Quantum Quench in Conformal Field Theory from a General Short-Ranged State

John Cardy

University of Oxford

GGI, Florence, May 2012

(Global) Quantum Quench

- prepare an extended system at time t=0 in a (translationally invariant) pure state $|\psi_0\rangle$ e.g. the ground state of some hamiltonian H_0
- evolve unitarily with a hamiltonian H for which $|\psi_0\rangle$ is not an eigenstate and has extensive energy above the ground state of H
- how do correlation functions and entanglement evolve as a function of t?
- for a compact subsystem do they become stationary?
- if so, what is the stationary state?
- is the reduced density matrix thermal?

Quantum quench in a 1+1-dimensional CFT

- P. Calabrese + JC [2006] studied this problem in 1+1 dimensions when $H=H_{\rm CFT}$ and $|\psi_0\rangle$ is a state with short-range correlations and entanglement
- H_{CFT} describes the low-energy, large-distance properties of many gapless 1d systems
- 1+1-dimensional CFT is exactly solvable

Results

 one-point functions in general decay towards their ground state values

$$\langle \Phi(x,t) \rangle \sim e^{-\pi \Delta_{\Phi} t/2\tau_0}$$

• for times $t > |x_1 - x_2|/2v$, the correlation functions become stationary

$$\langle \Phi(x_1, t_1) \Phi(x_2, t_2) \rangle \sim e^{-\pi \Delta_{\Phi}|x_1 - x_2|/2v\tau_0}$$

for
$$t_1 = t_2$$
 and $\sim e^{-\pi\Delta_{\Phi}|t_1-t_2|/2\tau_0}$ for $x_1 = x_2$

- the (conserved) energy density is $\pi c/6(4\tau_0)^2$
- the von Neumann entropy of a region of length ℓ saturates for $t > \ell/2v$ at

$$S \sim (\pi c/3(4\tau_0))\ell$$

- all these results are precisely those expected for the CFT at temperature $T=(4\tau_0)^{-1}$
- they accord with a simple physical picture of entangled pairs of quasiparticles emitted from correlated regions

Quantum quenches in integrable models

- however studies of quenches in integrable models
 [(Rigol,Dunjko,Yurovsky,Olshanii),...,(Calabrese,Essler,Fagotti)]
 have led to the conclusion that the steady state should be
 a 'generalised Gibbs ensemble' (GGE) with a separate
 'temperature' conjugate to each local conserved quantity
- 1+1-dimensional CFT is super-integrable: e.g. all powers $T(z)^p$ and $\overline{T}(\overline{z})^{\overline{p}}$ of the stress tensor correspond to local conserved currents, leading to conserved charges
- so why did CC find a simple Gibbs ensemble?

Quantum quenches in integrable models

- however studies of quenches in integrable models
 [(Rigol,Dunjko,Yurovsky,Olshanii),...,(Calabrese,Essler,Fagotti)]
 have led to the conclusion that the steady state should be
 a 'generalised Gibbs ensemble' (GGE) with a separate
 'temperature' conjugate to each local conserved quantity
- 1+1-dimensional CFT is super-integrable: e.g. all powers $T(z)^p$ and $\overline{T}(\overline{z})^{\overline{p}}$ of the stress tensor correspond to local conserved currents, leading to conserved charges
- so why did CC find a simple Gibbs ensemble?
- this can be traced to a simplifying assumption about the form of the initial state
- what is the effect of relaxing this assumption?

Review of CC [2006,2007]

we want to compute

$$\langle \psi_0 | e^{itH_{\text{CFT}}} \, \mathcal{O} \, e^{-itH_{\text{CFT}}} | \psi_0 \rangle$$

we could get this from imaginary time by considering

$$\langle \psi_0 | e^{-\tau_2 H_{\text{CFT}}} \mathcal{O} e^{-\tau_1 H_{\text{CFT}}} | \psi_0 \rangle$$

and continuing $\tau_1 \rightarrow it$, $\tau_2 \rightarrow -it$

• 'slab' geometry with boundary condition $\equiv \psi_0$, but thickness $\tau_1 + \tau_2 = 0$

Resolution: 'Moving the goalposts'

- resolution: replace boundary condition at $\tau=\pm 0$ by 'idealised' bc at $\tau=\pm \tau_0$
- idea of 'extrapolation length' in boundary critical behaviour: idealised bc = boundary RG fixed point

we then need to compute

$$\langle \mathcal{O}(\tau) \rangle_{\mathrm{slab}}$$

and continue the result to $\tau \to \tau_0 + it$

- in CFT, the correlations in the slab are related to those in the upper half *z*-plane by $z=e^{\pi w/2\tau_0}$
- power-law behaviour in the z-plane ⇒ exponential behaviour in t and x

• in particular, $x + i(\tau_0 + it)$ is mapped to

$$z = i e^{\pi(x-t)/2\tau_0}$$
 $\bar{z} = -i e^{\pi(x+t)/2\tau_0} \neq z^*(!)$

- except for narrow regions O(τ₀) near the light cone, points are exponentially ordered along imaginary z-axis: correlators can be computed by successive OPEs
- for $t \to \infty$ the \bar{z} 's move off to $-i\infty$ and the boundary effectively plays no role \Rightarrow we have periodicity in $w \to w + 4i\tau_0$: finite temperature!

