baym and Pethick). If we write the shape of the deformed
surface as

δpF (p̂, σ) = pσPl(cos θ)

with θ measured from some given point on the sphere, we get an energy of deformation
given by

F − F0 ∼ p2
s

(
1 +

F sl
2l + 1

)
+ p2

a

(
1 +

F al
2l + 1

)
where ps = p↑ + p↓ and pa = p↑ − p↓. Note the stability condition that Fl > −(2l + 1). If
this condiditon is violated then the Fermi sea deforms spontaneously in the ground state.
end aside
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Figure 9.6: The two processes contributing to the interaction energy between p and p′

included at first order in interaction strength.

Example: f at first order

It is useful to try calculating the function f at first order in the interactions. Recall that
f(p,p′) is the interaction between quasiparticles at p and p′ but does not allow scattering
to another momentum p′′. (Again this is the well-defined quasiparticle assumption).

There are two processes in this interaction which we can label direct and exchange,
analogous to the interactions we discussed in prior chapters. These two processes are
shown in Fig. 9.6. The direct process (as in prior chapters) simply contributes Ṽ (q = 0)
(the interaction bewtween two uniform densities). This is independent of the spin state
of the two quasiparticles. The more interesting contribution is the exchange term which
gives −Ṽ (p− p′), and this contribution requires both spin states to be aligned. Thus we
have

f↑,↓(p,p
′) = Ṽ (0)

f↑,↑(p,p
′) = Ṽ (0)− Ṽ (p− p′) = Ṽ (0)− Ṽ (2pF cos θp,p′)

Example: 3He

Examples of the Fermi liquid parameters for 3He are given in the following table (Book
Helium 3 by Dobbs)

m∗/m F s0 F a0 F s1 F a1 F s2 F a2
1 atm 2.93 11.5 -0.71 5.8 -0.61 -0.18 -0.8

33.5 atm 5.81 87.1 -0.75 14.4 -1.01 0.83 0.0

Note that the F a0 parameter is close to the stability boundary −1 where it deforms
spontaneously in the ground state (in this case meaning that it becomes ferromagnetic,
see section 9.5.2 below).
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Figure 9.7: To find compressibility we imagine an expansion of the Fermi surface by dpF

9.5 Results from Fermi Liquid Theory

We are now in a position to use Landau’s Fermi liquid theory to calculate some physical
responses to small external perturbations.

9.5.1 Compressibility

Let us try to find9 the compressibility ∂N/∂µ. Changing the number density involves
an expansion or compression of the Fermi surface as shown in Fig. 9.7 Let us imagine
expanding the Fermi surface by dpF . We then want to calculate the new chemical potential

µnew = Energy of qp on the new Fermi surface

= ε̃pF+dpF

= εpF+dpF +
∑
p′,σ

fσ,σ′(p,p
′)δnp′,σ′

Here we have
εpF+dpF = µold + v∗FdpF

with v∗F = pF /m
∗, and in the interaction term we should use

δnp,σ =

{
1 pF < |p| < pF + dpF
0 otherwise

representing the change in the Fermi surface. We thus have

µnew = µold + v∗FdpF +
∑

pF<|p′|<pF+dpF ,σ′

fσσ′(p,p
′)

I.e., the renormalization of the energy at the Fermi surface contains the usual dispersion
of energy (v∗FdpF ) plus the change in the interaction term. We can rewrite this as

µnew = µold + v∗FdpF +

(
number of p states

between pF and pF + dpF

)[
1

4π

∫
dΩ̂
∑
σ′

fσ,σ′(Ω̂)

]
9It may not be obvious that this quantity is related to (but not quite exacly the same as) the usual

definition of compressibility κT = −1
V

∂V
∂P N,T

. To see this first using n = N/V write κ−1
T = n ∂P

∂V T,V
. Then

use Gibbs Duhiem Ndµ = V dP − SdT to derive ∂µ
∂nT,V

= 1
n
∂P
∂n T,V

. Thus deriving κT = 1
n2

∂n
∂µT,V

.
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The quantity in the square brackets we recognize as 2fs0 and the quantity in the round
brackets we recognize as(

number of p states
between pF and pF + dpF

)
=

1

2
D(EF )vFdpF =

1

2
D∗(EF )v∗FdpF

Putting these together and recalling the definition of F s0 we obtain

∂µ

∂pF
= v∗F (1 + F s0 )

Noninteracting Case: For noninteracting fermions we have

∂µ

∂pF
= vF

So the compressibility is
∂N

∂µ
=
∂N

∂pF

∂pF
∂µ

and here it is easy to show ∂N/∂pF = D(EF )vF , so we have

∂N

∂µ
= [D(EF )vF ]

1

vF
= D(EF )

which is what we usually expect.

Interacting case: Here we use instead

∂µ

∂pF
= v∗F (1 + F s0 )

So that

∂N

∂µ
=

∂N

∂pF

∂pF
∂µ

= [D(EF )vF ]
1

v∗F (1 + F s0 )

But using the fact that

D(EF )vF = D∗(EF )v∗F

we get the final result
∂N

∂µ
=
D∗(EF )

1 + F s0

which shows that the compressibility is renormalized both by the expected mass renor-
malization (resulting in the ∗ on D∗(EF )) but also by the Fermi liquid coefficient F s0 .
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Figure 9.8: To determine spin susceptibility, we increase the size of the Fermi surface for
spin up and reduce the size of the Fermi surface for spin down

9.5.2 Spin Susceptibility

Here we want to consider a similar expansion/compression of the Fermi surface. However,
in this case we let the up spins expand and the down spins compress, corresponding to a net
change in magentization, as shown in Fig. 9.8. This is an spin-antisymmetric deformation
of the Fermi surface, and hence will couple to F a0 as compared to the spin-symmetric
deformation we considered in calculating the compressibility. For noninteracting fermions,
this gives the usual Pauli spin susceptibility calculation. Yielding the result

χPauli = (
1

2
gµB)2µ0D(EF )

with µB being the Bohr magneton and g the g-factor. However, with a very similar calcu-
lation as we did for compressibility above, we determine the susceptibility for interacting
fermions is

χ = (
1

2
gµB)2µ0

D∗(EF )

1 + F a0

so that the spin susceptibility is again renormalized both by the mass renormalization and
the Fermi liquid parameter, F a0 in this case.

Note that if F a0 < −1 we have χ < 0. This means that it is energetically favorable10

for the ground state to deform by making a spin-antisymmetric deformation of the Fermi
surface — i.e., the Fermi surface spontaneously magnetizes and we have a ferromagnet!

9.5.3 Mass Renormalization

Since this is a homework assignment, I’m not going to solve it here, but I’ll give hints.
The renormalization of mass is related to the F s1 Fermi liquid parameter via

m∗

m
= 1 +

F s1
3

(9.4)

10Recall that for any magnetic system we can write the energy as a function of the magnetization as

E(M) =
M2µ0

2χ
−MB + . . .
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Figure 9.9: Shifting the Fermi surface is an F1 deformation. It is also a Galilean boost.

Why is this related to F s1 ? The l = 1 Fourier spherical mode of the Fermi surface, shown
in Fig. 9.9 corresponds to a simple displacement of the Fermi surface — which is the
same as a Galilean boost. One could calculate the energy of this Galilean boost either by
starting with the Fermi liquid expression Eq. 9.3, or by realizing that a boost must have
energy N 1

2mv
2, with m the bare mass of the particles! Equating these two gives Eq. 9.4.

9.5.4 More?

It may seem at this point that we have simply introduced a new fudge factor F for each
experiment we want to do. However, once we fix these Fermi liquid parameters, it turns
out that many different experiments can be explained. Further almost any experiment we
can think of will probe only the first few of the Fermi liquid coefficients.

9.6 Further extensions of Fermi Liquid Theory

9.6.1 Local Dynamical Properties and Boltzmann Transport

Similar to the idea of going from Landau theory of phase transitions to Landau-Ginzburg
theory of phase transitions, our next bold step will be to promote the occupations from
global to local quantities

np,σ → np,σ(r)

Admittedly this appears to violate the uncertainty relation, since we can’t specify p and
r at the same time. However, we can indulge in some amount of semiclassical thinking.
As long as we don’t try to specify precise values of either, it will still be acceptable. As
such, n(p, σ, r) will become some sort of momentum and position phase space density. We
can then construct a Boltzmann equation or dynamical theory. We will not derive the
Boltzmann equation here, but ...

.. it has solutions that are oscillations of the shape of the Fermi surface, without
oscillations in the local density. This phenomenon is known as zero sound. It was predicted
by Landau and then observed in the 1960s in 3He. Note that as the temperature goes to
zero, regular sound vanishes. The reason for this is the lack of quasiparticle scattering
when the quasiparticles are at low energy. Regular sound is derived by assuming local
thermodynamic quantities, such as pressure, which is calculated from a local equation of
state (pressure as a function of density). However, if the quasiparticles are not scattering,
one never gets thermodynamic equilibrium and resular sound then no longer makes sense.
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In contrast, zero sound persists down to zero temeprature, since it is derived without
assuming any scattering of quasiparticles (the assumption of Fermi liquid theory!).

9.6.2 Landau-Silin Theory: Long Range Coulomb Interactions

Finally we return to Fermi liquids in metals. These are omnipresent in our world and
so are of great interest. The long range Coulomb interaction presents some problems
for Fermi liquid theory. However, Landau and Silin (1956) developed a good method to
address this, which can be thought of as a combination of Landau theory of Fermi liquids
and the RPA or self-consistent Hartree approximation which we apply in two steps:

(1) First, we imagine a Fermi system with short range interaction only. Since the
Fock interaction is short range (it requires wavefunction overlap), we can treat this part of
the interaction between particles, but we throw out the long range hartree part. With this
modified short range interaction, we have something we can treat properly with conven-
tional Fermi liquid theory. We then calculate the properties of this fictitious interaction-
truncated Fermi system. For example, we might have

χ̃0 =
∂n

∂µ
=
D∗(EF )

1 + F s0

(2) Once we have calculated all of these responses, we then add back in the long
range Hartree part of the interaction at RPA level. For example,

χ =
χ̃0

1− Ṽ χ̃0
(9.5)

So this approach is just like RPA, except instead of using the noninteracting response
χ0 in Eq. 9.5, we use a response χ̃0 which includes Fermi liquid corrections due to the
short range part of the interaction. So we see that the compressibility is modified by
the mass renormalization and the F s0 Fermi liquid correction. For example, that in this
approach, the Thomas-Fermi wavevector becomes modified to get

k2
TF =

e2

ε0

D∗(EF )

1 + F s0
=

e

ε0
χ̃0(q = 0, ω = 0)
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Chapter 10

Leading up to BCS Theory:
Electron Binding

As mentioned way back in chapter 2, the era of superconductivity started in 1911. Yet
there was no microscopic understanding of the effect until 1957 when Bardeen1, Cooper,
and Schrieffer (BCS) produced what still remains the theory of superconductors.

We already have discussed the general idea that a superconductor can roughly be
described as a superfluid (roughly a Bose-Einstein condensate) of charge 2e bosons. While
this had been discussed prior to BCS, no one took it seriously for the two reasons mentioned
at the start of chapter 7: electrons repel and even if you can get electrons to attract each
other, in order to get them to bind into a small boson you can treat individually(i.e.,
binding radius smaller than interboson distance) you need a binding energy on order of
the Fermi energy, which is entirely crazy. What will turn out to be crucial is that even
a very weak attraction2 will be sufficient to bind electrons together, at least in a sense.
Landau’s quip that “you cannot repeal Coulomb’s law” was somewhat incorrect3. The
screening of the Coulomb interaction on very short scales makes the Coulomb repulsion
much less effective than you might otherwise fear, and even a weak attraction mechanism
can then be important.

1John Bardeen is one of only four people to win two Nobel prizes. In the late 1940’s Bardeen was one
of the co-inventors of the transistor — the fundamental element of circuitry that powers the information
age. However, his boss at Bell labs, William Shockley (who won the prize with Bardeen), was also a
pathological personality and made it essentially impossible for Bardeen to continue doing any work on
transistors. Bardeen left Bell labs for Urbana where he began work on superconductivity.

2Indeed often a weak attraction even in the presence of lots of repuslion!
3You might not be able to repeal it, but you can screen it!
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10.1 Mechanism of Attraction

First we need to figure out why electrons attract each other. In “conventional” supercon-
ductors, the mechanism involves the interaction between the electrons and the vibrations
of the crystal lattice – i.e, phonons. This idea was put forth as early as 1950 by people
such as Feynman and Frölich.

In more exotic superconductors, including the high Tc perovskite superconductors
discovered in the 1980s, the pnictide superconductors discovered in the 2000s’ and 3He
superfluid (3He pairs at low temperature like a superconductor) it is believed that the
mechanism of attraction does not involve phonons. These are much more complicated
systems and they remain popular topics of research. In fact, there have been (no ex-
aggeration) over 106 publications aimed to understand why the high Tc superconductors
superconduct, and still there is no agreement!

