
In 1867 Lord Kelvin (then known as William Thomson)
witnessed a demonstration of a machine that could pro-
duce smoke rings. Built by his friend and fellow physicist
Peter Tait, the machine was much more than an inter-
esting novelty. At the time, smoke rings were a hot topic
in physics, thanks to work by Hermann von Helmholtz
and, later, Kelvin himself. Helmholtz had shown that in
a perfectly dissipationless fluid, the “lines of vorticity”
around which fluid flows are conserved quantities.
Hence, in such a fluid the vortex loop configurations,
such as smoke rings, should persist for all time. Since
scientists believed that the entire universe was filled with

just such a perfect dissipationless fluid, known as the
“luminiferous aether”, Kelvin suggested that different
knotting configurations of vortex lines in the aether
might correspond to different atoms (figure 1).

This theory of “vortex atoms” was appealing because
it gave a reason for why atoms are discrete and im-
mutable. For several years the theory was quite popu-
lar, attracting the interest of other great scientists such
as Maxwell. However, after further research and failed
attempts to extract predictions from it, the idea lost
popularity. The theory of the vortex atom was finally
killed altogether when Michelson and Morley (and
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remarkable link between knot theory and certain quantum systems may be useful for quantum
information processing
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later Einstein) showed that the aether does not exist.
Nonetheless, some of the theory’s proponents re-

mained enthusiastic about it for quite some time, and
perhaps its greatest supporter was Tait himself. Al-
though initially quite sceptical, Tait eventually came to
believe that by building a table of all possible knots, he
would gain some insight into the periodic table of the
elements. In a groundbreaking series of papers, he con-
structed a catalogue of all knots with up to seven cross-
ings. (Note that mathematicians make a distinction
between “knots” made from a single strand and “links”
made of multiple strands. We will be sloppy and call
them all knots.) Although the vortex-atom theory came
to nothing, these studies made Tait the father of the
mathematical theory of knots – which has since been a
rich field of study in mathematics.

More recently, a remarkable connection between
knot theory and certain quantum systems has emerged.
This connection is now being explored both theoret-
ically and experimentally, in part because of the prom-
ise it holds for quantum information processing. It
turns out that although we cannot make atoms out of
knotted strands of aether, it may be possible to make
a quantum computer by dragging particles around
each other to form particular types of space–time
knots. And while such a “topological quantum com-
puter” would be difficult to construct, it would offer
some advantages over more conventional schemes for
quantum information processing.

An invariably knotty problem
To understand how a topological quantum computer
might work, we must first explore a mathematical con-
cept called a “knot invariant”. During his attempt to
build a “periodic table of knots”, Tait posed what has
become perhaps the fundamental question in mathe-
matical knot theory: how do you know if two knots are
topologically equivalent or topologically different? In
other words, can two knots be smoothly deformed into
each other without cutting any of their strands? Al-
though this is still considered to be a difficult mathe-
matical problem, the knot invariant is a powerful tool
that can help in solving it.

A knot invariant is defined as a mathematical algo-
rithm that connects a picture of a knot – the input – to
some output via a set of rules. The rules are chosen
such that if two knots that are input are topologically
equivalent, then applying the rules will always give the
same output. Hence, if two outputs are different, one
knows immediately that the two input knots were not
topologically equivalent.

One of the simplest types of knot invariant is known
as the Kauffman invariant, and it is defined by just two
rules (figure 2a). Whenever we see two strands cross
in our picture of a knot, we can use the first rule to re-
place our picture with a “sum” of two pictures, each
with one fewer crossing than the original picture, and
with a parameter A that acts as a kind of bookkeeping
tool to keep track of how many right- versus left-
handed crossings we have replaced. By repeatedly
using this first rule, we can eventually reduce our pic-
ture to a sum of diagrams that have no crossings at all
– they are just open loops. We then use the second rule
to replace each open loop with the value d = –A2 – A–2,
yielding a polynomial in A and A–1. An example of
evaluating the Kauffman invariant is shown in figure
2b, where we find (after using some algebra) that the
Kauffman invariant of the double figure-of-eight pic-
ture we started with is in fact the same as that of the
open loop – which is what we should expect, given that
they are topologically equivalent.

