11

Conformal symmetry

We saw in Chapter 3 that the hamiltonian for a system at a critical
point flows under the renormalization group into a critical fixed
point. Under a renormalization group transformation, the micro-
scopic length scale is rescaled by a constant factor b, and so the
coordinates of a given point, as measured in units of this length
scale, transform according tor — b~'r. This is called a scale trans-
formation. Once the flows reach such a fixed point, the parame-
ters of the hamiltonian no longer change, and it is said to be scale
wnvariant. As well as being scale invariant, the fixed point hamil-
tonian usually possesses other spatial symmetries. For example,
if the underlying model is defined on a lattice, so that its hamil-
tonian is invariant under lattice translations, the corresponding
critical fixed point hamiltonian is generally invariant under arbi-
trary uniform translations. This is because terms which might be
added to the hamiltonian which break the symmetry under con-
tinuous translations down to its subgroup of lattice translations
are irrelevant at such a fixed point. Similarly, if the lattice model is
invariant under a sufficiently large subgroup of the rotation group
(for example, if the interactions in the z and y directions on a
square lattice are equal), then the fixed point hamiltonian enjoys
full rotational invariance. As discussed on p.??, even if the interac-
tions are anisotropic, rotational invariance may often be recovered
by a suitable finite relative rescaling of the coordinates. For sys-
tems with intrinsic anisotropy, this is not the case, and we shall
not discuss such cases further in this chapter. These operations of
translation, rotation and scaling (dilatation) form a group. Under
a general element of this group an arbitrary correlation function
of scaling operators transforms in a simple way at the fixed point:

(@1(r1)ga(r2)...) = Hb_xj<¢1(7‘i)¢2(”‘§) ) (11.1)
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2 Conformal symmetry

where z; is the scaling dimension of ¢;. In writing this, we have
assumed that all the operators are scalars under rotation. Other-
wise the appropriate rotation matrices need to appear on the right
hand side.

It turns out, however, that as long as the fixed point hamil-
tonian contains only short range interactions, it is invariant un-
der the larger symmetry of conformal transformations. For our
purposes, a conformal transformation r — 7’ is one which lo-
cally corresponds to a combination of a translation, rotation and
dilatation.} This is simpler to illustrate for the case of an infinites-
imal transformation

i — "™ 4 af(r), (11.2)
where a#(r) < 1. If a* is a constant, this is of course simply a

translation. When a*(r) is slowly varying, the matrix of deriva-
tives a*, = da*/0r” may be written as a sum of three pieces:i

e an antisymmetric part a*” — a**, which corresponds locally to
a rotation;

e a diagonal part aAAgf“’, corresponding to a dilatation; and

e a traceless symmetric part a#” + a”* — (2/d)a* yg*”, which
may be thought of as the components of the local shear.

Conformal transformations are those for which this last piece van-
ishes. Since they have no shear component, they possess the prop-
erty of preserving the angles between the tangents to curves meet-
ing at a given point. An example of such a transformation in two
dimensions is shown in Figure 12.1. The heuristic argument that
invariance of the fixed point hamiltonian under translations, rota-
tions and dilatations should imply its invariance under this larger
set of symmetry transformations is deceptively simple. Imagine
performing an inhomogeneous renormalization group transforma-
tion from the original regular lattice to one which is distorted by
such a conformal mapping. In terms of a block spin transforma-
tion, this would mean replacing all the original degrees of freedom

t More correctly, conformal transformations should be viewed as acting on
the metric, in such a way that g,, — Q(r)gu,. This allows for conformal
mappings between flat and curved spaces, for example. However, we shall
restrict ourselves to flat spaces as these are more appropriate for statistical
mechanics.

t Here, and throughout this chapter, we use the summation convention.
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Figure 11.1. Example of a conformal transformation of part of a
square lattice.

inside one cell of Figure 12.1 by a single block spin. In the vicinity
of a given cell, the lattice spacing is rescaled by a factor b(r), where
b(r)~¢is the Jacobian of the transformation r — 7. If b(r) is suffi-
ciently slowly varying, then the way in which the local parameters
of the hamiltonian transform in the neighbourhood of this cell
will be just as if we were performing a uniform renormalization
group transformation with rescaling factor b(r) everywhere. Since
the fixed point hamiltonian is invariant under such transforma-
tions, it is also invariant in the more general case when b varies
with 7. This argument can apply, of course, only if the fixed point
hamiltonian is of sufficiently short range.