For conventional superconductors (which includes the vast majority of supercondu-
tors known), fortunately, there is quite a bit of good evidence that it is the coupling to the
phonons that is crucial. A very strong piece of evidence comes from the so-called “isotope
effect”. One considers different isotopes of the same material — i.e., adding and subtract-
ing a few neutrons from the nucleus of atoms. The neutrons do nothing to the electronic
properties of the material, or the band structure. The only thing they do is to change
the frequency of vibration of the atoms by changing their masses. In these conventional
superconductors it is usually found that the critical temperature for superconductivity
scales as

Tc ∼M−α (10.1)

where M is the mass of the atomic nucleus, where α ≈ .5. The fact that the nuclear
mass plays any role in the superconductivity is a sure sign that phonons are crucial to the
mechanism.

Since this point is fairly important we will give two different calculations which
describe how the coupling to phonons generates an attraction between electrons.

10.1.1 Canonical Transformation

Let us write a simple model of electrons and phonons

H = H0 +H1

where H0 is the Hamiltonian for uncoupled phonons and electrons and H1 includes the
small coupling between the two. We write explicitly

H0 =
∑
k

εkc
†
kck + ~ω

∑
q

a†qaq

Here the first term is the electrons (and for simplicity of notation, we suppress the spin
indices) and the second term is Einstein phonons (with polarization indices suppressed).
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Figure 10.1: Electron-Phonon coupling

The use of Einstein phonons is simply the statement that all of our phonons have the
same frequency ω independent of q. We can switch to a real phonon dispersion without
too much added complication, but this simplified model will be enough to get the idea.

The coupling between electrons and phonons is given by

H1 =
∑
q,k

[
M c†k+qck a

†
q + h.c.

]
=
∑
q

[
M ρ̂q a

†
q + h.c.

]
(10.2)

where M is an interaction matrix element that usually would be Mq but we will take it
as a constant for simplicity. The physics here is that any charge density that builds up is
able to couple to phonons4. Diagrammatically this coupling is shown in Fig. 10.1

The Hamiltonian H = H0 + H1 is a complicated interacting Hamiltonian, and is
generally difficult to solve. However, we can take advantage of the fact that the coupling
constant M is small. This enables us to work perturbatively in this parameter. Our idea
is to remove the phonons from consideration and determine what the effective interaction
is between electrons. This is known as “integrating out” the phonons5. To do this we
make a canonical transformation on our Hamiltoninan

H = e−SHeS = H + [H,S] +
1

2
[[H,S], S] + . . .

The idea is to choose S so that the electron part of the Hamiltonian becomes completely
decoupled from the phonons (at the price of introducing an effective interaction between
the electrons). We can make this decoupling order by order in the small parameter M ,
where H1 is order M and we assume that S is also order M (since if M is zero, we are
decoupled with S = 0). Let us rewrite the series, order by order in the small parameter

H =

(
H0

)
+

(
H1 + [H0, S]

)
+

(
[H1, S] +

1

2
[[H0, S], S]

)
+O(small3)

where each set of terms in parenthesis () are of the same order. Let us choose S so as to
eliminate the first order term

H1 + [H0, S] = 0 (10.3)

4There are two main mechanisms by which phonons couple to electrons. The first is piezoelectric
coupling whenever a crystal is non-centro-symmetric, where compressing the crystal actually creates an
electric field that the electrons then respond to. The second mechanism is so-called deformation potential
coupling – where compressing the crystal changes the hopping strength between atomic orbitals and changes
the energies of the bands, and hence changes the energies of the electrons.

5The nominclature is from path integral language where it really is an integral.
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Plugging this back into the expansion we get

H = H0 +
1

2
[H1, S] +O(small3)

We have thus eliminated the coupling between electrons and phonons at first order, leaving
only the second order term, which we call

Hint =
1

2
[H1, S]

So that
H = H0 +Hint +O(small3)

Let us now back up to Eq. 10.3 and try to figure out what operator S satisfies this
equation. To determine this, we take the matrix element between two kets

〈n|H1|m〉 = −〈n|[H0, S]|m〉
= −(En − Em)〈n|S|m〉

so

〈n|S|m〉 =
〈n|H1|m〉
Em − En

(10.4)

We now want to figure out what Hint does to make an effective interaction between
electrons. Let us consider two kets |a〉 and |b〉 having the same number of phonons excited
and we are interested in finding the effective interaction matrix element

〈a|Hint|b〉

This can be evaluated as

〈a|Hint|b〉 =
1

2
〈a|[H1, S]|b〉

=
1

2

∑
c

[〈a|H1|c〉〈c|S|b〉 − 〈a|S|c〉〈c|H1|b〉]

=
1

2

∑
c

〈a|H1|c〉〈c|H1|b〉
[

1

Eb − Ec
+

1

Ea − Ec

]
where in going to the last line we used Eq. 10.4.

Now let us take as given that |a〉 and |b〉 both have no excited phonons. Then the
state |c〉 must have one excited phonon, considering the form of the coupling H1 given in
Eq. 10.2. Note that if the intermediate state |c〉 is of higher energy than either |a〉 or |b〉
then the term in the brackets is negative and we have an attractive interaction.

To see this in more detail, consider consider a case where we have for example

|b〉 = c†kc
†
p|FS〉 (10.5)

|a〉 = c†k−qc
†
p+q|FS〉 (10.6)

|c〉 = c†k−qc
†
pa
†
q|FS〉 (10.7)
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Figure 10.2: Electron-Phonon scattering makes an effective electron-electron interaction.

Thus the process looks like Fig. 10.2 The effective interaction Hamiltonian can then be
rewritten as

〈a|Hint|b〉 =
1

2

∑
p,k,q

c†p+qcpc
†
k+qck|M |

2

[
1

εk − εk−q − ~ω
+

1

εp+q − εp − ~ω

]

Now if the energy differences between the fermion states are small compared to ~ω
then the interaction is attractive. Further if we can drop the energies of the fermions this
simplifies even further to the very simple attractive form

Heff = −|M |
2

~ω
∑
q

ρqρ−q

Fourier transforming, an effective interaction which is constnat in q, one can see that this
corresponds to a short ranged attractive interaction between electrons.

10.1.2 RPA Screening and Ion Gas Model

Because the above calculation may seem a bit mysterious, we are going to do a second,
almost classical, calculation to show where the attraction comes from. This calculation is
based on self-consistent calculations very similar to the RPA that we discussed above in
section 8.4.

In this approach we are going to crudely model the background ions as a structureless
fluid of moving positive charge. We throw away the lattice and consider the ions as some
sort of liquid.

To impliment this approach, let us first remind ourselves of high frequency behavior
of charged particles. We derived (in several ways!) in sections 8.3.2 this response given by

δρ(q, ω) = χ0(q, ω)φ(q, ω)

where here δρ is the induced charge density6 and

χ0(q, ω) =
q2n̄e2

ω2m
= q2ε0

(
Ω2
e,pl

ω2

)
6Note that above we calculated the induced number density, so this differs by a factor of −e.
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where n̄ is the averege density and Ωe,pl is the plasma frequency

Ωe,pl =

√
n̄e2

mε0

Recall that this is nothing more than the harmonic oscillations of charged particles in a
neutralizing background (See section 8.4.2). For most metals this plasma frequency is very
high — up in the several eV range (> 10,000’s of K)7.

We now apply the same idea to the background ions which we view as simply a free
fluid of charged particles too — only here the particles have positive charge, and their
mass is much much greater than that of an electron. Here the mass is that of the entire
positive ion (and recall that a single nucleon is some 1800 times heavier than an electron,
and further each ion has many nucleons!). Thus, even for a light metal like aluminum,
we have the mass of the nucleon being almost 50,000 times that of the electron. Thus we
have a response for the background ion fluid being given by

χ0
ion(q, ω) = q2ε0

(
Ω2
ion,pl

ω2

)

where

Ωion,pl =

√
n̄e2

Mε0
(10.8)

with n̄ the density of ions e their charge, and M their (very large) mass. This description
of the motion of ions as a fluid is a very crude approximation of phonons in a solid. We
have

Ωion,pl ≈ ωDebye (10.9)

the characteristic scale of phonons, the which is typically on the order of 100 Kelvin.

At these very low frequencies (compared to the electron plasma frequency) the elec-
tron response is approximately the same as if ω were zero. (I.e., ion are extremely slow
compared to electrons!). The low frequency response of noninteracting electrons is given
by the compressibility

χ0
e(ω ≈ 0) = −e2D(EF )

with D(EF ) being the density of states at the Fermi surface.

Let us now consider an RPA calculation (See section 8.4) of the the response of the
coupled system of electrons and ions together. We write the total electrostatic potential
as the sum of an external potential and an induced potential

φtot(q, ω) = φex(q, ω) + φind(q, ω)

7To see this, consider a case where the density is 1/a2
0 with a0 the Bohr radius. In this case it is easy

to see that the plasma frequency is essentially the Rydberg.
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where the induced potential is due to the Coulomb potential from both the electrons and
the ions, which in turn is created by their own response to the total electrostatic potential

φtot(q, ω) = φex(q, ω) + Ṽ (q)
[
δρe(q, ω) + δρion(q, ω)

]
= φex(q, ω) + Ṽ (q)

[
χ0
eφ

tot(q, ω) + χ0
ion(q, ω)φtot(q, ω)

]
Solving, we obtain

φtot(q, ω) =
φext(q, ω)

1− Ṽ (q)
[
χ0
e + χ0

ion(q, ω)
]

which gives the general screening of an externally applied potential. Similarly any potential
between any two charged particles will be screened, and we have an effective interaction

V eff (q, ω) =
Ṽ (q)

1− Ṽ (q)
[
χ0
e + χ0

ion(q, ω)
]

=
Ṽ (q)

1 +
k2
TF
q2 −

Ω2
ion,pl

ω2

where kTF is the Thomas-Fermi screening wavevector of section 8.1.

There are several key points to note about this result.

� Without phonons this just recovers regular Thomas-Fermi screening. (We can Fourier
transform to obtain the same Yukawa interaction as in Eq. 8.5 and 8.30).

� For high frequency ω � Ωion,pl ≈ ωDebye the ion term vanishes and the phonons
don’t matter.

� In the limit of ω → 0 we obtain perfect screening as the ions fluid can always perfectly
screen a fully static potential (the denominator explodes and gives a zero result).

� Crucially, for small ω the ion term in the denominator dominates and we get an
attractive interaction!8

The physical picture we should have here is that when an electron moves through
the ions, it polarizes the ions, but the ions move slowly. The ions respond and build up
a screening charge that is maintained for a long time after the electron is gone. Another
electron can be attracted to this region for some time after the electron is gone. This
constitutes the low frequency attractive interaction between electrons.

8It turns out that this oversimplified model where we treat the ions as being a fluid and perform RPA-
like calculations greatly over-estimates the strength of the resulting attractive interaction. Nonetheless, it
gives an idea of where the attraction comes from.
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Figure 10.3: A square well potential extending to distance R and a wavefunction extended
to a distance L.

10.2 Bound States and the Cooper Problem

10.2.1 Non-Existence of Weakly Bound States in 3D

We have thus developed a way to justify that a (weak) attractive interaction may be
developed between electrons. We can now ask a fundamental question:

Question:
Given a very weak attractive potential in D dimensions, does there exist a bound state

Answers:
In D < 2 the answer is yes.
In D > 2 the answer is no.
D = 2 is complicated, but the answer is usually yes.

Since the result of this statement is important and (except for D = 2) the result is
easy to prove, it is worth actually proving it. (In fact our proof will not be fully rigorous,
but it will give the right ideas).

Note that since we are thinking about superconductivity we are really concerned
with forming a bound state between two particles, but we can go to relative coordinates
with a reduced mass and think about this as forming a bound state of a single particle in
a potential.

Let us consider a potential in general dimension D although we will draw the po-
tential in 1d for obvious reasons as shown in Fig. 10.3. The detailed shape of the potential
doesn’t matter much, so we will choose it to be a square well which extends to some ra-
dius R. What is crucial is that at infinite distance from the origin, the potential must go
strictly to zero.

If the potential is infinitessimly small (but attractive), we would like to know whether
there a bound state. In other words, is there an eigenstate with energy below zero? If so,
then by WKB approximation we can show that the state is bound near position zero and
the wavefunction must decay as e−|x|/L with L very long if the bound state is very close
to zero energy.

If the eigenstate is very weakly bound, we must assume that the binding radius L
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is large. However, we must also have normalization∫
dDr |ψ|2 = 1

so that we must assume the wavefunction magnitude is roughly

|ψ| ∼ L−D/2

Now let us try to estimate the potential and kinetic energy of the system. With the box-
like potential in D dimensions we simply want the integral of the squared wavefunction
times the potential inside the box

Potential Energy = −V0

∫
|r|<R

dDr |ψ|2 ∼ −V0(R/L)D

On the other hand, the kinetic energy should be

Kinetic Energy =
~2

2mL2

Thus the total energy is

KE+PE =
~2

2mL2
− V0

(
R

L

)D
For D < 2 this always becomes negative for large enough L, for arbitrarily small V0. Thus
there is always a bound state in D < 2. For D > 2 there is generally no bound state for
very small V0 (although a stronger V0 can certainly form a bound state). Since we are
mainly concerned with three dimensional materials this seems like a rather discouraging
result — no bound states will form if an attraction is weak9.

