Advanced Topics in Statistical Mechanics
Michaelmas Term, 2007 — Prof. J. Cardy
Homework Problem Solutions

1. Let fo = (e"®/T +1)~! be the unperturbed Fermi distribution. The
Boltzmann equation to first order in f — fy is then
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The particle current is
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and since this comes entirely from the difference f — f, we can use the
BE to write it as

Jp = —T/Uifé(e){- . -}D(e)de

where the expression in square brackets is the same as above, and D is
the density of states.

On the other hand, the energy current (), is given by the same ex-
pression with the insertion of a factor of € (or € — ep — it depends if
you prefer to think about electrons and holes) in the integrand. We
should adjust O(u/T)/0z so that J, = 0. [The heat current is actually
Q. — pJy, but since J, = 0 they are the same.] In the approximation
that fi(€) < d(e — €r), this insertion is a constant ez, and so @, = 0
also. In order to get a non-zero answer, we must do better.

If we assume a spherical Fermi surface with € = p?/2m, then D(e) =
(2em*)Y/2/7?h3 and v2 = 2¢/3m. Then (I apologise for not using the
notation of Ashcroft and Mermin — my copy is missing so I had to work
it out by myself)
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where
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Imposing J, = 0 we get
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To get a non-zero result at low 7" we must write € = ep 4 de and expand
to second order in de. We therefore get I, = n(1 + const.s(s — 1)T%).

The final answer (after some algebra) is @, = \(—07T/0x) where
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. Let us first give the heuristic derivation. The effective field acting on
S; is hifl = >_; Jiymj + h, where m; = tanh(hjff). We now assume
that the hff T are gaussian random variables with mean h and variance
(as before) J?q. Self-consistency now demands that
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On rescaling h*/f — h = J\/qz,
q=(2m)7 Y2 / dze *"/? tanh? B(J\/qz + h)
Similarly, the mean magnetisation is
M = (2m)~1/2 /dze’%z2 tanh 3(J\/qz + h)

In the replica method, the modification is also straightforward: it comes
when we make the trace over the Si* at a single site:

Tr(2m) /2 / dze— 372+ =B A+ Y, 58



[T apologise that the last part wasn’t totally clear: the last words should
read ‘diverges as T — T.+’.] To find the dependence of M on h, we
first have to solve for ¢ as a function of h. The SK equation for small
g and small h takes the form

¢=(81)q— 4"+ O(h?)
In the high temperature phase we can ignore the ¢? term so
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If we now expand the equation for M we find
Affwk/ckf‘%ZQ(6(J\/§z%—h)%—conyij\/gz%—h)3%—'~)

The non-zero terms are of the form (apart from constants) h+ qh + h3.
So we see that OM/Oh is finite as t — T, but
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3. (a) The 2-point function is
(cos p(B(ry) — ¢) cos p(A(ry) — ¢)) o Re (ePOr1)=0(r2))
We did the case p =1 in the lecture. In general we get
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This means that 2, = p?/47rK. If we add this term to the hamil-
tonian, as

h, / CZZT cosp(f(r) — o)

and make an RG transformation a — ba, we see that h, — b%h,

where 9
p

4 K

Yp=2—Tp=2—



(b)

This is irrelevant if y, < 0, i.e. K < p?/m, or T > T, = 8nJ/p*.
On the other hand the vortices are irrelevant if ' < Txr = 7.J/2.
There is therefore a range of temperatures where both are irrele-
vant if p > 4. This will have quasi-LRO. If T < T},, h,, is relevant
and the system will order into one of p possible phases. (In this
case we can expand the cospf about one of the maxima and get
a quadratic term o< #? which corresponds to a finite correlation
length.) If T > Txr we expect the usual paramagnetic phase. If
p < 4 the system will undergo a single transition from the ordered
phase to the paramagnetic phase, with no quasi-LRO intermediate
phase.

For h, > J, the spins should follow the local random field. For
h < J we might expect an ordered phase, and for small T" a
quasi-LRO ordered phase, just as for h, = 0.

The replicated partition function has the form

Tr exp <— /dQT(;K za:(vea)z + hpza:COSp(ea - ¢(T)>))

Performing the quenched average by expanding in h,, integrating
over ¢(r) and re-exponentiating, we get

exp (Ap > cosp(f, — 0g)>
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If we work out the 2-point function of this, we just get the square
of the result in part (1), so the scaling dimension is 2z, = p?/27K.
(This is just as in the Harris criterion RG argument.) Hence the
RG eigenvalue of A, is
o
2r K
and is now irrelevant for 7" > %Tp = 47 J/p?. Both this and the

vortices are irrelevant for p > 2v/2.

[Actually the analysis is much more complicated than this because
other terms get generated in the RG, like 3°,.5(V0,)(V0g). See
J. Cardy and S. Ostlund, Phys. Rev. B 25, 6899 (1981).]