A simple generalisation of the reasoning in Section ??7 which
led to (12.1) now yields the transformation law for correlation
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functions

(91(r1)¢a(r2) .. ) = H b(r;)™" (or(r1)da(ry) ..}, (11.3)

once again for scalar operators. Clearly the above argument is
heuristic at best, and, in Section 12.3, we shall put it on a more
systematic footing. In fact, it will be seen that (12.3) cannot be
true for all scalar scaling operators. Indeed, it is a simple exercise
to show that if it is true for the correlation functions of ¢, it
cannot be valid for its derivatives, for example V2@, even though
these behave correctly under scale transformations. Instead, as we
shall show, the transformation law (12.3) holds for a restricted
class of scaling operators called primary. However, fortunately,
the operators corresponding to the most relevant scaling variables
are usually of this type.

11.1 Conformal transformations

The condition that an infinitesimal transformation be conformal
is

a4 ot — (2/d)a’ \g" = 0, (11.4)

These equations are very restrictive when d > 2. In fact, the only
solutions in that case, apart from infinitesimal translations, rota-
tions and dilatations, are the so-called special conformal transfor-
mations
at(r) = bHr? — 2(bA'r,\)'r“. (11.5)

These may be thought of as made up of a finite conformal transfor-
mation, the inversion mapping r* — r'* = r#/r2 followed by an
infinitesimal translation by the vector b*, then a further inversion.
Thus the conformal transformations for d > 2 may be generated
by adding the discrete operation of inversion to the other three.

In two dimensions, however, there is far greater freedom. This
may be seen most simply if we write (12.4) using complex coordi-
nates, defined by z = ! +ir%, z = r! —ir?. For most purposes, we
may disregard the fact that z is the complex conjugate of z, and
treat them as if they were independent complex variables. The
line element in this coordinate system is

ds? = (dr)? + (dr?)? = dzdz, (11.6)
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so that the metric is no longer diagonal. In fact

Guv = ((l) %) (11.7)

2
For this reason, we must distinguish upper and lower indices. For
example, for a vector b, = %bg and b; = %bz. In these coordinates,
the (zZ) and (Zz) components of (12.4) are trivially satisfied for
d = 2, and the others reduce to

o s =a’, =0. (11.8)
Thus a® depends only on z, rather than z, which means that it is
an analytic function of z. Similarly, o® is an analytic function of Z.
This is the well known result that analytic functions correspond
to conformal transformations in d = 2, and is the reason such
mappings are so useful for solving Laplace’s equation.

The notion of complex coordinates also makes it rather sim-
ple to discuss non-scalar operators in two dimensions. In general,
we may classify such operators according to their spin.i Under a
rotation z — ze'’, an operator of spin s transforms by a factor
¢’ What this means is that its two-point correlation function,
for example, behaves like

(@21, 21)P(22, 22)) = |212] "% (212/212)°, (11.9)

where z15 = z; —z3 and z is the usual scaling dimension of ¢. Note
that, for this two-point function to be single-valued, 2s should be
an integer. (12.9) suggests that we define the so-called complex
scaling dimensions (h,h) by @ = h + h and s = h — h, so that the
two-point function may be written 31_2%21_2%. Note that & is not
the complex conjugate of h. In fact, they are both real numbers.
A simple consequence of this classification is that the operator
product expansion of Section ?? has a simple form in d = 2, even

for non-scalar operators:

_ _ —hi—h;+hy _—hi—h;+h _
¢i(21,21) - 9j(22,22) = ) Ciji 219 s T TR (29, 22).
%
(11.10)

Similarly, the transformation law (12.3) for correlation functions
under a conformal transformation corresponding to the analytic

1 This has no physical connection with the quantum mechanical idea of spin.
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mapping z — 2z’ = w(z) may be written
<¢1(21,§1)¢2(22,22)...> = ) (1111)
TT /G o) (o4, 2)a(h, ) -,

since the local dilatation factor is |w’(2)|~! and the local rotation
is argw'(2).

11.2 Simple consequences of conformal symmetry

In this section we shall assume the correctness of the transforma-
tion law (12.3) and deduce some simple consequences. The first
set of results is valid for arbitrary dimension, since it exploits the
symmetry under only special conformal transformations. For sim-
plicity we then restrict the considerations to scalar operators.

Consider first the two-point correlation function of two differ-
ent operators (¢1(r1)¢2(rz)). Conformal symmetry implies that
this vanishes unless the scaling dimensions z; and z5 are equal.
The essence of the argument is simple. We can always choose a
conformal transformation which maps the points r; and ry into,
say, rj and 7, respectively, under which the two-point function will
be multiplied by a factor b(r1)~"1b(rz)~"2. Now imagine making
the same transformation on (¢3(r1)¢1(72)), where the two oper-
ators have been exchanged. This cannot affect the value of the
correlation function, since they are related by a rotation through
180°. But now the rescaling factor will be b(r1)™*2b(r2)~"*. Since
b(r1) # b(rz) for a conformal mapping, the only way for these two
results to agree when z1 # x5 is for the two-point function itself
to vanish.