*** STOPPED EDITS HERE ***

10.2.2 The Cooper Problem: Bound States in The Presence of a Fermi
Sea

The crucial discovery by Leon Cooper (1956) is that the presence of a Fermi sea completely
changes the situation. We will see that in any dimension, in the presence of a Fermi sea
an arbitrarily weak attractive potential will form a bound state! The key here is that the
Pauli exclusion principle facilitates electron binding. Let us see how this works.

Suppose we start with a Fermi sea and we add two electrons. These two electrons
can only be added above the Fermi wavevector kF .

Let us write an appropriate trial bound state for the two added electrons

ψ(r1, σ1; r2, σ2) = χ(σ1, σ2)φ(r1, r2) (10.10)

9Clearly the D = 2 case will be complicated since the kinetic and potential energies scale the same way.
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where, as usual, we have now separated the spatial and spin part of the wavefunction.
We can choose to have the electrons in either a spin singlet or a spin triplet – either is
possible, and in fact the argument doesn’t change much. Since electron pairing in most
superconductors have the spins in singlet pairs, we will choose this case to study. So we
write10 the singlet form for the spin wavefunction

|χ〉 =
1√
2

( | ↑1↓2〉 − | ↓1↑2〉 ) (10.11)

Since the spin part of the wavefunction is antisymmetric we must have the spatial part of
the wavefunction be symmetric, so we propose the following:

φ(r1, r2) =
1

V

∑
|k|>kF

eik·(r1−r2)gk (10.12)

where we have added a factor of the volume of the system V for convenient normalization.
In order to have the wavefunction be symmetric between r1 and r2 we have to choose
gk = g−k. In fact for simplicity, if we are considering a rotationally invariant system we
can choose gk to be a function of |k| only so we write g|k| or sometimes gk..

There are several key things to note about this trial wavefunction.

� Note that in the sum over wavevectors we have only included wavevectors k > kF .
This is because we are assuming there is already a Fermi sea and all states below kF
are already filled.

� The trial wavefunction has no dependence on r1+r2. This means that we are putting
the center of mass of the pair into a K = 0 momentum state. This is equivalent to
saying that we always occupy k with −k at the same time in a pair.

� It is perhaps simpler to write the wavefunction 10.10-10.12 in second quantized form
where we have

|Ψ〉 =
1

V

∑
|k|>kF

gk c
†
k↑c
†
−k,↓|FS〉

where |FS〉 is the filled Fermi sea. The anti-commutations of the creation operator
ensure we obtain a singlet state.

Let us now assume there is a weak attractive interaction U(r1−r2) between the two
added electrons. Let us try to solve the Schroedinger equation for the two electrons to see
if we find a bound state. We have the Schroedinger equaiton (in shorthand form)(

K̂E + P̂E− E
)
|ψ〉 = 0

Letting εk be the kinetic energy of an electron with wavevector k. We then have∑
|k|>kF

eik·(r1−r2)gk [2εk + U(r1 − r2)− E] = 0

10In another language the singlet is χ(↑, ↓) = −χ(↓, ↑) = 1/
√

2 and χ(↑, ↑) = χ(↓, ↓) = 0.
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To solve this, we Fourier transform applying∫
dD(r1 − r2) e−iq·(r1−r2)

where we define the Fourier tranformed potential via

U(r) =
1

V

∑
q

Ũqe
iq·r

The Schroedinger equation becomes

(2εq − E) gq +
1

V

∑
|k|>kF

Ũq−k gk = 0 (10.13)

This is still a rather difficult equation to solve. The trick here is to choose a particularly
simple interaction U that roughly represents the type of interaction we might actually
have in a real system, but is still simple enough to work with. We recall that when we
derived a phonon-mediated attraction, it was attractive for low frequencies only. We thus
propose the following very simplified interaction

Ũq,k =


−U0 if εk and εq are both

within ~ωDebye of the Fermi surface

0 otherwise

Note that this is a bit of a strange interaction. We write this as a function of two wavevec-
tors k and q which are the Fourier transforms of r1 and r2. However, the resulting
interaction is not a function of k− q only, meaning that in real space this is not actually
translationally invariant! Nonetheless, this interaction has nice analytic properties, so we
will use it.

Replacing Ũq−k with Ũq,k in Eq. 10.13 we obtain

(2εq − E) gq −
U0

V

∑
|k|>kF

εk<EF+~ωDebye

gk = 0 (10.14)

which is now simple enough to solve.

Next we use the fact that we wanted to take gk to be a function of |k| only, and
further for a rotationally invariant system, we can say that k is a function of the kinetic
energy ε. (Usually we write it the other way, ε(k) but here we will write k(ε)). We can
then replace the second term in Eq. 10.14 with

U0

V

∑
|k|>kF

εk<EF+~ωDebye

gk = U0D(EF )

∫ EF+~ωDebye

EF

dε′ gk(ε′) ≡ C (10.15)
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where D(EF ) is the density of states per unit volume at the Fermi surface (which we will
assume is just a constant over the small energy range of interest). We have defined the
value of this integral to be called C.

We can then invert Eq. 10.14 to give

gk(ε) =
U0D(EF )

∫ EF+~ωDebye
EF

dε′ gk(ε′)

2ε− E

=
C

2ε− E

We can then multiply both sides of this equation by U0D(EF ) and integrate both sides of
this equation as in Eq. 10.15 in order to obtain C on the left

C = U0D(EF )

∫ EF+~ωDebye

EF

dε′
C

2ε′ − E

Cancelling C we then obtain

1

D(EF )U0
=

∫ EF+~ωDebye

EF

dε′
1

2ε′ − E
=

1

2
ln

[
2(EF + ~ωDebye)− E

2EF − E

]
which can then be exponentiated to give

exp

(
2

U0D(EF )

)
= 1 +

2~ωDebye
2EF − E

(10.16)

Now for small U0, the left is very large, which means that the right needs to be large
too, meaning that 2EF − E is very small but positive. This means that there is an
eigenstate with energy E < 2EF . This must be a bound state!! (Since the energy of two
noninteracting electrons above the Fermi sea can be no lower than 2EF .)

We can simplify a bit more here. For small U0 both left and right of Eq. 10.16 are
large, which means we can drop the 1 on the right hand side. Thud giving

exp

(
2

U0D(EF )

)
=

2~ωDebye
2EF − E

(10.17)

or equivalently the binding energy is given by

Binding Energy = 2EF − E = 2 ~ωDebye exp

(
−2

U0D(EF )

)
(10.18)

There are two crucial things to point out about this result:

First, without the Fermi sea, there is no bound state. To see this, let the density
of states at the Fermi surface D(EF ) go to zero (as it does in 3d as the Fermi sea gets
smaller and smaller). Then the binding energy goes to zero.
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Second: Note that the expression for the binding energy is non-analytic in the
potential strength U0. No order in perturbation theory would ever find this result. To see
this consider expanding a function like e−1/x around x = 0 in a taylor series. All derivatives
at x = 0 vanish — so this function, while smooth, has zero radius of convergence around
x = 0. So too does the expression for the binding energy if we try to expand it for small
U0. This nonanalyticity is one reason why discovering the binding of electrons on top of
a Fermi sea was so difficult!
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Chapter 11

BCS Theory

Given that two electrons just above the Fermi surface form a bound state even for weakly
attractive interactions, we can see that the whole Fermi surface must become unstable:
First two electrons jump above the Fermi sea to form a bound state and lower their
energies, then two more, and so forth, until all of the electrons near the Fermi surface are
paired up. The question is how do we describe such a state of matter now?

In 1956, many of the top physics minds in the world, both in the West and in the
Soviet Union, were working on superconductivity – people like Feynman and Landau1.
After seeing Cooper’s calculation of the binding of electrons above a Fermi sea, the world
was hot on the chase to figure out the theory of superconductivity. Bardeen had hired
Cooper to come to Urbana and work with him. Unfortunately (or perhaps fortunately)
in the fall of 1956, Bardeen won the Nobel prize2 for the invention of the transisitor, and
he had to pause his research to go to Sweden to collect his prize3. While he was gone,
his graduate student, Robert Schrieffer, was left to puzzle over the problem with Cooper.
The two of them went to some conferences in New York City, and while Schrieffer was on
the subway he cracked the problem. Within a few months they had essentially worked
out most of the details of the modern theory of superconductivity4. The general idea is
to make something that looks a bit like a BEC of pairs of electrons. We will see that the
trial wavefunction has some properties that makes it look like a BEC and some properties

1This was an era when many top scientists thought there was not much interesting in high energy
physics for a while.

2Along with William Shockley and Walter Brattain
3Bardeen only brought one of his three children with him to Stockholm for the prize ceremony since the

other two were studying at Harvard and he didn’t want to interrupt their studies (Although he was very
happy to win the prize he fundamentally did not think prizes should be that important!). King Gustav
chided him for not bringing all his children, and Bardeen promised that he would bring the whole family
for his next Nobel prize. Sixteen years later he kept that promise.

4Schrieffer’s PhD thesis is one of the most beautiful pieces of PhD research one could possibly imagine.
It is essentially identical to his later book on superconductivity which is considered a classic of the field.
Like many geniuses Schrieffer struggled with his mental health. Much later in life Schrieffer was sentenced
to two years in prison for vehicular manslaughter having killed two people in a crash while he was driving
with a suspended license.
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that make it distinct from a BEC.

11.1 The BCS wavefunction

11.1.1 Fixed N wavefunction

Recall how we construct a BEC from bosons. We can write a creation operator for bosons
in some orbital χ

a†χ =

∫
dr χ(r)ψ̂†(r)

Then a BEC with N particles can be written as

|ψBECN 〉 = (a†χ)N |0〉

Can we do something similar with fermion pairs? Let us define a pair creation operator
(assuming the pair is a singlet)

ã† =

∫
dr1

∫
dr2 g(r1 − r2) ψ̂†↑(r1)ψ†↓(r2)

=
∑
k

gk c†k,↑c
†
−k,↓

which creates a pair of electrons in the orbital

g(r1, σ1; r2, σ2) =
1√
2

( | ↑1↓2〉 − | ↓1↑2〉 )g(r1 − r2)

In the simple case where the orbital g(r) is radially symmetric, we can take gk to be a real
function of |k| only which we might write as gk.

It is sometimes useful to define a pair creation operator for creating singlet pairs in
opposite momentum eigenstates.

P †k = c†k,↑c
†
−k,↓ (11.1)

such that the creation operator for a pair in orbital g(r1 − r2) can be written as

ã† =
∑
k

gk P †k

We might wonder if the operator ã† and ã are proper canonical boson creation and
annihilation operators. For this we would like to have

[ã, ã†] = 1
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or, indeed, any constant on the right hand side would work since we could rescale the
operators to make it into unity. However, direct calculation instead gives us

[ã, ã†] =
∑
k,k′

g∗k′gk

[
c−k′,↓ck′,↑, c

†
k,↑c

†
−k,↓

]
=

∑
k

|gk|2 (1− nk,↑ − nk,↓)

So we see that these operators are not quite bosons. However, for most k’s not near the
Fermi surface the operators nk on the right hand side are going to be fixed anyway (far
below the Fermi surface they will be filled, far above they will be empty) so we can think
of the right hand side as being “mostly” a constant, and see how far we get with these
“pseudo”-bosons.

Let us now consider trying to make a BEC-like wavefunction out of these operators.
We try to multiply occupy this orbital by writing

|ψBCSN 〉 = (ã†)N |0〉

This wavefunction can be explicitly evaluated to give the following result

ψBCSN = Pf(g) ≡ A [g(1, 2)g(3, 4)g(5, 6) . . . g(2N − 1, 2N)] (11.2)

here Pf stands for “Pfaffian”5 which is a mathematical shorthand for what is written on
the far write. We have used the notation g(1, 2) to mean g(r1, σ1; r2, σ2) and A means we
should antisymmetrize over all possible pairings of electrons with each other. For example

A [g(1, 2)g(3, 4)] = g(1, 2)g(3, 4)− g(1, 3)g(2, 4) + g(1, 4)g(2, 3)

This expression Eq. 11.2 is the fixed N version of the BCS wavefunction. While it is nice
to write it out, and see how this wavefunction generates a sum of all possible pairings of
electrons with each other, this particular form of the wavefunction is close to useless for
doing any calculations!

11.1.2 Coherent State Wavefunction

Recall we can write a coherent state expression for a BEC

|ψBEC〉 = eαa
† |0〉

So let us try something similar for our paired fermions

|ψBCS〉 = eαã
† |0〉

= eα
∑

k gkc
†
k,↑c

†
−k,↓ |0〉

=

[∏
k

eαgk c
†
k,↑c

†
−k,↓

]
|0〉

5Named for Johann Friedrich Pfaff, 1765-1825.
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However here we note that since the pairs are made up of fermions we cannot create two
of them in the same k states, i.e., (

c†k,↑c
†
−k,↓

)2
= 0

So when we expand the exponential we have

eαgkc
†
k,↑c

†
−k,↓ = 1 + αgk c

†
k,↑c

†
−k,↓

with no quadratic or higher order term. Thus our wavefunction can be written as

|ψBCS〉 =
∏
k

(
1 + αgk c

†
k,↑c

†
−k,↓

)
|0〉 (11.3)

As in the case of the coherent state BEC, this wavefuntion has an indefinite number of
particles. Furthermore, it is not properly normalized, that is

〈ψBCS |ψBCS〉 6= 1

So our first task will be to calculate the normalization so that we can fix this problem.