Relaxing CC's assumption

CC's prescription is equivalent to assuming

$$|\psi_0
angle \propto e^{- au_0 H_{
m CFT}} |B
angle$$

where $|B\rangle$ is a conformally invariant boundary state

• in general we expect any translationally invariant state sufficiently close to $|B\rangle$ to have the form

$$|\psi_0\rangle \propto e^{-\sum_j \lambda_j \int \phi_j^{(b)}(x) dx} |B\rangle$$

where $\phi_j^{(b)}$ are all possible irrelevant boundary operators

- one of the most important is the stress tensor $T_{\tau\tau}$ with RG eigenvalue 1-2=-1: note that $\int T_{\tau\tau}(x)dx=H_{\rm CFT}$, so CG's assumption is that this is the most important one: if it is the *only* one all the conclusions of CC follow *exactly*
- a similar argument has been made in explaining the entanglement spectrum of quantum Hall states [Dubail,Read,Rezayi]

so let us suppose

$$|\psi_0
angle \propto e^{- au_0 H_{
m CFT}} \, e^{-\sum_j{'}\lambda_j \int \phi_j^{(b)}(x) dx} |B
angle \qquad {
m where} \, \, \Delta_j > 1$$

- since the $\phi_j^{(b)}$ are irrelevant, we might expect to be able to do perturbation theory in the λ_j : in the ground state this would lead to corrections to scaling
- for most simple models the only operators $\phi^{(b)}$ which do not explicitly break the symmetry are descendants of the stress tensor, e.g. $T\overline{T}$
- ullet as an example, first order correction to $\langle \Phi(au) \rangle_{
 m slab}$ is

$$-\lambda \int_{\text{boundary}} \langle \Phi(\tau) T \overline{T}(x) \rangle_{\text{slab}} dx$$

this can be computed by mapping to the UHP

• after continuing $\tau \to \tau_0 + it$ we find a first-order correction

$$e^{-\pi\Delta_{\Phi}t/2\tau_0}\left(1+\lambda\Delta_{\Phi}^2\tau_0^{-4}t+\cdots\right)$$

• after continuing $au o au_0 + it$ we find a first-order correction

$$e^{-\pi\Delta_{\Phi}t/2\tau_0}\left(1+\lambda\Delta_{\Phi}^2\tau_0^{-4}t+\cdots\right)$$

• higher orders in λ exponentiate up to leading order, so we get an inverse relaxation time

$$\frac{\pi\Delta_{\Phi}}{2\tau_0} - \lambda \frac{\Delta_{\Phi}^2}{(2\tau_0)^4} + O(\lambda^2)$$

- we get the same effective temperature shift in the spatial decay of $\langle \Phi(x_1, t) \Phi(x_2, t) \rangle$ for $2vt > |x_1 x_2| \gg v\tau_0$

Is this a Generalised Gibbs Ensemble?

in GGE an equal-time correlation function should have the form

$$\langle \Phi(x_1, t) \Phi(x_2, t) \rangle = \text{tr} \left[e^{-\beta H} e^{-\sum_p \beta_p H_p} \Phi(x_1) \Phi(x_2) \right]$$

where $\{H, H_p\}$ are an infinite set of commuting conserved charges.

- in CFT a minimal set are $H_p = \int [:T(x,t)^p: + :\overline{T}(x,t)^p:]dx$ for $p=2,3,\ldots$
- in terms of Virasoro operators

$$H_p \propto \sum_{n_1+\cdots+n_p=0} : L_{n_1}L_{n_2}\cdots L_{n_p}: +\mathrm{c.c.}$$

• the normal ordering implies that $n_1 \leq n_2 \leq \cdots \leq n_p$, so

$$H_p \propto L_0^p + \text{terms with } n_p \geq 1 + \text{c.c.}$$

so acting on a primary operator $H_p \propto \Delta_\Phi^p$

• so for a *primary* operator $\langle \Phi(x_1,t)\Phi(x_2,t)\rangle_{\rm GGE}\sim e^{-|x_1-x_2|/\xi}$ where

$$\xi^{-1} = \frac{2\pi}{\beta} \Delta_{\Phi} - \sum_{p} \beta_{p} \left(\frac{2\pi \Delta_{\Phi}}{\beta^{2}} \right)^{p}$$

Compare with result from a perturbed boundary state

$$\xi^{-1} = \frac{\pi \Delta_{\Phi}}{2\tau_0} - \lambda \frac{\Delta_{\Phi}^2}{(2\tau_0)^4} + O(\lambda^2)$$

- this has exactly the same form, with $\beta=4\tau_0$ and $\beta_{2p}\propto \lambda^p$
- acting with other irrelevant descendants of *T* on the initial state gives similar results, all consistent with GGE ©

More general boundary perturbations

- more general irrelevant boundary perturbations $\phi_j^{(b)}$ with scaling dimensions $\Delta_j \neq$ integer are consistent with a GGE only if we posit the existence of bulk *parafermionic* holomorphic currents $\phi_j(z)$ with dimension Δ_j and include the corresponding non-local conserved charges $H_j = \int \phi_j(x,t) dx$ in the GGE ?©?
- the stationary state becomes more like pure Gibbs as $T_{\rm eff} \downarrow 0$, i.e. a shallow quench

More general boundary perturbations

- more general irrelevant boundary perturbations $\phi_j^{(b)}$ with scaling dimensions $\Delta_j \neq$ integer are consistent with a GGE only if we posit the existence of bulk *parafermionic* holomorphic currents $\phi_j(z)$ with dimension Δ_j and include the corresponding non-local conserved charges $H_j = \int \phi_j(x,t) dx$ in the GGE ?©?
- the stationary state becomes more like pure Gibbs as $T_{\rm eff} \downarrow 0$, i.e. a shallow quench
- one can also add irrelevant terms like to H_{CFT} : e.g.
 - TT
 , corresponding to left-right scattering
 - ullet $T^p+\overline{T}^p$, corresponding to curvature of dispersion relation
- however perturbatively they don't appear to change the overall picture ?©? ?©?

Conclusions

 a quantum quench in 1+1-dimensional CFT from a more general state leads to results consistent with a GGE, so the conclusions of CC [2006] as predicting strict thermalisation should not be interpreted too literally!