The above argument does not work when z; = =z, so that
if we consider the set of all operators ¢; with the same scal-
ing dimension z, their two-point functions have the general form
(6i(r1)9(r2)) = dijri". However, since d;; must be real and sym-
metric, we may choose suitable linear combinations of the ¢; so
that it is diagonal. In models satisfying reflection positivity,i (for

1 This is true of most fixed points describing models with positive Boltzmann
weights. Even microscopic models whose transfer matrix is not symmetric
may correspond, at the fixed point, to a reflection positive theory. The main
exceptions are cases like the O(n) and Q-state Potts models for non-positive
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example, when their transfer matrix may be brought into a sym-
metric form), these diagonal elements are all positive, and so, by
normalising the operators appropriately, d;; is simply é;;. Thus
one of the simple consequences of conformal invariance is the or-
thogonality of scaling operators, in the sense that their two-point
functions may be taken to have the form
;5
(6i(r1)¢i(r2)) = =7 (11.12)
T12
While such results sometimes also follow from the internal sym-
metries of the model (for example, the energy-magnetisation two-
point function in the Ising model vanishes anyway on the grounds
of the symmetry of the fixed point hamiltonian under reversing
all the spins), we see that their provenance is more general.

For the three-point functions, conformal invariance completely
fixes their functional dependence. To see this, note that, by trans-
lations, rotations and dilatations alone, two arbitrary points ry
and 79 may be mapped to two pre-assigned points. This is the
reason why these symmetries are sufficient to fix the functional
form of the two-point functions. The special conformal transfor-
mations then give one additional relation whereby three arbitrary
points 71, 72 and r3 may be mapped to three preassigned points r/,
rh and rf. Thus the three-point function (¢;(r1)¢;(r2)¢r(rs)) may
be related to the same correlation function with r; — r!, with the
dependence on the r; entering solely through the scaling factors
[1; b(ri)**. The algebraic details of this calculation are not partic-
ularly illuminating, and it is simpler to verify the result, which
has the remarkable elegant form

Cijk

|7,1 _ 7,2|1’¢+1‘] _IleQ _ T3|1‘]+1‘k—1’¢ |,r3 _ Jrlllfk—l—a:i—zj

. (11.13)

where C};;, is a constant. In fact, this is equal to the operator
product expansion coefficient ¢;;; defined in Section ?7, as long as
the operators are correctly normalised as in (12.12) above. This
follows immediately if we take the correlation function of both
sides of the operator product expansion in (12.10) with the opera-
tor ¢y. Since we are free to permute the points in (12.13) without
changing the value of the three-point function, it follows that the

integer n or @, described in Sections 77 and ?7.
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\

Figure 11.2. Finite-width strip geometry.

Cijk, and therefore the operator product expansion coeflicients (in
the orthonormal operator basis) are totally symmetric functions of
the indices (¢jk). This is another very powerful result of conformal
symmetry.

In two dimensions, conformal symmetry is much more power-
ful, because any analytic function w(z) gives a conformal mapping
z — z' = w(z). However, such a transformation will not, in gen-
eral, map the plane onto itself, and so it is important to realise, in
writing the transformation law (12.1), the correlation functions on
either side may be evaluated in different geometries.j Sometimes
this fact may be exploited, as when conformal mappings are used
to transform a solution of Laplace’s equation in one geometry to
that in a simpler geometry.

Consider, for example, the mapping given by w = (L/27)In z.
This is analytic everywhere except at the origin, and maps the
whole complex z-plane (minus this point) into the strip [Imw| <
L/2. A function which is single-valued in the plane will satisfy peri-
odic boundary conditions between opposite edges of the strip (see
Figure 12.2). This is an example of a quasi-one-dimensional finite
size geometry discussed in Section ??. The form of the two-point

1 The special conformal transformations do preserve the plane with the point
at infinity added (the Riemann sphere).
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function in the strip with periodic boundary conditions then fol-
lows from the transformationlaw (11.11) and its form in the plane,
which, restricting to the scalar case for simplicity, is |212|72%. The
result is

(2m/L)*
-, (11.14)
[2 cosh (21 (uy — uz)/L) — 2 cos (2w (v — v2)/L)]
where w = wu + v, so that u and v are Cartesian coordinates

running along and across the strip respectively, as shown in Fig-
ure 12.2. When |wq,| < L, this behaves as w72, independent
of the finite width L, but, for |uy — ug| > L, the correlation func-
tion decays exponentially

271N\ (ore/L) w1 -]
(P(u1,v1)P(uz, va)) ~ (f) e 1zl (11.15)

Such an exponential decay is to be expected in a quasi-one-
dimensional geometry. From (12.15) may be inferred the corre-
lation length along the strip

