FLUIDS, FLOWS AND COMPLEXITY

SYNOPSIS

Julia Yeomans

A. Navier-Stokes equations

- 1. Vectors: reminders and identities
- 2. Continuity equation
- 3. Material derivative
- 4. Euler equation
- 5. Viscosity and the Navier-Stokes equation
- 6. Comments on the validity of Navier-Stokes
- 7. Visualising the flow field
- 8. Solving Navier-Stokes in a simple geometry: channel flow
- 9. The Reynolds number
- (a) non-dimensionalising Navier-Stokes
- (b) estimating the Reynolds number
- (c) examples of increasing the Reynolds number in different geometries
- (d) checking it all works for Poiseuille flow
- (e) Dynamical similarity
- 10. Vorticity
- (a) definition and physical interpretation
- (b) vortices
- (c) the vorticity equation

B. Inviscid flow

- 1. Kelvin's circulation theorem
- 2. The dynamics of vortex tubes
- (a) time evolution
- (b) how are vortices formed?
- (c) how are vortices destroyed?
- 3. Irrotational flow
- 4. Bernoulli's theorem
- 5. Lift and drag

C. Lubrication Approximation

- D. Waves
- E. Zero Re hydrodynamics
- F. Flow instabilities
- G. Turbulence

H. Dynamical Systems

- 1. Introduction
- 2. One dimension
- a. Fixed points and linear stability analysis
- b. An example a population model
- c. Bifurcations:
- (i) saddle node bifurcation
- (ii) transcritical bifurcation
- (iii) supercritical pitchfork bifurcation + the Rayleigh-Bénard instability
- (iv) subcritical pitchfork bifurcation + hysteresis
- 3. Two dimensions
- a. Fixed points and linear stability analysis
- b. Classification of fixed points
- c. Centres
- d. Example 1: the Lotka-Volterra predator-prey model
- e. Example 2: the pendulum
- f. Limit cycles
- g. Hopf bifurcations
- h. The Poincaré-Bendixson theorem
- 4. Higher dimensions and chaos
- a. Background
- (i) Flows in phase space ...
- (ii). ... and the Liouville theorem
- (iii) Fractals
- b. Lorenz equations
- (i) the contraction of volumes in phase space
- (ii) fixed points and their stability
- (iii) the strange attractor
- (v) sensitive dependence on initial conditions
- (vi) chaos
- c. The logistic map

$\underline{\mathrm{BOOKS}}$

Elementary Fluid Dynamics D.J. Acheson

Physical Fluid Dynamics D.J. Tritton

Fluid Dynamics for Physicists T.E. Faber

Classics:

Fluid Mechanics L.D. Landau and E.M. Lifshitz

An Introduction to Fluid Dynamics G.K. Batchelor

For dynamical systems:

Nonlinear Dynamics and Chaos S.H. Strogatz