Figure 2c shows a slightly more complicated exam-
ple, which reveals that the Kauffman invariant of a
piece of twisted string is not the same as the invariant of
the untwisted string – in fact, their invariants differ by
a factor of –A3. This may seem to contradict the descrip-
tion above that the Kauffman invariant should be the
same for any two knots that can be smoothly deformed
into each other (since it appears we can smoothly
deform the twisted string into the straight one). How-
ever, we should think of the strands not as being infin-
itely thin, but rather as having some width (figure 2d).
In this case, it is easy to see that if we try to smoothly
remove the twist by pulling the string straight, then we
actually still end up with a twist in our strand.

Different paths, same outcome
To understand the connection between knot invariants
and physics, we need to think about quantum mechan-
ics in the manner pioneered by Richard Feynman in his
path-integral approach to calculating the probability of
a particular quantum event. Using Feynman’s method,
the probability of getting from an initial to a final con-
figuration can be calculated by summing up the prob-

According to Kelvin’s theory, a single “smoke ring in the aether” was thought to represent a

simple atom such as hydrogen (left). More complicated vortex-filament configurations would

thus correspond to more complicated atoms or perhaps molecules. Kelvin thought the middle

image might represent sodium, while the “trefoil knot” (right) might have corresponded to

helium or lithium. The red arrows indicate the direction of fluid flow around the lines of vorticity.

1 Vortex-atom theory

● The first major mathematical studies of knots began after 19th-century physicists
suggested that atoms could be made from knotted strands of vortices in the
“luminiferous aether”

● Knot invariants can help determine whether two knots are “topologically
equivalent”, meaning they can be deformed into each other smoothly and without
cutting any strands

● In some very special quantum systems, the probability that a particular process
will occur depends entirely on the system’s topology. In such cases, the probability
amplitude is equivalent to the knot invariant of the space–time paths traced out by
particles during the process

● It is possible to manipulate the quantum state of such systems by dragging particles
around each other to create certain types of knotted patterns in space–time

● Computations performed in this way would be less vulnerable to noise than other
types of quantum computers because the result of a computation depends only on
the topology of the knot, not the paths of the particles that formed it

At a Glance: Topological quantum computing
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ability amplitudes of all possible processes (or “paths”)
that can happen between the initial and final states.

For some very special types of quantum systems, the
amplitude of a particular process will depend only on
the topology of that process, not on any precise details
of the process such as how fast particles move or how
far apart they are. Roughly speaking, this means that
particles in the system can move around each other in
many different ways – they can even be created out of
the vacuum as particle–hole or particle–antiparticle
pairs – but if the paths they trace out in space–time are
topologically equivalent, then those paths will be
equally probable. Systems that obey this rule are known
as topological quantum systems, and the theories des-
cribing their behaviour are called topological quantum
field theories (TQFTs).

This brings us to a rather remarkable conclusion: in
a topological quantum system, the amplitude for a par-
ticular process is a knot invariant of the space–time
paths traced out by the particles during that process.
Do not worry if this connection seems less than obvi-
ous. The mathematical physicist Ed Witten, who was

the first to make it, won the highest honour in mathe-
matics – the Fields Medal – for his achievement. The
essence of his insight is that a knot invariant is defined
as an output that depends only on the topology of the
knot input, and the amplitudes in a TQFT also depend
only on the topology of the knot formed by the par-
ticles’ paths through space–time. So, the amplitudes
must be knot invariants.

Before we proceed, it is worth emphasizing that when
we talk about particle paths, we are actually consider-
ing world-lines – paths in both space and time. For ex-
ample, if we have a 2D (flat) physical system, we must
view time as the third dimension. Hence, a particle at
rest will trace out a straight space–time world-line in
two spatial dimensions and one time dimension, while
two particles orbiting around each other in two dimen-
sions will form a double helix or two-stranded braid in
(2 + 1) dimensions. All the TQFTs that we will be in-
terested in are indeed 2D (flat) systems where we can
think of the third dimension as time.