&= L/(27z). (11.16)

The fact that the result is proportional to L is a consequence of
finite-size scaling (see Section ??.) However, what is remarkable
about (12.16) is that the amplitude £/L is simply related to the
scaling dimension z. This prediction of conformal invariance in two
dimensions has been amply verified by numerical and exact stud-
ies, and is now an important tool for extracting the scaling dimen-
sions of otherwise unsolvable models. This is because the correla-
tion length ¢ is given in terms of the eigenvalue A; of the transfer
matrix acting along the strip by the formula £~ = —In();/\g),
where Ag is the largest, and A; is the dominant subleading eigen-
value which couples to the operator in question. For finite L, the
transfer matrix is usually finite-dimensional, and is amenable to
exact diagonalisation. In fact, since (12.15) is true for every (pri-
mary) operator, it follows that each scaling dimension z of the
fixed point theory corresponds to an eigenstate of the transfer
matrix. Actually, a stronger statement is true: there is a one-to-
one correspondence between the full set of scaling operators at
the fixed point, and the eigenvectors of the transfer matrix on the
strip (at least those whose eigenvalues scale like L=! as L — o).
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11.3 The stress tensor

A number of similar results follow from the transformation law
(11.11), but, in order to understand better its theoretical under-
pinnings, it is necessary to discuss the crucial role played by the
stress tensor. This is a special scaling operator, which may be in-
troduced as follows.i Suppose, instead of making a rescaling of
the lattice which corresponds to a conformal transformation, that
is, corresponds locally to a rotation and dilatation, we allow in
addition the possibility of a shear component. If we imagine con-
structing a renormalization group transformation to this distorted
lattice, there is no longer any reason to suppose that the fixed
point hamiltonian will remain invariant. Instead, it will acquire
an additional piece éH, which, at least for an infinitesimal trans-
formation, should be expressible as a linear combination of the
complete set of scaling operators at the fixed point. If we consider
the distortion of the lattice as corresponding to a general infinites-
imal coordinate transformation r# — r'* + a#(r), the change in
the hamiltonian may then be written

M = — 57! /Tw,(r)a“a”(r)ddr. (11.17)

This equation, for arbitrary a”(r), then defines the stress tensor
T,.. The factor of Sy is the area of a unit hypersphere, and is
conventionally introduced since it leads to greater convenience in
later formulas. Once again, the crucial assumption of short range
interactions has been invoked in writing (12.17), as it is implicitly
assumed that 6H may be written as a sum (integral) over local
contributions, each of which depends only on the local distortion.
Since, however, 6 H vanishes whenever this has components only
of rotation and dilation, that is when the traceless symmetric part
of 9"a” vanishes, we see that 7, must be both symmetric and
traceless itself.

It is important to realise that the stress tensor is a scaling oper-
ator just like the local energy density or magnetisation, although,
unlike these, it is not a rotational scalar. As with these operators,
it may be expressed as a linear combination of lattice operators
expressed in terms of the fundamental degrees of freedom in the

t In quantum field theory, it is often known as the ‘improved’ energy-
momentum tensor.
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hamiltonian. For example, consider the critical Ising model on
a square lattice, with equal nearest neighbour interactions K in
the z and y directions. Suppose we make an infinitesimal shear
transformation ¢ — 2’ = (14 €)z, y — y' = (1 — €)y, thus distort-
ing the lattice. In terms of the new coordinates, the correlations
will now be anisotropic. But we know, following the discussion on
p-??, that this anisotropy may be accounted for by introducing
anisotropic interactions K, # K,. In this case, we should take
K, = K(1 - Xe) and K, = K(1+ Xe), where A is some (non-
universal) constant. This generates a new term proportional to a
sum over s(z,y)s(z +a,y) — s(z,y)s(z,y+ a) in the hamiltonian.
On the other hand, for this particular transformation, we see from
(12.17) that éH is given by an integral over T, — T),. Hence, for
this model,
Tor - Tyy X 8(377 ’y)S(.’E + a, y) - 5($7 y)s(m, y+ a)

-|—S($, y)S(CC —a, y) - S(.f, y)s(w, Y- a)7 (1118)
where we have antisymmetrised so that both sides have the same
behaviour under reflections. It should be stressed that, in writing
(12.18), as with all lattice identifications of scaling operators, it is
valid only in the sense that correlation functions of either side are
asymptotically the same when the points are far apart. At smaller
separations, there are additional, less relevant, operators on the
left hand side which will give rise to corrections.