〈ψBCS |ψBCS〉 = 〈0|
∏
k′

(
1 + α∗g∗k′ c−k′,↓ck′,↑

)∏
k

(
1 + αgk c

†
k,↑c

†
−k,↓

)
|0〉

We can simplify this calculation by considering each k orbital separately where |0k〉 means
the vacuum for that orbital (i.e., the unfilled orbital for both k, ↑ and −k, ↓). We thus
have

〈ψBCS |ψBCS〉 =
∏
k

〈0k|
(

1 + α∗g∗k c−k,↓ck,↑

)(
1 + αgk c

†
k,↑c

†
−k,↓

)
|0k〉

=
∏
k

(
1 + |αgk|2

)
(11.4)

This non-standard normalization is inconvenient so we make the following definitions

uk =
1√

1 + |αgk|2
(11.5)

vk =
αgk√

1 + |αgk|2
(11.6)

such that

αgk = vk/uk (11.7)

and we have the normalization condition

|uk||2 + |vk|2 = 1 (11.8)
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If we now take our BCS wavefunction, Eq. 11.3 and divide through by the square
root of the normalization constant Eq. 11.4 we obtain the normalized form of the BCS
wavefunction

|ψnormalizedBCS 〉 =
∏
k

(
uk + vkc

†
k,↑c

†
−k,↓

)
(11.9)

which properly satisfies

〈ψnormalizedBCS |ψnormalizedBCS 〉 = 1

This is the form of the BCS wavefunction which is most commonly used. As such we will
drop the superscript normalized henceforth.

At this point we have a form for a trial wavefunction, but we still don’t know what
to use as the parameters uk and vk, or equivalently we don’t know αgk, or equivalently we
don’t know the shape of the orbital g(r) of the bound state of two electrons. To find this
we must choose a Hamiltonian and our plan will be to treat the shape of the orbital g(r)
(or equivalently uk and vk) as a variational parameter, and we will minimize the energy
of the Hamiltonian with respect to variations in this quantity.

11.2 BCS Hamiltonian, Energy Minimization, and Gap Equa-
tion

The type of Hamiltonian for interacting electrons that we have been working with so far
has been roughly of the form

H =
∑
k,σ

ξk,σ c
†
k,σck,σ +

∑
k1,k2,k3,k4
σ1,σ2,σ3,σ4

vk1,k2,k3,k4
σ1,σ2,σ3,σ4

c†k1,σ1
c†k2,σ2

ck4,σ4
ck3,σ3

where we have made the conventional substitution

ξk,σ = εk,σ − µ

which is just the energy measured from the Fermi surface6.

While even this is an approximation (our interaction, recall, actually is frequency
dependent strictly speaking!), it is still too complicated to work with.

Instead let us follow the ideas of Cooper and grossly simplify the Hamiltonian, So
let us write the very approximate interaction

HBCS =
∑
k,σ

ξk,σ c
†
k,σck,σ +

∑
k,k′

Vk,k′ c
†
k,↑c

†
−k,↓c−k′,↓ck′,↑ (11.10)

6Strictly speaking here our Hamiltonian with this shift of µ is actually giving us E − µN . It is quite
crucial to keep track of the chemical potential here since our system has an indefinite particle number and
we must count a free energy µ each time a particle enters the system.
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Figure 11.1: this is the caption

where we assume Vk,k′ = Vk′,k so that the Hamiltonian is hermitian. For simplicity we
will usually assume V is real and attractive (although this is not entirely necessary).

Let us examine this Hamiltonian in a bit of depth. First of all, it is conceptually
useful to use the pair creation operator from Eq. 11.1. The BCS Hamiltonian can then be
rewritten more succinctly as

HBCS =
∑
k,σ

ξk,σ c
†
k,σck,σ +

∑
k,k′

Vk,k′ P
†
kPk′ (11.11)

This simply scatters a pair of electrons (k′, ↑;−k′, ↓) to new momenta (k, ↑;−k, ↓) with
the assumption that both k and k′ are sufficiently close to the Fermi surface. This process
is schematically shown in Fig. 11.1.

The interaction term of the BCS Hamiltonian may seem like it is a tremendously
crude simplifiction. However, it turns out to give the right physics of superconductivity
so we will use it.7

So now our plan is to calculate the energy of the BCS Hamiltonian

E = 〈ψBCS |HBCS |ψBCS〉 (11.12)

and then minimize over the variational parameters uk, vk subject to the normalization
constraint Eq. 11.8.

To evaluate the expectation of the energy we will need to evaluate a number of
simple expectations, like

〈ψBCS |c†k,↑ck,↑|ψBCS〉 = 〈0k|
(
u∗k + v∗kc−k,↓ck,↑;

)
|c†k,↑ck,↑|

(
uk + vkc

†
k,↑c

†
−k,↓

)
|0k〉

= |vk|2

and similarly for the occupation of down spin electrons. We will also want to know

〈ψBCS |c†k,↑c
†
−k,↓|ψBCS〉 = 〈0k|

(
u∗k + v∗kc−k,↓ck,↑;

)
|c†k,↑c

†
−k,↓|

(
uk + vkc

†
k,↑c

†
−k,↓

)
|0k〉

= v∗kuk (11.13)

7Many years after BCS theory was first developed, renormalization group calculations were used to
show that the only “relevant” terms in any interaction close to a Fermi surface are precisely those that are
kept in the BCS Hamiltonian.
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and similarly

〈ψBCS |c−k,↓ck,↑|ψBCS〉 = u∗kvk (11.14)

Using these relations we evaluate Eq. 11.12 with the Hamiltonian 11.10 to obtain

E =
∑
k

2ξk|vk|2 +
∑
k,k′

Vk,k′ v
∗
kuku

∗
k′vk′

where the factor of 2 in front of the first term is the sum over two spin states.

Now recalling that we are interested in a pairing wavefunction g(r1 − r2) which is
symmetric, this means we can take g(r) = g(−r) and hence gk real. This further means
we can take uk and vk both real. With the constraint 11.8 it is then convenient to simply
define

vk = cos θk (11.15)

uk = sin θk (11.16)

in which case the variational energy is given by

E =
∑
k

2ξk cos2 θk +
∑
k,k′

Vk,k′ sin θk cos θk sin θk′ cos θk′

We now use some convenient trig identities cos2 θ = (1 + cos 2θ)/2 and sin θ cos θ =
(sin 2θ)/2 to rewrite the energy as

E =
∑
k

ξk(1 + cos 2θk) +
1

4

∑
k,k′

Vk,k′ sin 2θk sin 2θk′

We minimize this energy with respect to the parameters θq by setting ∂E/∂θq = 0
to obtain

0 = −2ξq sin 2θq + cos 2θq
∑
k

Vq,k sin 2θk (11.17)

where the second term is twice as big as one might expect because we differentiate both
sign terms and we have used the expected symmetry Vk,k′ = Vk′,k.

It is now convenient to define the following object known as the “BCS gap function”
(for reasons we will discover soon this will be closely related the superconducting energy
gap for low energy excitations):

∆q = −1

2

∑
k

Vq,k sin 2θk (11.18)

I realize we are in the midst of doing a lot of algebra, but this object is of great physical
significance. In order to better understand it, let us unpack the definition — recalling that
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sin 2θ = 2 sin θ cos θ we have

∆q = −
∑
k

Vq,k sin θk cos θ

= −
∑
k

Vq,k u
∗
kvk (11.19)

Even though we had assumed above that u and v were real, we write them here as generally
complex. The reason for this is that in the more general case where we consider more
complicated pairing with complex u and v, we will still want to use Eq. 11.19 to define
∆q. Unpacking this one step further by using Eq. 11.14 we obtain the more physical
definition of the gap function in terms of the so-called “anomalous correlator”8

∆q = −
∑
k

Vq,k〈c−k,↓ck,↑〉 (11.20)

Returning now to Eq. 11.17 and substituting in the gap function we obtain

tan 2θq =
1

ξq

1

2

∑
k

Vq,k sin 2θk =
−∆q

ξq
(11.21)

From this expression we hope to determine sin θ and cos θ (and hence u and v and hence
the actual wavefunction!). To do this we need a bit more trigonometry. Using 1+tan2 θ =
sec2 θ gives us

cos 2θq =
±1√

1 + tan2 2θq

=
−ξq√

ξ2
q + |∆q|2

(11.22)

sin 2θq =
± tan 2θq√
1 + tan2 2θq

=
∆q√

ξ2
q + |∆q|2

(11.23)

The unknown signs are assigned on the far right so that Eq. 11.21 comes out correctly
(We could alternately multiply both terms by -1 and everything would still work). Also
note that we have used |∆q| in the denominator here which turns out to be the correct
expression when the quantity is complex.

Since we have now obtained sin 2θ we can plug Eq. 11.23 into Eq. 11.18 to obtain

∆q = −1

2

∑
k

Vq,k
∆k√

ξ2
k + |∆k|2

(11.24)

This important equation is known as the “BCS gap equation” and it holds extremely
generally for any singlet superconductor.

8As in the case of using 〈ψ†〉 as an order parameter for a Bose condensate, we have chosen an order
parameter which involves having an indefinite number of particles in the system, and is strictly zero
if the number of particles is fixed. As in the Bose case with greater work it is possible to formulate
superconductivity for systems of fixed particle number, although it is substantially more complicated.
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At this point, although the gap equation is in principle solvable for any Vq,k it is
only analytically solvable for extremely simple forms — we will choose one such form.
Recall that we expect the interaction to be attractive only if the energy of the electron
is within ~ωDebye of the Fermi surface. Thus a very crude representaion of this physics
would be

Vq,k =

{
−V0 if |ξk|, |ξq| < ~ωDebye
0 otherwise

(11.25)

with V0 positive corresponding to an attractive interaction. We then claim that with this
form of V , the gap equation is solved by the gap function

∆q =

{
∆ if |ξq| < ~ωDebye
0 otherwise

(11.26)

Plugging in this this form of the interaction (Eq. 11.25) and gap function (Eq. 11.26) into
the gap equation (Eq. 11.24), cancelling ∆ on both sides, we obtain a solution for the
scalar gap function ∆ given by the solution of the equation (with ∆ assumed real here)

1 =
V0

2

∑
k

ξk<~ωDebye

1√
ξ2
k + ∆2

(11.27)

We will see below that ∆ will represent the energy range around the Fermi surface where
there are no excitations — i.e., a gap (hence the name).

This equation can now be simplified a bit further by replacing the sum over k with
an integral with a density of states

∑
k

ξk<~ωDebye

→ 1

2

∫ µ+~ωDebye

µ−~ωDebye
dε D(ε) ≈ D(EF )

1

2

∫ µ+~ωDebye

µ−~ωDebye
dε

where D(EF ) is the density of states at the Fermi surface, and the factor of 1/2 is included
because the density of states includes a sum over spins and the sum over k does not. Using
this, the gap equation (Eq. 11.27) is then rewritten as

1 = V0D(EF )

∫ ~ωDebye

−~ωDebye
dξ

1√
ξ2 + ∆2

= V0D(EF )arcsinh

(
~ωDebye

∆

)
which can then be inverted to give

∆ =
~ωDebye

sinh
(

1
V0D(EF )

)
Assuming the attractive interaction V0 is very weak, this can be approximated as

∆ = 2~ωDebye exp

(
−1

V0D(EF )

)
(11.28)
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which is extremely similar to the solution to the Cooper problem Eq. 10.18. In particular
it is also non-perturbative (nonanalytic) in the strength of the interaction V0.

Exercise: An exercise worth trying is to calculate the condensation energy
associated with superconductivity. This is given by

Econdensation = 〈ψBCS |HBCS |ψBCS〉 − 〈FS|HBCS |FS〉

with |FS〉 the usual Fermi sea. If you do this correctly you will get

Econdensation/V = −1

2
D(EF )∆2 (11.29)

and we recall from Eq. 3.18 that this same quantity should also be given by

Econdensation/V =
1

2
µ0H

2
c (11.30)

It is worth looking at some of the details of the BCS wavefunction. In particular we
would like to know what the functions uk and vk actually look like. Using Eqs. 11.22 and
11.23 we have

|uk|2 = sin2 θk = 1−cos 2θk
2 = 1

2

(
1 +

ξq√
ξ2
q+∆2

q

)
(11.31)

|vk|2 = cos2 θk = 1− sin2 θk = 1
2

(
1− ξq√

ξ2
q+∆2

q

)
(11.32)

These functions are sketched in Fig. 11.2. Roughly vk looks like a Fermi function — unity
sufficiently far below the Fermi surface, and zero sufficiently far above. The functions only
differ appreciably from 0 and 1 in a region roughly ∆ around the Fermi surface. Note
that in more detail this function is not like a Fermi function because the Fermi function
converges exponentially to 1 and 0 whereas far from the Fermi surface whereas these
converge algebraically.

How Big is a Cooper Pair?

Even if the interaction V between the electrons is very short ranged, the size of a cooper
pair can be large. Let us attempt to make an estimate of this size. The important
realization is that uk and vk are constant except for range of energy of roughly ∆ around
the Fermi surface. In terms of wavevector this means that these parameters are changing
over a range of wavevectors

δk ∼ ∆/vF

. Since the Fourier transform of the pair wavefunction is gk ∼ vk/uk we may conclude
that the pair wavefunction has size of approximately

ξpair =
1

δk
=

~vF
∆
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Figure 11.2: The u and v functions sketched as a function of energy (ie we plot uk(E) and
vk(E)

Crucially this distance can be much much larger than the distance between electrons in
most metals. Thus, as expected, we do not have tightly bound pairs that can be thought
of as individual bosons — as many pairs must spatially overlap with each other.