To see an example of how the correspondence be-
tween amplitudes and knot invariants works in prac-

(a) The first rule for evaluating the Kauffman invariant states that for each

crossing the picture of the knot is replaced by a sum of two pictures with

coefficients A and A–1. Note that outside the dotted boxes, the knot is assumed

to be the same for all three pictures. Rule 2 states that each open loop can be

replaced by the constant d = –A2 – A–2. (b) To evaluate the Kauffman invariant

of this “double figure-of-eight” loop, we begin by applying rule 1 to the lower

crossing. We then apply rule 1 again, to the upper crossing. Note that we need

to rotate the picture by 90° to make the crossing look like that shown in part

(a). Finally, we apply rule 2, producing a polynomial that we can evaluate using

the identity d = –A2 – A–2. (c) Evaluating the Kauffman invariant of a twisted

string does not give the same result as it would for a straight string. We can

explain this by thinking of the strings as being thick ropes or ribbons rather than

1D lines, as in part (d). Here we see that pulling the string straight does not

remove the twist; instead, it produces a “self-twist”, which accounts for the

extra factor of –A–3 compared with the Kauffman invariant of a straight string.

= A + A–1

= –A2 
–A–2 

= d

(a)

rule 1

rule 2

2 Rules for Kauffman invariants

(c)

= A + A–1

= (Ad + A–1) = –A3

(b)

= + A–1A

+ A–1+ A–1 A

= A A + A–1 + A–1 A + A–1

 = A2d2 + d + d3 + A–2d2 = d

= A

(d)
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tice, let us return for a moment to figure 2d. In the lan-
guage of the TQFT, we see that a particle that rotates
around itself, creating a twisted path in space–time,
accumulates a factor of –A3 compared with a particle
that does not rotate around itself. This additional fac-
tor obtained by evaluating the Kauffman invariant is
actually something we should expect if we think about
amplitudes for world-lines of particles in a quantum-
mechanical system. We know that when a particle ro-
tates in quantum mechanics, it will generally pick up a
phase due to its spin – and indeed in all physically real-
izable TQFTs, –A3 is just such a phase.

Multiparticle systems
Perhaps the most important property of these TQFTs
occurs when there are multiple particles and holes cre-
ated. In topological quantum systems composed of
multiple particles, there are generally many different
(orthogonal) wavefunctions with the same energy des-
cribing the state of the system. This is quite unusual
since, for most quantum systems, once all locally meas-
urable quantum numbers (position, spin and so on) are
specified, then the wavefunction is uniquely defined.
But for TQFTs there are additional hidden “topologi-
cal” degrees of freedom – so there can be several wave-
functions that have exactly the same energy, and look
exactly the same to all local measurements, but still rep-
resent different quantum states.

To see how this occurs, consider a system containing
two identical particles and two identical holes (figure
3a). The crucial thing to realize is that this system can

be prepared with (at least) two topologically distinct
space–time histories. We will call these two (ket) states
|1〉 and |2〉. Their corresponding (bra) states 〈1| and
〈2| are the same as |1〉 and |2〉 but with time reversed.

The next question we need to resolve is whether |1〉
and |2〉 are in fact different quantum states. To demon-
strate that they are, we need to calculate their overlap
amplitudes, such as 〈1|1〉 and 〈1|2〉, and check that
these are different. In other words, we need to show
that |1〉 and |2〉 are linearly independent (figure 3b).
The procedure for doing this is quite obvious: we
simply bring together the two corresponding space–
time pictures to form a closed knot and then evaluate
the Kauffman invariant of the result. Bringing to-
gether 〈1| with |1〉, or 〈2| with |2〉, generates two loops,
resulting in a Kauffman invariant of d2 (in other words,
〈1|1〉= 〈2|2〉= d2). However, bringing together 〈1|
with |2〉 generates only one loop, giving 〈1|2〉= d. This
immediately tells us that |1〉 and |2〉must be different
quantum states as long as |d|≠ 1. It is also possible to
show that any other, more complicated, way of pre-
paring the configuration of two particles and two holes
must be some linear combination of |1〉 and |2〉. We
therefore conclude that our two-particle, two-hole sys-
tem is precisely a two-state quantum system, or a single
quantum bit (qubit).