From now on in this section, we shall consider only the case
d = 2, where the use of complex components considerably simpli-
fies the analysis. Why should one introduce a more general trans-
formation if the aim is to analyse those which are conformal?
The reason is that an analytic function a(z) cannot, in general,
be small everywhere in the plane, but only in some finite region.
Transformations which are infinitesimal everywhere must there-
fore be non-conformal at some points. Suppose we are interested
in the effect of conformal transformations in the vicinity of the
origin. Surround this by two regions |z| < Ry and Ry < |z] <
Ry (see Figure 12.3). Now make an infinitesimal transformation
r# — r'" = r# + a#(r) which is everywhere differentiable, and
corresponds to the conformal transformation z — 2/ = z4 a(z) in
the first region, while it reduces to the identity ' = r for |z| > R».
Otherwise, it is arbitrary in the annulus in between. The change



12 Conformal symmetry

Figure 11.3. Geometry used to study the effect of a localised con-
formal transformation.

in the hamiltonian is, by (12.17), §H = —(1/2x) [T,,0*a"d*r,
where the integrand is non-vanishing only within the annulus. In-
tegrating by parts then gives a term proportional to [ a”9#T,, d*r,
together with a surface term [ a¥7,,dS* on each circle. Since a”
is quite arbitrary within the annulus, and since the result we are
going to obtain from this calculation cannot depend on its precise
form, then 9#T,, must vanish identically. Thus the stress tensor
is also conserved. The surface term from |z| = R, vanishes, since
o” = 0 there.

The stress tensor, being symmetric, has complex components
T,,=T,T:;; =T and T,; = T;,. In fact, the latter components
vanish, since the trace is T? + TZ = 2T, + 2T,>. The conservation
conditions then imply that

0"y, =0°T,, =20;T =0 (11.19)

M, =0°Ts; = 20, T = 0. (11.20)
This means that correlation functions of 7'(z,z) in fact depend
only on z, so are therefore holomorphic functions. Similarly cor-
relation functions of 1" are antiholomorphic.

In this notation, the boundary term in é6H may be written as
a contour integral around the circle C : |z| = Ry. After a little
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algebra, this may be written
1 1 —

oH = /C a()T(2)dz — o /C o) T(2)dz.  (11.21)
Now suppose that a(z) = ez, corresponding to dilatation (and a
rotation if € is complex). Consider the transformation properties
of the correlation function (¢(0)...) of a scaling operator ¢ at
the origin, with other operators, represented by the dots, all of
whose arguments lie outside the larger circle |z| = Rj. Since the
transformation near the origin is a pure rotation and dilatation,
we know how ¢(0) will transform. On the other hand, the fixed
point hamiltonian H* changes by éH. We may therefore write

(B(0). . Yr = (14 (1 + M(B(0) .. Vpegsm,  (11.22)

where (h,h) are the complex scaling dimensions of ¢. The cor-
relation function on the right hand side is to be evaluated with
respect to the perturbed hamiltonian H* + é§H. This may also be
written (¢(0)...e ")y, Expanding this exponential and equat-
ing coefficients of € and € in (12.22), we then find

= /O 2T(2)$(0)dz = he(0), (11.23)

)

with a similar equation involving T and h.

This has immediate consequences for the operator product ex-
pansion of T'(z) and ¢(0). T itself has scaling dimensions (2,0)
since, from its definition (12.17), it has overall scaling dimension
z = 2, and does not depend on %, so h = 0. The operator product
expansion must be an analytic function of z, except possibly at
z = 0, so may involve only integer powers of z:

T(2)¢(0) = Y =~ *"9l"(0), (11.24)
thus defining the scaling operators ¢("). Substituting this into the
contour integral in (12.23) implies, by the residue theorem, that
#©) = h¢. An analogous argument, taking this time o = const.,
corresponding to a uniform translation, similarly gives oM = 9,6.

Now note that the scaling dimension of qb(”) is h + n. Since we
do not expect to find scaling operators with arbitrarily negative
dimensions, these ¢(™) must vanish for sufficiently large negative
n. The special class of operators for which ¢(™ = 0 for all n < 0
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are called primary. For these, the leading terms in the operator
product expansion with T are therefore already determined by
their behaviour under translations, rotations and dilatations to

be
T(2)6(0) = 50(0) + 10.6(0) 4. (11.25)

For such operators we now have a much stronger result. Consider
an arbitrary infinitesimal conformal transformation, parametrised
by a(z). By analogy with the above argument, the change in ¢(0)
is then given by the contour integral

1 1 —
00(0) = 5= [ a()T()0(0)dz - 5= [ aGIT()0(0)d
(11.26)
Inserting the operator product expansion (12.25), the right hand
side may be evaluated by Cauchy’s theorem to give

$(0) = ¢ (a(0),a(0)) + (ha'(0) + ha'(0)) $(0), (11.27)
that is, the transformation properties of a primary operator un-
der conformal transformations are already determined by its be-
haviour under rotations and dilatations. This result is simple to

generalise to the case of a finite conformal transformation z —
Z'=w(z):

B(z,2) — w'(2)"w'(2) (', 7), (11.28)

from which follows the transformation law for correlation functions
(11.11) already exploited in the previous section.