This parameter ξpair at low temperature is essentially the superconducting coher-
ence length which we discussed in Ginzburg-Landau theory. Let us try to elucidate this
connection.

To see this connection, let us equate the two expressions for the condensation energy
prt unit volume given in Eq. 11.29 and 11.30

1

2
D(EF )∆2 =

1

2
µ0H

2
c (11.33)

Now recall from our discussion of Ginzburg-Landau theory that we can write Hc in terms
of the London length λ and the coherence length ξ (See Eq. 6.18)

Hc ∼
1

ξλ

φ0

µ0

where we are dropping order one factors like π and 2 for simplicity. The right hand side
of Eq. 11.33 is thus

1

2
µ0H

2
c ∼

1

ξ2

1

λ2

φ2
0

µ0
∼ 1

ξ2

(e∗)2ns
m∗

φ2
0 =

1

ξ2

~2n∗s
m∗

(11.34)

where we have used (from London theory) λ2 = m∗/((e∗)2n∗sµ0) with n∗s the superfluid
density of bosons and φ0 = 2π~/e∗) where we are still dropping order unity factors. On the
other hand, on the left of Eq. 11.33 we have D(EF ) ∼ (n/EF ) and we set ∆ = ~vF /ξpair
thus giving us the condensation energy (dropping order unity factors)

1

2
D(EF )∆2 ∼

~2v2
F

ξ2
pair

n

EF
∼ 1

ξ2
pair

~2n

m
(11.35)
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Figure 11.3: Square Latice Antiferromagnet

where we have used EF = 1
2mv

2
F . Thus up to factors of order unity (factors of 2 etc),

comparing Eq. 11.34 to 11.35, and setting n∗s = n (or n/2) and m∗ = m (or 2m) we
conclude that

ξpair = ξ

the size of a Cooper pair is roughly the coherence length. However, we should be a bit
cautious here that the equivalence is true at zero temperature but not near the critical
temperature. We must keep in mind that in Eq. 11.34 the factor of n∗s is the superfluid
density — which is the total density at zero temperature, but goes to zero at T = Tc
implying that the ratio ξ/ξpair divereges as T approaches Tc.

11.3 More Exotic Pairing

The simple BCS story we have just explained can be extended in many ways. Here we
will consider two interesting such extensions.

11.3.1 Anisotropic Interactions and Anisotropic Gaps: The Example of
High Tc

We have assumed that the pairing interaction Eq. 11.25 and the gap function Eq. 11.26
are isotropic – i.e, they depend on the magnitude of k only and not on the direction of k.
This need not be the case.

A very prominent case where interactions are expected to be anisotropic is that of the
perovskite high-temperature superconductors. While there is no agreement on the detailed
mechanism for superconductivity in these materials9 there is rough general agreement on
some general things. To begin with, the so-called parent compound for these material
is a two-dimensional square lattice antiferromagnet (which is stabilized by strong on-site
repulsive Hubbard interactions). This means that the spins are arranged in an up-down
checkerboard pattern as shown in Fig. 11.3

When a small density of additional holes are added to the parent, these mobile
holes run around and destroy (or “melt”) the antiferromagnetic order. Nonetheless, there
remains a tendency of sites neighboring each other (in vertical or horizontal direction)
to have spins pointing in opposite directions — whereas spins along the diagonal tend to
point in the same direction. If there is a large on-site repulsive interaction, we cannot have

9Despite over 105 publications on the topic.
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on-site pairing, and we must think about pairing between neigboring sites. If we want to
make singlet pairs of electrons we should then want to make pairs in the horizontal and
vertical directions (where spins point opposite), but not along the diagonal (where spins
are aligned), thus implying anisotropic pairing.

In the more conventional superconductor case we discussed above, we choose out
pairing function g(r), and hence gk to be independent of the direction of the argument.
However, it is perfectly consistent to have a pairing function which depends on the direction
in space. In particular, for the high Tc compounds a natural choice is to have (with
r = (x, y)

g(x, y) = (x2 − y2)g̃(r)

which then results analogously in

gk = (k2
x − k2

y)g̃|k|

We call this type of pairing “d-wave”. This name comes from the name of atomic orbitals.
Recall atomic orbitals are named by their angular momentum s, p, d, f, . . .. This particular
shape of orbital has angular momentum L = 2, hence is d − wave. As with an atom, an
orbital which is isotropic in space is called s-wave. Note that we must consider only even
angular momenta by fermionic (Pauli) symmetry — odd angular momenta for the spatial
orbital would give us a minus sign when we exchange the two particles, and hence would
require the spins to be in a triplet state (symmetric) rather than a singlet.

A model interaction which would give a d-wave pairing in 2-dimensional BCS theory
is given by

Vq,k =

{
−V0 cos 2φq cos 2φk if |ξk|, |ξq| < ~ωDebye
0 otherwise

(11.36)

which can be solved by the gap function

∆q =

{
∆ cos 2φq if |ξq| < ~ωDebye
0 otherwise

(11.37)

where φq is the polar angle of q in the plane. Note that the factor of 2 in cos 2φ shows
that we have angular momentum 2.

11.3.2 Triplet Superconductors: Helium-3

So far we have only discussed condensing pairs of fermions in a singlet state. However,
one can also pair fermions into a triplet state and condense those. While there are a few
materials which are believed to be triplet superconductors, the most compelling case10 of
triplet pairing is that of the fermion Helium 3, which turns into a superfluid below a few
hundred microkelvin in temperature11.

10Of the many thousands of materials that superconduct, perhaps 20 or so are thought to be triplets
superconductors. Needless to say, these materials are pretty interesting to study.

11A Nobel prize was awarded in 1996 to Osheroff, Richardson, and Lee for their discovery of Helium 3
superfluidity. A Nobel prize was awareded in 2003 to Tony Leggett for theoretical understanding of this
state of matter.
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A simple example of a triplet superconductor is given by considering supercondcutiv-
ity in a completely spin-polarized system12. In this case we can write a trial wavefunction
as

|ψtripletBCS 〉 =
∏
k

(
uk + vkc

†
k,↑c

†
−k,↑

)
(11.38)

where the pair is created with aligned spins. With fermionic symmetry we have

〈c†k,↑c
†
−k,↑〉 = −〈c†−k,↑c

†
k,↑〉

which then means that

∆q = −
∑
k

Vq,k〈c−k,↑ck,↑〉 = −∆−q (11.39)

where we have only assumed Vq,k = V−q,−k. This then implies that the spatial pairing
must be antisymmetric to accomodate the symmetric pairing of the spins. An example of
this is p-wave pairing

Vq,k =

{
−V0 cosφq cosφk if |ξk|, |ξq| < ~ωDebye
0 otherwise

(11.40)

wher e φq is the angle of q on the Fermi surface. This type of pairing results in a gap
function

∆q ∼ cosφq

Another type of p-wave pairing is the so-called “chiral” p-wave pairing, where the (com-
plex) gap function instead takes the form

∆q ∼ eiφq

11.4 BCS Excitation Spectrum

Having determined the ground state of the BCS superconducting system, we now turn
to ask whether we can figure out the excited states as well. Our approach is to use
what is known as BCS mean-field theory, although it is essentially a small extension to
Hartree-Fock.

Let us recall in Hartree-Fock theory (See Eq. 7.21) following mean field theory, we
have approximated a four-fermion by taking an expectation of two of these Fermi operators
and leaving the other two as operators:

c†αc
†
βcδcγ −→ 〈c†αcγ〉c

†
βcδ + 〈c†βcδ〉c

†
αcγ − 〈c†αcδ〉c

†
βcγ − 〈c

†
βcγ〉c

†
αcδ (11.41)

In BCS theory these terms still exist, but they are not very interesting or important.
They will do the same things we discussed in prior chapters: renormalize masses and so

12A version of this occurs in the ν = 5/2 fractional quantum Hall state
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forth. Here instead we will consider some additional mean field terms that we have not
previously considered

〈c†αc
†
β〉cδcγ + c†αc

†
β〈cδcγ〉 (11.42)

We ignored such terms previously when we studied Hartree-Fock, as the correlators must
be zero for any wavefunction with a fixed number of particles. However, now that we
are using the BCS trial wavefunction, where the number of particles is indefinite, these
correlators are nonzero. Thus, throwing out the usual Hartree-fock terms of Eq. 11.41 but
keeping the terms in Eq. 11.42, our BCS Hamiltonian Eq. 11.10 is approximated as the
mean-field form

HMF =
∑
k,σ

ξk,σ c
†
k,σck,σ +

∑
k,k′

Vk,k′
(
〈c†k,↑c

†
−k,↓〉c−k′,↓ck′,↑ + c†k,↑c

†
−k,↓〈c−k′,↓ck′,↑〉

)
Using the expression for the gap function

∆q = −
∑
k

Vq,k〈c−k,↓ck,↑〉

we then obtain

HMF =
∑
k,σ

ξk,σ c
†
k,σck,σ −

∑
k,k′

(
∆∗k c−k′,↓ck′,↑ + ∆k c

†
k,↑c

†
−k,↓

)
(11.43)

Since this Hamiltonian is quadratic in fermion operators it is completely solvable by Bo-
goliubov transformation13 — extremely similar to what we did for bosons in section 4.5.1
above. Let us define fermionic Bogoliubon operators

γk,↑ = u∗kck,↑ − vkc
†
−k,↓

γ†−k,↓ = v∗kck,↑ + ukc
†
−k,↓ (11.44)

It is easy to check that this set of operators satisfies fermionic canonical commutations
relations

{γk,σ, γ†k′,σ′} = δk,k′δσ,σ′ (11.45)

{γk,σ, γk′,σ′} = {γ†k,σ, γ
†
k′,σ′} = 0 (11.46)

With some algebra, once can check that the mean-field Hamiltonian then can be rewritten
as

HMF = Ground State Energy +
∑
k,σ

Ek γ
†
k,σγk,σ (11.47)

where the (positive) Bogoliubon energy is

Ek = +
√
ξ2
k + |∆k|2 (11.48)

13In the context of superconductivity this transformation was first used independently by Bogoliubov
in the Soviet Union and by Valatin who was in Birmingham UK. It was published in the same journal,
Nuovo Cimento, on the same day in 1958.
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Exercise: The algebra involved in showing that Eq. 11.47 is the same as
Eq. 11.43 is tedious but straightfoward — one simply substitutes the expres-
sions for γ and γ† in terms of c and c† as given in Eq. 11.44 into Eq. 11.47. It
is worth working through this as an exercise. To get you started, we will try
deriving a particular term on the right of Eq. 11.43, the kinetic term with
spin ↑. We will make the desired substitution and only keep track of terms
where there is exactly one ck,↑ and one c†k,↑ and throw out all other terms.

Ek

(
γ†k,↑γk,↑ + γ†−k,↓γ−k,↓

)
= Ek

(
(ukc

†
k,↑ − . . .)(u

∗
k − . . .) + (v∗kck,↑ + . . .)(vkc

†
k,↑ + . . .)

)
= Ek

(
|uk|2 − |vk|2

)
c†k,↑ck,↑ + const

The factor (|uk|2 − |vk|2) = sin2 θk − cos2 θk = − cos 2θk from Eq. 11.16.
Then using Eq. 11.22 (and finally Eq. 11.48) our expression becomes

= Ek
(
|uk|2 − |vk|2

)
c†k,↑ck,↑ + const = Ek cos 2θkc

†
k,↑ck,↑

=
√
ξ2
k + |∆k|2

 ξk√
ξ2
k + |∆k|2

 c†k,↑ck,↑ = ξkc
†
k,↑ck,↑

which is exactly the term we expect in Eq. 11.43.

Having derived the mean field Hamitlonian Eq. 11.47 and the spectrum Eq. 11.48
we note that the BCS ground state is the state is simply the Bogoliubov vacuum

γk,σ|ψBCS〉 = 0

and excitations of (always nonnegative) energy Ek are created by the operator γ†k,σ.

Let us think a bit more carefully about the structure of these quasiparticles . First,
the quasiparticle in Eqs. 11.44 is a superposition of an electron and a hole. As ξk gets
much larger than zero (looking at the structure of u and v as shown in Eq. 11.2) the
quasiparticle operator γ† becomes mostly an electron creation operator (and only a tiny
bit of a hole creation). Whereas when ξ becomes much less than zero, the quasiparticle
operator is mostly a hole creation operator and only a little bit of an electron creation
operator.

Let us consider the simple isotropic (s-wave) case we have considered in Eq. 11.26
where ∆ is just a constant indpendent of direction on the Fermi surface. In this case, the
minimum energy excitation (Eq. 11.47) is of energy ∆, hence the name “gap” assigned to
the paramter ∆.