We can use the same technique to calculate, for
example, 〈1|braid|1〉 by evaluating the Kauffman in-
variant of a braided knot (figure 3c). In this case we
conclude that the process of braiding particles around
each other in space–time generally performs (unitary)

(a) Two topologically distinct ways of preparing identical configurations of particle–hole pairs. Top: the space–time paths travelled by the two particle–hole pairs to

prepare bra state 〈1| do not cross, whereas in state 〈2| they do. Bottom: the ket states |1〉 and |2〉 have the same topology as their associated bra states, but with the

direction of time reversed. (b) Top: to calculate the matrix element 〈1|1〉, we bring the pictures of the bra and ket states together to form a closed knot, then evaluate the

knot’s Kauffman invariant. (Note that evaluating 〈2|2〉 gives the same answer, d2.) Bottom: repeating this procedure for matrix element 〈1|2〉 yields a different answer,

d, demonstrating that states |1〉 and |2〉 are linearly independent (as long as |d|≠ 1). (c) The technique described above can be extended to more complicated

space–time paths by inserting a “braid” between a bra and a ket. The matrix element 〈1|braid|1〉 is evaluated by computing the braid’s Kauffman invariant.

〈1| = 〈2| =

tim
e

(a) (b)

〈1|1〉 = = = d2

= = d

(c)

〈1| =

 = 〈1|braid|1〉

〈1|2〉 =

braid

|1〉 =|2〉 =|1〉 =

3 Particle plaits
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transformations on our two-state quantum systems. In
other words, we are manipulating the quantum state of
our qubit by braiding particles around each other.

A quantum computer in theory…
Being able to use particle paths to perform mathemat-
ical operations raises the interesting possibility of using
topological quantum systems as a quantum computer.
This idea, known as “topological quantum compu-
tation”, is generally credited to Michael Freedman
(another Fields medallist) and Alexei Kitaev. One im-
plementation of the general scheme is illustrated in
figure 4. In this three-qubit scheme, quartets of par-
ticles are pulled from the vacuum, with each four par-
ticles representing a single qubit of information. In 
the parlance of quantum computation, this is called 
the “initialization” phase. A quantum computation is
achieved by dragging the particles around each other
to form a particular knot, with different types of braids
corresponding to different quantum computations.
Finally, one makes a measurement at the end by, say,
attempting to annihilate the pairs of particles. Those
particles that do not annihilate (because their am-
plitude for annihilation is zero as calculated by the
Kauffman invariant) make up the “readout” of the
computation. Of course, one could predict the out-
come of this experiment by calculating the Kauffman
invariant of the knot using the rules laid out in figure
2a. However, it is quite clear that applying these re-
cursive rules becomes impossibly complicated for all
but the simplest knots, whereas a physical topological
quantum system can automatically perform this calcu-
lation for very complicated knots with no trouble.

While this topological quantum computation may
sound like an extremely complicated way to achieve the
already difficult goal of building a quantum computer,
if one starts with the right topological quantum system,
then it turns out to be just as capable of performing
standard quantum-computational tasks (such as Shor’s
algorithm for finding prime factors of large integers)
as any other approach to building a quantum computer,
at least in principle. Indeed, it actually has one very
important advantage – again, in principle – over other
schemes that have been proposed.

The advantage of a topological quantum computer
stems from the fact that one of the main difficulties 
with building a quantum computer is finding a way to
protect it from small errors, and particularly to protect
it from noise and other factors that couple to the en-
vironment. In a topological computer, if noise hits the
device in the middle of a computation, a particle may
be shaken around a bit (figure 4). However, as long as
the overall topology of the braid is unchanged, then the
computation being performed is also unchanged and
no error occurs. In this way, a topological quantum
computer is naturally protected from errors – a rather
substantial advantage.