Special conformal transformations, on the other hand, corre-
spond to taking a(z) x 2%, and the condition that an operator
behave appropriately under this restricted class is that ¢(~1) = 0.
Such operators are called quasi-primary. Roughly speaking, such
operators cannot be written as the derivatives of other operators
with respect to the coordinates. These considerations extend, in
fact, to dimensions d > 2. The results of Section 12.2 for the two-
and three-point functions then rely only on the assumption that
the operators involved are quasi-primary. Any scaling operator is
either itself quasi-primary or may be written in terms of deriva-
tives thereof.

It is important to realise that the stress tensor itself is not
primary. In fact, its operator product expansion with itself must
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have the form
2 1
T(z)T(0) = + Z—QT(O)—}— :GZT—I—---. (11.29)

The coefficient of 272 term reflects the fact that 7 has h = 2.
There is no z=3 term by symmetry under z — —z. The z~* term
must be present so that, on taking the expectation value of both
sides of the equation, the two-point function (T(2)T(0)) < 1/z%is
non-zero. Notice that, unlike other scaling operators, we are not
free to adjust the normalisation of T" so that its two-point function
has coefficient unity. This is because this is already fixed by the
definition of 7" through (12.17).

Equation (12.29) thus introduces what turns out to be a ubi-
quitous property of a fixed point theory in two dimensions, the
so-called conformal anomaly number, or equivalently the central
charge, c.i The additional term in (12.29) means that 7" does not
transform in such a simple way as (12.28) under a finite conformal
transformation. Instead, there is an additional term

T(z) = w'(2)°T(2") — {7, 2}, (11.30)

where {z/,z} = (v — %11)”2)/10’2 is called the Schwartzian

derivative.
Consider, for example, the mapping w(z) = (L/27)Inz from
the plane to the strip with periodic boundary conditions. In the

plane, (I') = (1') = 0 by rotational invariance. Equation (12.30)
then yields the corresponding quantity in the strip

(Tstrip = (T)strip = i <2%)2 (11.31)

This gives the reduced free energy per unit length of the strip

Fo(L) = —% /0 Ty = —% ((7) st + (Ttrip) - (11.32)

To see this, recall the definition (12.17) of T}, and consider the
transformation (u,v) — ((1 + €)u,v). The hamiltonian changes
by an amount éH = —5= [Tyududv. The expectation value of
this must be balanced by an explicit change in the free energy

c/2
ey

1 The first name originates from its role when the theory is defined on a curved
background, when the trace T} is non-zero and equal to —cR/12, where R
is the scalar curvature. The second comes from the operator formulation of
conformal symmetry, where it appears as the coefficient of the central term
in the Virasoro algebra.
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—ellp(L) per unit length. From (12.31), the free energy per unit
length of the system in the strip geometry is therefore

Eo(L) = —g—; (11.33)

Note that in writing this, we have already subtracted off an exten-
sive O(L) term proportional to the bulk free energy. Once again,
the L-dependence of (12.33) is as expected from finite-size scal-
ing, but the remarkable result is that its amplitude is related to
the central charge of the fixed point theory. Since Fy is simply
given by the logarithm of the largest eigenvalue Ag of the transfer
matrix, it may be extracted simply from numerical studies. This
gives a direct way of measuring c.

A more physical interpretation of the central charge may be
made if we consider the coordinate v across the strip as being
imaginary time, and u as representing one-dimensional space. As
discussed in Section ??, the partition function in this geometry
may be viewed as that for a one-dimensional quantum system,
at finite temperature T = (kgL)™!. Equation (12.33) then gives
the reduced free energy per unit length F/(kgT) of this quantum
system. From this we may read off the specific heat

C ﬂck}‘;

T. (11.34)

Since this result assumed rotational invariance of the equivalent
two-dimensional model, it is valid only for systems with a dy-
namic exponent z = 1, that is, a linear dispersion law w ~ v|k| for
the elementary excitations. (12.34) is then written in units where
v = 1. In addition, it is valid only when the width of the strip
is much larger than the lattice spacing, which translates into low
temperatures. With these provisos, we see that the low temper-
ature behaviour of the specific heat of such a system is linear in
T, and its slope is directly related to the value of c. It is instruc-
tive to compute the specific heat for free relativistic bosons in
one dimension, using standard methods of statistical mechanics.
This yields the form (12.34), with ¢ = 1. In general, n types of
noninteracting bosons would have ¢ = n. The central charge may
therefore be thought of as counting the number of gapless degrees
of freedom of the theory. This interpretation must not be taken
too literally, however, since interacting critical theories typically
have non-integral values of ¢!
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11.4 Further developments

Beyond this point, the study of conformal symmetry in two di-
mensions becomes increasingly mathematical and goes beyond the
modest scope of this book. It is worth, however, recording some
of the major results of the analysis.