The existence of the energy gap has a number of profound ramifications. For ex-
ample, due to the lack of low energy excitations, the electronic heat capacity goes to
zero exponentially at low temperature roughly as e−∆/T . Similarly electronic thermal
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transport, and electronic ultrasonic attenuation14 drop exponentially at low temperature.
Another classic experiment is known as Knight shift, which measures the spin susceptibil-
ity (how easy it is to flip a spin). For singlet superconductors15, at low temperature when
there are no quasiparticles present, the Knight shift drops to zero, since to flip a spin one
needs to break a pair.

Finally we note that the absence of low energy excitations assures that a supercon-
ductor satisfies the Landau criterion for superfluidity!

Density of States

It is useful to try to figure out the density of states in a superconductor (again assuming
the simple s-wave form). The easiest way to do this is to always go back to the density of
states in k space which is completely fixed by the volume of the system. As usual, let the
nonsuperconducting kinetic energy of an electron be called ξ = ~2k2/(2m)− µ ( we then
convert k-space integrals to energy integrals as

2V

∫
d3k

(2π)3
. . . =

∫
dξDN (ξ) . . .

with DN (ξ) the normal-state density of states. Near the Fermi surface, DN (ξ) can be
approximated as a constant density of states, which we usually call D(EF ).

Similarly, however, we could write this as an integral over the energy of the super-
conducting quasiparticles

=

∫
dEDS(E) . . .

where DS(E) is the density of states of superconducting quasiparticles. Thus we have the
relation

DS(E)dE = DN (ξ)dξ ≈ D(EF )dξ

or equivalently

DS(E) = D(EF )
dξ

dE

Using Eq. 11.48 we have

ξ =
√
E2 −∆2

where we have assumed the isotropic s-wave case where ∆ is just a constant. We then
have

DS(E) = D(EF )
E√

E2 −∆2
E > ∆

as sketched in Fig. 11.4. We see that the states that had energy below ∆ in the normal
state are pushed up above ∆ to form a peak in the superconducting density of states. This

14In ultrasonic attenuation, sound is sent through a metal – the energy of the sound wave can be absorbed
by the electrons in the system (if there is no energy gap) thus attenuating the sound.

15For triplet superconductors one can smoothly rotate the spin of the pair without breaking the pair
and the Knight shift does not drop to zero at low temperature.
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Figure 11.4: The density of states of a superconductor.

density of states is easily measured in tunneling experiments where one tunnels unpaired
electrons into the superconductor.

11.5 Finite Temperature Gap Equation

At finite temperature the quasiparticles can be thermally excited. We should expect that

〈γ†k,σγk,σ〉 = nF (Ek)

where nF is the Fermi function

nF (x) =
1

eβx + 1

We can then think of the system at finite temperature as having the γ states thermally
occupied. However, the occupation of these thermal states will then have a feedback effect
on the gap function itself.

To see how this happens, we re-do the calculation of the gap function of Eq. 11.20
but now at finite temperature. To do this we need to invert Eq. 11.44 to write c and c† in
terms of γ as follows

c−k,↓ = −vkγ†k↑ + u∗kγ−k↓

c†k,↑ = u∗kγk↑ + vkγ
†
−k↓

Then plugging into Eq. 11.20 we get

∆q = −
∑
k

Vq,k〈c−k,↓ck,↑〉 (11.49)

= −
∑
k

Vq,ku
∗
kvk〈1− γ

†
−k↑γ−k↑ − γ

†
k↓γk↓〉 (11.50)

where we have dropped terms like γ†k↑γk↓ since they will give zero in a sector with a fixed



11.5. FINITE TEMPERATURE GAP EQUATION 185

Figure 11.5: Gap as a function of T

occupation of quasiparticles. We then have

∆q = −
∑
k

Vq,ku
∗
kvk(1− 2nF (Ek)) (11.51)

= −
∑
k

Vq,k
∆k

2Ek
(1− 2nF (Ek)) (11.52)

where we have used that 2u∗kvk = sin 2θq along with Eq. 11.23.

With the same assumption of isotropic interaction, and isotropic gap function (Eqs. 11.25
and 11.26) we obtain a modified version of the BCS gap equation that includes a thermal
occupation factor (here using that 1− 2nF (x) = tanh(x/2)) given by

1 =
V0

2

∑
k

ξk<~ωDebye

tanh
(

1
2β
√
ξ2
k + ∆2

)
√
ξ2
k + ∆2

=
V0D(EF )

2

∫ ωDebye

−ωDebye
dξ

tanh
(

1
2β
√
ξ + ∆2

)
√
ξ2 + ∆2

(11.53)

where we have converted the sum over k to an integral over energy analogous to the
discussion after Eq. 11.24. This equation now implicitly defines the gap ∆ as a function
of temperature (β = 1/kbT ). While the integral is not possible to do analytically, it can
be done numerically to give a dependency roughly as that shown in Fig. 11.5. At some
temperature, which we now define as Tc, the gap ∆ goes to zero and above this temperature
there is no solution. Further, the ratio of kBTc to the gap at zero temperature is a universal
constant

∆(T = 0) = 1.76 kBTc

a relationship that holds true reasonably well in most conventional superconductors.
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11.6 Inhomogeneous Superconductors

So far we have only studied superconductors in clean systems where k is a good quantum
number. However, this is not necessary. Let us introduce some amount of disorder U(r)
and write a single-particle Hamiltonian as

ĥ =
−~2∇2

2m
+ U(r)− µ (11.54)

We can then write a more general effective Schroedinger equation in real-space as(
ĥ ∆(r)

∆∗(r) −ĥ∗

)(
u(r)
v(r)

)
= E

(
u(r)
v(r)

)
which is known as the Bogoliubov-de Gennes equation. This is supplemented by the
real-space definition of the gap function

∆(r) = −V0

∑
n

un(r)vn(r)

In the translationally invariant case these equations are equivalent to the above discussion:
The eigenstates are plane waves with momentum k, and the u and v are the same uk and
vk factors we discussed above. However, the Bogoliubov-de Gennes equations also allow
for disordered eigenfunctions as well. We can similarly define quasiparticle operators which
then take the real-space form such as

γn↑ =

∫
dr
(
ψ̂†(r)↑u

∗
n(r)− vn(r)ψ↓(r)

)
analogous to the momentum space version in Eq. 11.44.

An important theorem due to Anderson (creatively called “Anderson’s theorem”)
states that weak (nonmagnetic) disorder added in Eq. 11.54 does not reduce the size of
the gap or reduce the critical temperature. This is the reason that superconductivity can
survive disorder. The essence of this theorem is that (at least in non-magnetic systems
–i.e., systems that obey time reversal invariance) it is always possible to pair an electron
with its time reversed partner. In the absence of disorder we pair k ↑ with −k ↓. When
we break translational invariance we may not have k states any more, but nonetheless we
can pair an eigenstate with its time-reversed partner.

11.6.1 Caroli-de Gennes-Matricon States

An interesting application of the Bogoliubov-de Gennes equation is is the calculation of
the quasiparticle spectrum near the core of a vortex in a superconductor. Recall that
the gap ∆(r) drops to zero at the core of the vortex, but then rises (over a length scale
roughly the coherence length ξ) to its bulk value far away from the vortex core. This
means that at very low energy, quasiparticles cannot exist far from the vortex core, but
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Figure 11.6: The density of states near the vortex core includes discrete low energy eigen-
states below the bulk gap.

they can exist close to the vortex core. In this way we can view teh Bogoliubov-de Gennes
equation as providing a “particle in a box” problem for the quasiparticles — with a box
being a region of radius roughly ξ around the vortex core. As a result there are discrete
low energy eigenstates (below the bulk gap) for quasiparticles living in the vortex core
— these are known as Caroli-de Gennes-Matricon states. The density of states near the
vortex core thus looks roughly like shown in Fig. 11.6.

11.7 Ginzburg-Landau, Number-Phase, and Josephson

Since the gap parameter vanishes at the critical temperature, it is natural to ask what its
relationship is to the Ginzburg-Landau order parameter introduced in section 6.2. Indeed,
these can be roughly considered to be the same thing (once we include an appropriate
normalization, they become equivalent). We can go a step further and ask about the
phase of the order parameter.

The superconductor can be given an arbitrary complex phase in the same way we
would introduce a phase for a neutral superfluid or a coherent state (See for example,
section 4.1.2). For a neutral superfluid, we would write

e|α|e
iϕa† |0〉

Applying the same philosophy here, we obtain a BCS wavefunction of the form

|ψϕ〉 =
∏
k

(
|uk|+ eiϕ|vk|c†k↑c

†
−k↓

)
(11.55)

As with the coherent state in section 4.1.2, since each pair comes with a factor of eiϕ (just
like with a coherent state) the action of −i∂/∂ϕ and the action of the number operator
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N̂ which counts pairs are equivalent. Thus we have16

− i ∂
∂ϕ

= N̂ (11.56)

and conversely

i
∂

∂N
= ϕ (11.57)

from which we also have

e−iϕ = e
∂
∂N = N̂+ (11.58)

which is a shift operator which increase the value of N by one17. For example, consider
the pair creation operator in Eq. 11.13. We see that this has value v∗u, which in Eq. 11.55
is indeed proportional to e−iϕ.

We can check that this additional phase included in Eq. 11.55 is reflected in the gap
function by using Eq. 11.19

∆q = −
∑
k

Vq,k u
∗
kvk = −

∑
k

Vq,k |uk||vk|eiϕ

= ∆0
q e

iϕ

We can check that no energies depend on the overall phase, since this is just a gauge
degree of freedom as expected. However relative phases are physical quantities.

11.7.1 Josephson Effect

Let us now consider two superconductors connected by a voltage meter as shown in
Fig. 11.7 The BCS wavefunction of each superconductor has an indefinite number of par-
ticles, but has a definite phase. Recalling that the Hamiltonian is actually a free energy
(since energy is measured with respect to the chemical potential µ, see footnote in section
11.2). This means that adding a pair into the condensate does not generally increase or
decrease the free energy. However, once we add a voltage between two superconductors,
then transferring a pair from one superconductor to the other does cost energy. Thus we
can write an effective Hamiltonian of the form

We can represent their effective Hamiltonians as

Heff = −eV (N̂L − N̂R)

16Compare these to the conjugate pair p = −id/dx and x = id/dp.
17To see this note that ed/dx is an operator that when applied to a function f(x) returns f(x+ 1). This

is demonstrated by expanding the exponential and recognizing it as a Taylor series

ed/dxf(x) =

(
1 +

d

dx
+

1

2

d2

dx2
+ . . .

)
f(x) = f(x+ 1)
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Figure 11.7: this is the caption

where N̂L,R is the number of pairs on the left, or right respectively (note that transferring
a pair from left to right changes the energy by 2eV as it should). Using the Heisenberg
equations of motion to determine the evolution of the difference in the phases of the two
superconductors18 we have

i~
∂(ϕL − ϕR)

∂t
= [(ϕL − ϕR), H] = [(ϕL − ϕR),−eV (N̂L − N̂R)]

Now using Eq. 11.56 we obtain

i~
∂(ϕL − ϕR)

∂t
= −eV

[
(ϕL − ϕR) , (−i ∂

∂ϕL
+ i

∂

∂ϕR
)

]
or

∂(ϕL − ϕR)

∂t
=
−2eV

~
(11.59)

This conversion of voltage into frequency is used metrologically to fix the definition of the
volt.

If we now set the voltage between the two sides to zero, and let current flow between
the two sides, let us ask how the current depends on the phases of the two sides.19 We
can write Heisenberg equations of motion

i~(ṄL − ṄR) = [(NL −NR), H]

But then since number and phase are conjugate

NL −NR = −i
(

∂

∂(φL − φR)

)
18The absolute phase is gauge dependent, but the difference in phases is well defined.
19In the lecture I instead use Hamilton’s equations of motion, which is OK for large N where the

dynamics is pretty classical. The argument is as follows. Number and phase are conjugate variables
analogous to momentum and position. Let us recall Hamilton’s equations for momentum and position
∂H
∂p

= ∂x
∂t

and ∂H
∂x

= − ∂p
∂t

Now replace the conjugate variables x and p with ϕL − ϕR and NL − NR.
We then have ∂H/∂(ϕL − ϕR) = −∂(NL −NR)/∂t and ∂H/∂(NL −NR) = ∂(ϕL − ϕR)/∂t The latter
of these two equations we immediately identify as giving us exactly Eq. 11.59. The former of these two
equations, instead gives us Eq. 11.60.
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So we have

i~(ṄL − ṄR) =

[
−i
(

∂

∂(φL − φR)

)
, H

]
= −i

(
∂H

∂(φL − φR)

)
(11.60)

where we have used [d/dx, f(x)]g(x) = d(fg)/dx− fdg/dx = (df/dx)g or just [d/dx, f ] =
(df/dx). We thus obtain

〈J〉 = 2e
∂〈H〉

∂(ϕL − ϕR)
(11.61)

with J the current between the two subsystems. We thus must determine how the energy
of the two superconductors depend on their phases. Since within each subsystem, the
phase is a gauge degree of freedom, the overall dependence on the relative phase can only
come from the coupling between the two subsystems which we assume is weak. Let us
focus on this coupling. We write a tunneling Hamiltonain beween the two systems as
follows

Htun = t̂+ t̂†

where t̂ tunnels a single electron from right to left. More explicitly we can write

t̂ =
∑
k,q,σ

Tk,qc
†
Lk,σcR,q,σ

We now treat the coupling order by order in perturbation theory. At first order in pertur-
bation theory we have

δE1 = 〈Htun〉 = 0

The reason for this is that the ground state has an even number of electrons on both side.
Applying Htun once will put an odd number on both sides thus being orthogonal to the
ground state.

