QFTI 1

Version 14/10/09

Coherent State Path Integral.

Often H does not have the form %152 + V' (q) but depends more generally on
annihilation and creation operators a,a', with [a,a'] = 1. For simplicity
we consider only one degree of freedom. As usual there is a state |0) such
that a|0) = 0, and the normalised n-particle state is |n) = ((a")"/v/n!)|0).

We want to express the evolution operator e “(ts=t)/" a5 a path integral.

As before we break up the time interval into subintervals of length At and
insert complete sets of states at each intermediate time ¢;. However this
time we insert complete sets of coherent states of the form e¢dT|0>, where
¢ is a complex number. The completeness relation for these states is
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where d?¢ = dRe¢ dlm¢. To check this, expand the rhs:
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Let ¢ = pe®. The angular integration is 37 e'm=040 = 215,,,, and the
radial integration is then
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so we are left with >°° |n)(n| = 1.
For the propagation between neighbouring time slices we then have
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Now, in general

e Faf,a) = F(a'+ ¢, a)e”®
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[Can you prove this? Use the fact that a acts like 9/0a! and a' like —0/0a.]
So, taking the left-hand factor through the expression, (1) becomes
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The rightmost exponential gives 1 acting on |0), since a|0) = 0. Now we
take the factor e?®a" all the way to the left and get

<O|e (t)al ,—(A/R)H (@1 +¢" (t+At),a+e(t)) e¢(t)¢*(t+At)|0>

Now the leftmost factor can be set = 1. We are left with
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As long as H is normal ordered, that is all factors of @ are written to the
right and all factors of a' to the left, for small At we can expand out the
first term to get
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The second factor, combined with the measure e=¢ gives
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Putting together all the pieces, we have
/[d2¢]e(z’/h)fdt[ihqﬁ*ath—H(qS*,qﬁ)]

Although the path there was arduous, the final result is very simple: just
replace the operators @, a! in H by c-number functions ¢(t), ¢*(t). You can
check that if you write p,§ in terms of @, a’ then the coherent state path
integral reduces to Feynman’s.