As with any continuous symmetry in physics, the generators
of conformal transformations form an algebra, called in this in-
stance the Virasoro algebra. There are an infinite number of gen-
erators L., one for each term in the Laurent expansion of a(z) =
>, apz” "1 and their commutator algebra has the form

(L, Lin] = (= m) Ly + S0(n* — 1)6 . (11.35)

In any particular fixed point theory, the L,, are represented by op-
erators acting on the physical space of states. This is constructed
by a technique known as radial quantisation. With this method,
there is then a one-to-one correspondence between the scaling op-
erators at the fixed point, and those states of the Hilbert space
which are eigenstates of the operator Lg. This operator gener-
ates dilatations a(z) x z, and its eigenvalues are just the scal-
ing dimensions. The algebra allows one to organise the eigen-
states of Lg, and hence the scaling operators, into irreducible
representations of the algebra. The state in each representation
with the lowest scaling dimension corresponds to a primary oper-
ator.

Many models of statistical mechanics satisfy the requirement
of reflection positivity (see p.6). In this case, we are interested
in unitary representations of the Virasoro algebra. It turns out
that, for ¢ < 1, these are severely constrained, in the same way
that unitarity restricts the possible representations of a finite Lie
algebra. In fact, only the values of ¢ given by

6

- where m = 3,4,5, ... (11.36)
m(m+ 1)

c =
are allowed, and, for each value of m, there are only a finite num-
ber of representations. The corresponding (complex) scaling di-
mensions of the primary operators are given by the Kac formula

7 —_ f 2_
heh . - (r(m+4+1)—sm)" -1

11.
' 4m(m + 1) ’ (11.37)
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with 1 < s < r < m — 1. This result goes at least part of the way
towards realising the theorist’s dream, implicit in the discussion
of Chapter 4, of classifying all fixed points, and thereby all uni-
versality classes. Among the universality classes contained in the
set with ¢ < 1 are some old favourites: the critical Ising model,

the ‘hydrogen atom’ of the subject, corresponds to m = 3, ¢ = L.

The tricritical Ising model sits at m = 4, the three-state Pot%s
model at m = 5, and so on. For these models, it turns out that all
universal properties of the fixed point theory can be found analyt-
ically: not only the scaling dimensions, but the operator product

expansion coefficients, the correlation functions, and more.

11.5 The c-theorem

Recent work on the subject of two-dimensional critical models
has focussed less on the conformally invariant fixed point theories
themselves. Rather, it has attempted to elucidate the nature and
universal properties of the renormalization group flows between
them. A simple result is the so-called ¢-theorem of A. B. Zamolod-
chikov. Since it is relatively simple to state and prove, yet is deep
and physically compelling, it forms a suitable point at which to
end this account.

The c-theorem is formulated in the continuum limit. That is, it
concerns the behaviour of renormalization group flows in the sub-
space of all interactions where the irrelevant lattice terms which
break translational and rotational symmetry have already flowed
to zero. Since rotational invariance will be a crucial input, this
also excludes systems which exhibit intrinsically anisotropic scal-
ing (see p.?7?). It also assumes reflection positivity (p.6). With
these provisos, the c-theorem is simply stated:

¢ There exists a function C of the coupling constants which is non-
increasing along renormalization group flows, and is stationary
only at the fixed points. Moreover, its value at each fixed point
is that of the central charge ¢ of the corresponding conformally
invariant theory.

The proof relies on rotational invariance, reflection positivity,
and the conservation of the stress tensor (a property which is a
general consequence of translational invariance, and therefore is
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also valid away from the critical point). Consider some particular
point on a renormalization group trajectory specified by a set
of couplings {K}. For the time being, however, we suppress the
dependence on { K'}. Away from the fixed point, in addition to the
components T = T,, and T = Tj; of the stress tensor, it has a
non-zero trace ©® = T7 + T7 = 47T5,, since the hamiltonian is no
longer invariant under dilatations. These three components, 7', ©
and T have spins s = 2,0 and —2 respectively under rotations.
Thus their two-point functions have the form

(T(2,2)T(0,0)) = F(22)/z*  (11.38)

(0(2,2)T(0,0)) = (T(2,2)0(0,0)) = G(22)/2°2  (11.39)
(0(2,2)0(0,0)) = H(2z)/2*2* (11.40)

where F, GG, and H are non-trivial scalar functions. On the other

hand, conservation of the stress tensor 0#7),, implies, in complex
coordinates, that

0:T + 0.0 = 0. (11.41)
Taking the correlation function of the left hand side with 7°(0,0)
and 0(0,0), respectively, yields two equations

F+ (G 3G) = (11.42)
G -G+ YH-2H)=0, (11.43)

where F' = zZF'(2%), etc. On eliminating G and defining C' =
2F — G - %H, these reduce to

C=-3H. (11.44)

Now reflection positivity requires that (00) > 0, so that H >
0. Thus C is a non-increasing function of R = (2z)"/2, and is
stationary only when H = 0.