…and in practice?
This advantage would, however, be pointless if there
were no real, physical systems that obey the rules of
TQFTs. But while quantum systems that are described
by knot invariants in this way may sound rather exotic,
in fact a few such systems are believed to exist. One

class of systems are 2D p-wave superfluids, including
Sr2RuO4 superconducting films, helium-3A superfluid
films and the so-called ν= 5/2 and ν= 7/2 quantum
Hall systems. Closely related are various (yet to be real-
ized) proposals for creating superconducting structures
on the surface of topological insulators and other sys-
tems with strong spin–orbit coupling. The experimen-
tally observed ν= 12/5 quantum Hall system is another
example thought to be a particularly interesting class
of topological quantum system. Finally, there have
been many proposals to realize such systems in ultra-
cold atomic lattices or in ultra-cold rotating bosons.

Although TQFTs may end up being applicable for
any one of a number of physical systems, the strongest
candidates for a real-life topological quantum system
are the above-mentioned ν= 5/2 and 7/2 quantum Hall
states. Quantum Hall states can form when electrons
are confined to two dimensions, exposed to large mag-
netic fields and cooled to very low temperatures. Under
such conditions, the ratio of the density of electrons 
to the applied magnetic field, ν, takes certain simple
values such as 1, 2, 1/3, 2/5 and so forth. When the ratio
is a fraction, the effect is known as the fractional quan-
tum Hall effect. Electrons in quantum Hall states (frac-
tional or otherwise) can flow with no dissipation – 
a situation analogous to the flow in superfluids and

Qubits are initialized by pulling particle–hole pairs from the vacuum. A computation is

performed by physically dragging the particles around each other to form a space–time braid.

The final measurement is made by trying to return the particles to the vacuum and a readout is

given by measuring which particles do or do not annihilate. The advantage of this scheme is its

resistance to noise; although noise can perturb the path of a particle, as long as it does not

change the overall topology of the knot it will not cause errors in the computation.

measure

braid

initialize

tim
e

noise

4 Topological quantum computation

While quantum systems that are
described by knot invariants may
sound rather exotic, in fact a few
such systems are believed to exist
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superconductors. Crucially, when these quantum Hall
states form, the individual electrons form a uniform-
density quantum fluid and one need only keep track of
the low-energy “quasiparticles” – quantized lumps of
charge density in an otherwise uniform fluid. Since all
charges have a tendency to move in orbits in a magnetic
field, the quasiparticles can be thought of as vortices in
a perfectly dissipationless fluid – which, just as Kelvin
predicted, are stable configurations of fluid flow – and
it is these quasiparticles that are expected to obey the
braiding physics of a TQFT.

One reason to be optimistic about these systems is
that they have an amazing property: electrical meas-
urements made on them do not depend on certain
details of the experiment. In particular, their longitudi-
nal resistance is always zero, while their Hall resistance
(figure 5) is always independent of the shape of the sam-
ple and how the electrical contacts are positioned. This
independence of detailed geometry is a strong hint that
these systems are described by a TQFT. Some prelim-
inary (albeit currently controversial) experimental evi-
dence that these states of matter really are non-trivial
TQFTs has been recently reported by Robert Willett
and colleagues (arXiv:0911.0345). If their work is con-
vincingly verified, then it would provide proof that the
physics of knot theory is being realized in quantum
systems. This would be an amazing development from
the perspective of fundamental physics – but it would
also open the door to applying the physics of knots to
building a topological quantum computer. ■
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In this 2D quantum Hall sample of arbitrary shape, four numbered electrical

contacts are connected to the sample. Longitudinal resistance is measured by

running current from 1 to 2 and measuring the voltage between 3 and 4

(uncrossed leads); Hall resistance is measured by running current from 1 to 4 and

measuring the voltage between 2 and 3 (crossed leads). The results of these

measurements are independent of the shape of the sample, as long as the

topology of the connections remains unchanged – a strong hint that some

quantum Hall states may be described by a TQFT.
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