At second order in perturbation theory, we have the following (written in a bit of
shorthand)

δE2 =
∑
m

〈GS|t̂†|m〉〈m|t̂|GS〉
E0 − Em

+
∑
m

〈GS|t̂|m〉〈m|t̂†|GS〉
E0 − Em

+
∑
m

〈GS|t̂|m〉〈m|t̂|GS〉
E0 − Em

+
∑
m

〈GS|t̂†|m〉〈m|t̂†|GS〉
E0 − Em

where |GS〉 indicates the BCS ground state on both sides, and |m〉 is some excitation
where a single electron is moved from one side to the other, leaving a broken pair on both
sides. The terms on the first line move a particle from one side to the other and then
move it back from where it came in order to get back into the ground state — implying
no net motion of electrons from one side to the other. On the other hand, the terms on
the second line transfer a pair of electrons either left to right or right to left. By Eq. 11.58
these terms must be proportional to ei(ϕR−ϕL) or ei(ϕL−ϕR) respectively. A more explicit
argument for this is given in the appendix 11.8 below. Thus we have

δE2 = Const +Xei(ϕR−ϕL) +X∗ei(ϕL−ϕR)
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with X some complex constant. We can argue that for a system with no time reversal
breaking, all matrix elements should be real (in the absence of a complex superconducting
phase). This allows us to conclude thta X should be real and we obtain

δE2 = Const + 2X cos(ϕR − ϕL)

Hence using Eq. 11.61 we have

〈J〉 = Ic sin(ϕR − ϕL)

with Ic = 4eX known as the critical current. This relationship between tunnelling current
and superconducting phase difference is known as the DC-Josephson effect20. Roughly
one can think of this as the discrete analog of supercurrent being given as the gradient of
the phase.

11.8 Appendix: A better argument for the phase associated
with the tunneling matrix element

We are interested in computing a matrix element such as

〈GS|t̂|m〉〈m|t̂|GS〉 (11.62)

and we would like to know how it depends on the relative phases of the two sides of the
system where m is an eigenstate that you can arrive at by applying t̂ = c†LcR to |GS〉.

Let us first rewrite the c operators in terms of the quasiparticle operators, inverting
Eq. 11.44 to obtain expressions such as

ck↑ = u∗kγk↑ + vkγ
†
k↓

c−k↓ = −v∗kγk↑ + ukγ
†
k↓

Within t̂ we have terms like (here we choose σ =↑ there are similar terms with ↓)

t̂1 = c†↑Lkc↑Rq =
(
uLkγ

†
Lk↑ + v∗LkγLk↓

)(
u∗RqγRq↑ + vRqγ

†
Rq↓

)
and also terms like

t̂2 = c†↓L−kc↓R−q =
(
−v∗LkγLk↑ + uLkγ

†
Lk↓

)(
−vRkγ†Rk↑ + u∗RkγRk↓

)
Since the ground state is the vacuum of the γ operators we then have

〈GS|t̂2|m〉〈m|t̂1|GS〉 = uLkv
∗
LkvRqu

∗
Rq

20Predicted by Josephson when he was 22 years old in 1962. He won a Nobel prize eleven years later.
Most of his life after the Nobel prize has been devoted to studying what other scientists term “fringe”
theories — including topics such as meditation, telepathy, higher states of consciousness, parapsychology
and so forth.
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Recalling that u∗v is the order parameter including phase (See Eq. 11.19 or note in
Eq. 11.55 that a relative phase is included between u and v to represent the phase of
teh order parameter. We thus find the matrix element will be proportional to

〈GS|t̂|m〉〈m|t̂|GS〉 ∼ ei(ϕR−ϕL)

as claimed. It does not matter how many different scattering terms are added together
here, the overall phase prefactor of each term will be the same.

Another way to understand this is to just look at a matrix element which transfers
two electrons in a cooper pair from right to left

〈GS|(c†L↑cR↑)(c
†
L↓cR↓|GS〉 = 〈BCSL|c†L↑c

†
L↓|BCSL〉〈BCSR|c

†
R↑c
†
R↓|BCSR〉

= uLv
∗
LvRu

∗
R ∼ ei(ϕR−ϕL)

where we have used Eq.11.14.



Chapter 12

An Introduction to Majoranas

The hunt for Majoranas1 has been an obsession of the condensed matter community for
over a decade. While several recent experiments, in a number of different experimental
systems, have been extremely suggestive that the elusive Majorana has been found, for
the sceptics definitive proof is still awaited.

This chapter introduces the concept of Majoranas, how they may appear, and why
they are so interesting.

Let us begin by recalling our definition of fermionic operators from Eq.12.2:

{ci, cj} = {c†i , c
†
j} = 0 (12.1)

{ci, c†j} = δij (12.2)

We will now be more specific and call these fermionic operators Dirac fermions. The
Hilbert space associated with a given Fermion orbital j is two dimensional, it can be
either empty, which we notate as |0j〉 or filled which we notate as |1j〉. The filled and
empty states can be transformed into each other by applying the Dirac fermion operators.

c†j |0j〉 = |1j〉 cj |1j〉 = |0j〉.

Ettore Majorana2 found a way to to constructed fermionic operators that are their
own Hermitian conjugates. We can construct such operators from the Dirac fermion
operators. For a set of Fermion orbitals j = 1, 2, . . . N , let us define so-called Majorana

1“Majorana” is pronounced roughly my-or-ah-nah. I’ve heard Italians argue over how you should or
should not emphasize the syllables.

2Majorana was a young genius who dissapeared off the face of the earth in 1938 at the young age of
32. There are many theories as to what happened to him. Some say he committed suicide by jumping off
a ship. Others say he ran afoul of the Mafia and is at the bottom of the ocean with cement shoes. Still
others think he escaped to South America to start his life over under another name. Due to the extensive
recent interest in Majorana, the Rome attorney’s office released a statement in 2015 saying that the believe
he had moved to Venezuela. They then declared the case closed.

193
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operators

γ1 = (c†1 + c1) γ2 = i(c†1 − c1)

γ3 = (c†2 + c2) γ4 = i(c†2 − c2)

... (12.3)

γ2N−1 = (c†N + cN ) γ2N = i(c†N − cN ) (12.4)

Notice that these Majorana operators are their own Hermitian conjugates

γ†j = γj

This essentially means that the Majorana describes a particle that is its own anti-particle.
It is easy to check that the anti-commutation relations of the Majorana operators are

{γi, γj} = 2δij

and in particular this means that
γ2
i = 1

Note that the γ operators change the particle number in an indefinite way — they are
a superposition of creating and annihilating a fermion. In both cases, the parity of the
number of femions is changed. Given our discussion of quasiparticles in superconductors,
this should now not look so unusual.

Note that Majoranas always come in pairs3. Since the number of fermion orbitals
in a system is an integer, if we convert to Majorans we will always have an even number
of Majoranas. .

The tranformation from Dirac fermions to Majoranas can of course be inverted. A
system of 2N Majoranas can be converted into Dirac fermion via

c†1 =
1

2
(γ1 − iγ2) c1 =

1

2
(γ1 + iγ2)

c†2 =
1

2
(γ3 − iγ4) c2 =

1

2
(γ3 + iγ4)

...

c†N =
1

2
(γ2N−1 − iγ2N ) cN =

1

2
(γ2N−1 + iγ2N ) (12.5)

In partiuclar note that the number operator for one of these orbitals (say the first orbital)
is given by

n̂1 = c†1c1 =
1

2
(1 + iγ1γ2)

meaning that the operator iγ1γ2 has eigenvalues ±1 corresponding to filled or empty
orbitals respectively

3Like the Sith.
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Figure 12.1: The KitaevWire. Individual sites arranged in a wire on the surface of a
spinless superconductor

It is important to note that we cannot say that a single Majorana is filled or empty
the same way we can say this for a regular Dirac fermion orbital. In order to say something
is filled or empty we must put two Majorana operators together in pairs in order to make
Dirac fermions, whose orbitals can be filled or empty. (As we will discuss further below, we
have choices in how we choose to pair these Majorana operators to make Dirac fermions.)

Since we can tranform from N Dirac fermions to 2N Majoranas, any Hamiltonian
that we can write in terms of Dirac fermions (such as the interacting fermion Hamiltonians
from chapter 7. See section 7.2.3 for example) can be written equally well in terms of
Majoranas. So far we haven’t done anything except re-express the same Hamiltonian
in a different language. However, soon we will give interesting physical meaning to the
individual Majoranas!

12.1 The Kitaev Chain

The explosion of interest in Majoranas was perhaps spurred by a pivotal paper by Alexei
Kitaev in 20004. This chapter will summarize much of that work.

Let us consider a bulk (fully gapped) superconductor of spinless fermions (or more
realistically, spin polarized fermions, so we can forget about the spin degree of freedom).
As discussed in section 11.3.2 for spinless electrons, we need to have triplet pairing such
as chiral p-wave (we need chiral so that the superconductor is gapped in all directions on
the Fermi surface). This is not much more complicated than singlet pairing. Now, on
the surface of this superconductor, let us put a number N of sites where these spinless
fermions may sit — and we arrange these sites into a one-dimensional wire as shown in
Fig. 12.1.

4See arXiv:cond-mat/0010440
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The Hamiltonian for this wire is given as

H =
N−1∑
j=1

−t(c†j+1cj + c†jcj+1)

+

N∑
j=1

−µ(c†jcj −
1

2
)

+
N−1∑
j=1

∆jc
†
jc
†
j+1 + ∆∗jcjcj+1 (12.6)

The first term is the usual hopping term whereby a ferrmion hops from one site to the
neighboring site. The second term is just a chemical potential term — with a shift in
energy so that at µ = 0 is particle-hole symmetric. Finally the last term is the interesting
one —which looks like a pairing term in a Bogoliubov-de Gennes Hamiltonian. In this
context, this term creates or annihilates fermions on the chain in pairs. In fact what this
is representing is that fermions can jump on and off of the chain in pairs into the bulk
superconductor. They cannot jump one at a time because that would give an odd number
of fermions in the superconductor which would require breaking a pair and would cost the
energy gap in the superconductor (which we assume is large). Note that this term creates
or annihilates fermions at neighboring sites of the chain: We cannot put two fermions on
the same site of the chain because of the Pauli principle.

For simplicity let us assume that the gap function ∆ is homogenious in space

∆j = ∆ = |∆|eiθ

although being independent of position is not required.

Now this Hamiltonian is quadratic in fermion operators, so it can be solved by Bo-
goliubov transform. (Maybe add an appendix doing this?). However, it is more instructive
to look at a few special cases to understand what can happen. Before doing this, it is
useful to transform this Hamiltonian to its Majorana representation:

To do this we transform

γ2j−1 = e−iθ/2a†j + eiθ/2cj

γ2j = ie−iθ/2a†j − ie
iθ/2cj

This is exaclty the same as the tranform of Eq. 12.4 except that we have absorbed the
phase of the gap function θ to simply the result. With this transform we obtain the
Hamiltonian



12.1. THE KITAEV CHAIN 197

H =
−µ
2

N∑
j=1

iγ2j−1γ2j

+
(|∆|+ t)

2

N−1∑
j=1

iγ2jγ2j+1

+
(|∆| − t)

2

N−1∑
j=1

iγ2j−1γ2j+2 (12.7)

Again this is quadratic in fermion operators and is therefore solvable analytically. However,
instead let us look at some simple cases.

Case 1: t = ∆ = 0

In this case the Hamiltonian is simply

H =
−µ
2

N∑
j=1

iγ2j−1γ2j =
N∑
j=1

−µ(c†jcj −
1

2
)

The ground state is simply to fill all the orbitals with a fermion, or leave them all empty,
depending on the sign of µ.

Case 2: µ = 0 and |∆| = t

This is a more interesting case. Here the Hamiltonian is just

H = t
N−1∑
j=1

iγ2jγ2j+1

To solve this Hamiltonian, we need to assemble the Majorana operators γ into Dirac
fermions. But these fermions are not the original Dirac fermions cj and c†j but instead
different linear combinations. Let us define

c̃†1 =
1

2
(γ2 − iγ3) c̃1 =

1

2
(γ2 + iγ3)

c̃†2 =
1

2
(γ4 − iγ5) c̃2 =

1

2
(γ4 + iγ5)

...

c̃†N−1 =
1

2
(γ2N−2 − iγ2N−1) c̃N−1 =

1

2
(γ2N−2 + iγ2N−1) (12.8)

In terms of these new Dirac fermions we have

H = 2t
N−1∑
j=1

(c̃†j c̃j −
1

2
)
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Figure 12.2: Here how the Kitaev chain takes a system of dirac fermions (top), splits them
into majoranas (middle) and then regroups them into new dirac fermions (bottom) leaving
one majorana zero mode at each end of the chain.

The ground state of this is to either fill all of the new tilde Dirac fermion orbitals or leave
them all empty depending on the sign of t.

What we have done here is depicted in Fig. 12.2. Originally the Majoranas γ1 and
γ2 come from the first Dirac fermion site, but then we re-assemble new Dirac fermions out
of γ2 and γ3.