Now imagine making a renormalization group transformation
a — a(1+6L). Since C(R,{K })is dimensionless, this is equivalent
to sending R — R(1 — 6¢), and the coupling constants {K} will
flow according to the renormalization group equations. Thus

<% - R;R) C(R,{K}) = 0. (11.45)

If we now define C({K}) = C(Ro,{K}), where Ry is some arbi-
trary but fixed length scale, we see that this quantity satisfies the
first part of the c-theorem. Moreover, it is stationary if and only

)
R
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il H = 0, which, by reflection positivity, implies ® = 0, so that
the theory is scale invariant and therefore corresponds to a fixed
point. Finally, at such a fixed point, G = H = 0, and F = %c, s0
that indeed C' = c.

The c-theorem has the interpretation that renormalization
group flows go ‘downhill’. In particular, it rules out the existence
(for systems satisfying reflection positivity) of limit cycles and
other esoteric behaviour in renormalization group flows. It also
severely restricts the possible fixed points to which unstable di-
rections at a given fixed point may flow. For example, relevant op-
erators at the tricritical Ising fixed point, corresponding to m = 4
in the classification (12.36), may generate flows into either trivial
fixed points with ¢ = 0 (for example, high or low temperature fixed
points), or to fixed points in the universality class of the critical
Ising model, with m = 3, ¢ = % For this reason, the critical be-
haviour on the edges of the wings in the tricritical phase diagram
shown in Figure ?? must be in the critical Ising universality class,
despite the lack of any obvious symmetry.

An appealing physical interpretation of the C-function is as a
kind of entropy of information about the critical system. Under
renormalization, information is lost about the short distance be-
haviour of the correlation functions. However, this cannot be taken
too literally — for example, even at infinite temperature a block
spin transformation results in loss of information about the mi-
crostates of the system, yet no renormalization group flow takes
place. Presumably, a more complete interpretation along these
lines needs to account for the fact that the central charge is sen-
sitive to only the effectively gapless degrees of freedom. Such a
picture, if validated, would presumably extend to higher dimen-
sions. However, so far, all attempts to prove higher-dimensional
versions of the full ¢-theorem have failed. It is not difficult to sat-
isfy the requirements of the theorem locally. The problem is to
find a suitable function which is globally defined, is finite at each
fixed point and is, at least in principle, measurable solely in terms
of the correlation functions there.

Exercises

11.1 Show that the inversion transformation described in Sec-



11.2

11.3

11.4

11.5

11.6

Frercises 21

tion 12.1 is a conformal transformation, in any number of
dimensions.

In the half space z > 0, when the order parameter is fixed
to some non-zero value on the plane z = 0, its expectation
value at the bulk critical point decays as z~%, where x is its
scaling dimension. By making an inversion about a suitable
origin, find its behaviour in the interior of a sphere of radius
R, with fixed boundary conditions on r = R.

By conformally mapping the upper half plane (with fixed
boundary conditions on the order parameter) into a strip of
width L, show that the correlation function along the strip
decays exponentially at large distances, with a correlation
length 72(%) /L, where z(*) is the boundary scaling dimension
of the order parameter (see Section ?7).

By conformally mapping the upper half plane into a wedge
of opening angle @, show that an operator near the apex of
the wedge has a scaling dimension (8/7)z(®), where z(*) is its
boundary scaling dimension. Using scaling arguments, show
that, below the bulk critical temperature the order param-
eter near the apex vanishes as (—¢)%(¥), and determine the
dependence of this exponent on the opening angle.

The Gaussian model corresponding to the line of low-
temperature fixed points of the two-dimensional XY model
(Section ?7) is a simple example of a conformally invariant
system. Using the rules of Gaussian integration described in
the

Appendix, calculate the three-point function <eiq19(r1)eiq29(7"2)
€'%9(r3)) and show that it has the form given in (12.13). [Note
that this correlation function vanishes unless 3, ¢; = 0.]
Show that the specific heat of a one-dimensional gas of mass-
less relativistic bosons has the form (12.34), and check that
¢ = 1. Repeat the calculation for particles obeying Fermi—
Dirac statistics. What is the value of ¢ in this case?