What is interesting here is that there are two remaining Majoranas that are left over
at the end of this transformation and are not reassembled into the tilde Dirac fermions.
These two Majoranas, γ1 and γ2N do not enter into the Hamiltonian. We can assemble
these two remaining Majoranas into a single Dirac fermion via

f † =
1

2
(γ1 − iγ2N ) f =

1

2
(γ1 + iγ2N )

where, since it does not enter the Hamiltonian, the energy of the system is indepdendent
of whether this Dirac fermion is in the occupied or unoccupied state. Since this mode is
zero energy, the two Majorana γ1 and γ2N are known as Majorana zero modes.

The two states of the system, corresponding to having the f orbital filled or empty
differ in fermion parity but not in energy. It is interesting, and important, that this two
state system is delocalized between the two ends of the system – which can be arbitrarily
far apart.

The excitement over Majoranas is partially due to the their potential use for quan-
tum computation and quantum information processing — a feature first pointed out by
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Kitaev. The general idea is to use this type of two-state system as a quantum bit (or
qubit). We will see that, although this might look like an inconvenient two-state system,
there are significant advantages to storing information this way.

The obvious question to ask is whether we obtained zero modes simply because we
fine-tuned our Hamiltonian, setting µ = 0 exactly and t = |∆| exactly (and dropping any
term that is not of the form of .Eq. 12.6 such as four fermi terms). I claim that for a wide
range of parameters (not fine-tuned), we will still have Majorana zero modes, although
the solution of the Hamiltonian is not as simple. We will give two approaches to analyzing
the system

12.1.1 Bogoliubov Approach

As mentioned above, since the Hamiltonian Eq. 12.6 is quadratic in Fermi operators it is
always solvable by Bogoliubov transformation. reults:

Bulk spectrum: For an infinitely long chain we have a spectrum of excitations

E(q) = ±
√

(2t cos q + µ)2 + 4|∆|2 sin2 q

This calculation is left as a challenge for the reader (or maybe I add an appendix?). This
spectrum has gapless excitations only when ∆ = 0 or |2t| = |µ|, otherwise the spectrum
is completely gapped.

Edge spectrum For chain with two ends, but an infinite distance between the two
ends (N arbitarily large), one finds extra Majorana zero modes at the edge only in the
case where |2t| > |µ|. One can define a Majorana zero mode operator on each end5

γ̃1 =
∑
j

CLj γj γ̃2N =
∑
j

CRj γj

where the coefficients CLj decay exponentially as j increases (meaning that the mode is

localized near the left of the system, and similarly CRj decays exponentially as j decreases
(meaning the mode is localized near the right of the system). The exponential decay length
depends on the parameters of the Hamiltonian, but diverges near the phase transition
where the system becomes gapless.

As in the “case 2” discussed above, one can assemble these two Majorana zero modes
into a Dirac fermion

f † =
1

2
(γ̃1 − iγ̃2N ) f =

1

2
(γ̃1 + iγ2N )

and this Dirac fermion does not enter the Hamiltonian at all — meaning that each eigen-
state of the system is 2-fold degenerate corresponding to the two possibly occupancies of
the f fermion orbital. (This degeneracy occurring exactly in the cases where |2t| > |µ|).

5Proving this is not trivial, but it is not all that hard either. We are looking for functions Cj such that
[γ̃, H] = 0.
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Thus the exisitence of these Majorana zero modes and the resulting 2-fold degen-
eraties are thus not specific ot the fine-tuned Hamiltonian we studied in “case 2” above
(although the Hamiltonian studied in case 2 is special in that the Majorana γ̃1 is just γ1

meaning the zero mode is isolated on a single site).

On a system of finite size (finite N), the two Majoranas zero modes γ̃1 and γ̃2N

while decaying in the bulk do overlap a very small amount in the middle of the system.
This allows the Hamiltonian to include a term

2iJγ̃1γ̃2N = J(f †f − 1

2
)

where the overlap J is exponentially small in the length of the system. Such a term added
to the Hamiltonian splits the putative degeneracy an exponentially small amount.

12.1.2 Topological Approach

While we can solve the above discussed Hamiltonian by Bogoliubov transformation we
might worry about whether other terms that might be added to the Hamiltonian (maybe
multi-fermion interaction terms, for example) could ruin our zero modes. Such a more
complicatd Hamiltonian would not be exactly solveable. Nonetheless, I claim that no
sufficiently small local terms added to the Hamiltonian can make the zero modes go away.

To make this argument, let us start with our exactly solvable Hamiltonian H, with
its zero modes which are localized near the ends of the system. For simplicity (although
this is not necessary) let us assume that these modes are localized exactly at the ends of
the system (as in case 2 above) so we call them γ1 and γ2N .

Now let us add an additional local term δH to the Hamiltonian (like some fermion-
fermion interaction, for example). Now let us ask whether a small δH can break the
degeneracy of, say, the 2-fold degenerate ground state. Let us treat this term in perturba-
tion theory. What happens to the energies of the two ground states Eα? (with |α〉 being
the two different possible ground states). We can write a Brillouin-Wigner perturbation
series for each state

δEα = 〈α|δH|α〉+ 〈α|δH GδH|α〉+ 〈α|δH GδH GδH|α〉+ . . .

where G is a Greens’ function of the form

G =
∑
n

|n〉〈n|
E − En

which includes an energy denominator in each term which is at least the size of the gap.
This perturbation series is exaclty the same for the two degenerate ground states up to a
very high order in peturbation theory. Why is this? In order for the energies to be different,
one of the operators in the series (such as δHGδH) must somehow make measurement of
which state the system is in, i.e., it must measure 2iγ1γ2N = (f †f − 1/2). Do to this the
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operator must connect γ1 to γ2N . However, these two operators are spatially separated
and δH is local (and G is diagonal so it doesn’t connect any state to any other state). So,
let us say that δH only connects Majorana operators a distance p apart from each other.
If the system is length N , then the two perturbation series given identical results up to
order N/p. As such the splitting of the putatively degenerate ground states can be no
bigger than

Splitting ∼
(

|δH|
Energy Gap

)N/p
which, for small δH is exponentially small for a large system. This argument is very
general and applies for any local perturbation δH.

Analogously if some noise is in the environment (imagine the noise being included in
δH) the qubit will be exponentially well protected from the noise! This is the reason for
the excitement over Majoranas in condensed matter. By splitting a qubit into two pieces,
and spatially separating these two pieces, the qubit becomes extremely well protected from
any noise in the environment.

12.1.3 Influence of the Phase: Operations on the Chain

Let us now return to our definition of the Majorana operators

γ2j−1 = e−iθ/2a†j + eiθ/2cj

γ2j = ie−iθ/2a†j − ie
iθ/2cj

and take particular note of the phases we have included. The phase θ is a superconducting
phase and can be manipulated in experiment by using Josephson circuitry for example.
What happens if we allow the phasSe to wrap by 2π. Interestingly this results in each
Majorana picking up a minus sign

Phase wrapping by 2π : γj → −γj

Since the Dirac fermions are linear in the Majorana operators this has the effect that

a†j → −a
†
j

and also in the tilde basis
ã†j → −ã

†
j

and also
f † → −f †

Thus when we wrap the phase by 2π a state with an odd number of fermions will pick up
a minus sign whereas a state with an even number of fermions does not pick up a minus
sign (or equivalently picks up an even number of minus signs). Since the two degenerate
ground states have different fermion parity, we can express this operation as

|0f 〉 → |0f 〉
|1f 〉 → −|1f 〉
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Figure 12.3: Dragging a vortex around the wire rotates the superconducting phase by 2π,
and as a result implements a Z gate on the qubit.

Figure 12.4: Dragging a vortex aound one end of the wire the wire rotates the phase by
2π at one end of the wire, but does not rotate the phase at the other end of the wire. This
implements an X gate on the qubit.

or in the usual language of a qubit, this is a Z operation (or σz in the language of spins).

We can implement such a phase rotation in an experimental system by dragging a
superconducting vortex all the way around our wire as shown in Fig. 12.3. Since going
around a vortex one experiences a phase rotation of 2π, equivalently dragging a vortex
around the wire makes the phase on the wire rotate by 2π.

We can analogously consider the motion shown in Fig. 12.4. Here the vortex passes
through the middle of the wire, thereby encircling the Majorana zero mode on one end,
but not the Majorana zero mode at the other end. Accordingly this flips the sign of the
Majorana at one end of the wire, but not the other

γ1 → γ1

γ2N → γ2N

This then results in

(f †f − 1

2
) = 2iγ1γ2N =⇒ − 2iγ1γ2N = −(f †f − 1

2
)

meaning that the fermion parity, and hence the state of the qubit, is flipped.

|0f 〉 → |1f 〉
|1f 〉 → |0f 〉

which we call an X gate in quantum information langugae (or σx in spin language).
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Thus we have constructed a (topologically protected) and we can peform operations
on this qubit! If this can be achieved we would be well on our way to building a quantum
computer!

12.2 Where else do Majoranas live?

Majorana zero modes in condensed matter are not unique to the Kitaev chain. It turns
out that there are a number of other contexts where Majorana zero modes appear. These
contexts all seem to be somehow related to triplet superconductors.

Let us examine the paradigmatic case of a spinless two-dimensional chiral p-wave
superconductor (see the discussion in section 11.3.2). A generic Bogoliubov quasiparticle
can be written as

γ =

∫
dr
(
ψ̂(r)u(r) + ψ†(r)v(r)

)
The quasiparticle wil be a Majorana zero mode if and only if γ = γ†, or if

u(r) = v∗(r). (12.9)

Examining the Bogoliubov-de Gennes equations(
ĥ ∆̂

∆̂∗ −ĥ∗

)(
u
v

)
= E

(
u
v

)
it is clear that that the condition 12.9 is satisfied exactly when E = 0. Since in bulk
superconductors the quasiparticle energy is always E > ∆0 with ∆0 the gap, it seems that
none of our quasiparticles are Majorana zero modes6

However, recall the fact (see section 11.6.1) that there can exist low energy quasi-
particle excitations in a vortex core. If it turns out that we happen to have a zero energy
bound state in the vortex core, then we have our sought-after Majorana zero mode. The
interesting fact is that in chiral p-wave spinless superconductors a zero energy bound state
(and hence a Majorana zero mode) always exists in the core of a vortex!7 While the proof
of this statement is not too difficult, we will not give it here (See Read and Green 2000
for a fairly easily followed proof.).

Thus if we have a spinless chiral p-wave superconductor we have Majorana zero
modes associated with each vortex. If we have a spinful chiral superconductor, then the
situation is more complicated. We can think about such a superconductor as having an

6For certain order parameters we have discussed, such as achiral p-wave, ∆(k) = cos(φk) the order
parameter drops to zero in certain directions on the fermi surface. In this case there can also be zero
energy states, but these states are uninteresting in the sense that they are effectively plane wave states of
fermions as if there were no superconducting gap at all!

7This fact was first realized in the context of 3-dimensional Helium-3 superfluid in 1991 by Kopnin and
Salomaa and then in 2d by Read and Green in 2000 mainly being concerned with the quantum Hall analog.
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Figure 12.5: In a chiral p-wave superconductor, each vortex harbors a single Majorana
zero mode.

order parameter ∆↑ for the up-up pairs, and another order parameter ∆↓ for the down-
down pairs. If there is a vortex in either one of these two order parameters (i.e., if the
order parameter twists by 2π around some point), then there is a resulting Majorana zero
mode in the vortex core. However, if there is a vortex in both order parameters at the
same point, then one gets two Majoranas at the same point in space (call them γ↑ and
γ↓) and generically there is nothing to prevent these two Majoranas from talking to each
other to generate a perturbing term in the Hamiltonian δH = iγ↑γ↓ which then splits the
putative zero mode into finite energy states.

Returning to the spinless (or spin-polarized) chiral p-wave superconductor, we can
imagine a two dimensional system with many vortices in it, where each vortex core harbors
a single Majorana zero mode as shown in Fig. 12.5. We may conceptually draw a circle
around any two such Majoranas and declare that to be a qubit. In the figure we have
drawn a circle around γ2 and γ3, and we would define

f † =
1

2
(γ2 − iγ3)

The situation is then identical to what we found for the Kitaev wire: If we wrap a vortex
(say the vortex associated with γ1) fully around our qubit we will implement a minus
sign only if the parity of fermions enclosed is odd — hence this is a Z-gate for our qubit.
Similarly if we wrap our vortex associated with γ1 around γ3 but not around γ2 then we
will flip the parity of the qubit made from γ2 and γ3, thus implementing an X-gate.

There are a number of experimental systems that might have Majorana zero modes.
All of these systems (including the ν = 5/2 fractional quantum Hall state) are effectively
equivalent to either Kitaev wire and the chiral p-wave superconductor. Tunneling experi-
ments, for various of these expermental systems, have found zero energy peaks which are
very suggestive of Majorana zero modes. Unfortunately, there are multiple other things
that can sometimes give zero energy tunneling peaks in experiment so this signature is
not definitive.

Nonetheless hope in the community springs eternal. Microsoft research, in particu-
lar, has invested vast sums of money (over 108$) into pursuing Majorana zero modes in
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condensed matter. While it has been a bit frustrating for the community that Majorana
zero modes have been so elusive, we have also learned an enormous amount about physics
during the pursuit.
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