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Story so far

* Fluctuations in @ cause stars to diffuse through action space
* Fluxis F(IJ)=F,(J)+Fa(J)
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* So star at J is disturbed by stars at J’ that resonate with it

* D, drives stars back towards low J and low E while D, causes them to
diffuse to high J and high E

* Einstein first recognised the need for the “dynamical friction term” D, in his
model of Brownian motion



N-body discs

e “Stable” discs always develop O(1) '
spiral structure/a bar
* More particles -> it takes longer | | | |
* But duration of non-linear phase is | oynamical times
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Wave mechanics of discs

* Self gravity couples orbits so they can
exchange angular momentum

* Disc becomes elastic medium that supports
waves

 Study of these waves easiest when tightly
wound

* Then
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e Obtain local relations




Dispersion relation WKB waves
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Group velocity

* Tightly wound leading wave packet moves
towards CR

* |k| decreases as it goes (unwinds)

e At edge of forbidden region mathematically

Ve oup FEVErSEs as it transfers to long branch

e Actually WKB approx. breaks down and it’s
“swing amplified” to more powerful short
trailing wave

* Short trailing wave moves away from CR
towards Lindblad resonance

* |k| -> infty as resonance approached

* Near LR wave resonantly absorbed (Landau
damped)
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SwWi Ng am pllfler (Julian & Toomre 1966)

* Near CR waves cannot be handled by WKB because not tightly wound
e Studied with “shearing sheet”
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* P,=const controls mean value of x, which oscillates harmonically
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Balecu-Lenard for discs
Fouvry et al 2015 A&A 584, A129

* Need to compute E,(J,J,p) using basis functions that can represent
both tightly wound & loosely wound disturbances

* Considered only strictly planar discs — currently technically too
difficult to treat the 3d case



Model disc

* Assume unperturbed @ = v,? In(R)
* generates constant circular speed v,

* ADF fy=CJ % exp(-E/c?) with q = v°/0*-1 exactly
generates the required surface density

e But taper this DF at small R (gravity of the bulge)
and at large R (gravity of the dark halo)

* Also in the middle use only £ times the full DF
because the dark halo contributes significant
gravity at all R
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Implementation

Choose a system of orthogonal potential-density pairs
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@' a polynomial and p'. a polynomial times half power of 1 - r?/r,?
Compute their form in AA coordinates
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Compute RER

Ena (D) = 0aa

Hence compute E_



Compute D, and D,

 Costly because for each (n,J) have to find resonant (n’,J’) — they lie
along a line in J space on which n’O’ is constant

* Number of vectors n’ for which resonance is possible increases
rapidly with |n]
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ho(N) = | dJ ([F~(Fo)T?).
iy (N) = zf:ﬂ (IF~(F] F')

1, (N) = 2 f dJ ([F'|+[F—(Fo)| F")



Comparison with N bodies
* Compute h(t) = fd2J [f(J,t) — f(J,0)]?
Fit to quadratic in t: h(t) = hy + h,t + h,t%/2
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Explore dependence on N and &

h(¢=0.6)/h(¢=0.5) = 29(NB) or 42(BL)

N-body noise >1000 times as loud as Spitzer-
Chandrasekhar predicted because particles dressed
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“Debye sphere” of a mass in a disc
Julian & Toomre 1966 ApJ 146 810
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Consequences of resonant heating
(Sellwood & Carlberg 2014 ApJ 785, 137)

Initial conditions generate leading wave, amplified and absorbed at its LR (what Fouvry et
al compute)

Later noise generates an amplified trailing wave that approaches its LR, which lies inside
ILR of first wave

The feature in the DF generated by resonant absorption of the first wave is too narrow
for the WKBJ approx to hold

So feature reflects back to CR some of the second wave
There the reflected portion re-amplified
Eventually all wave E absorbed at LR

So the feature generated in DF at LR of 2"d wave stronger than the feature at ILR of first
wave

Second feature is an even more effectively silvered mirror!
Soon the disc is an effective laser in which favoured modes grow exponentially
The Poisson noise has made the disc unstable at a collisionless level
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summary

e Evolution of mean-field model unambiguously driven by randomy excited
global oscillations

* Poisson noise is important even with 108 particles
* Because in a cool disc noise is strongly swing amplified

 WKB approx. is useful near LRs but seriously misleading near CR
* Real excitations are concentrated in WKB-forbidden region around CR

* Landau damping dumps E of excitations very locally
e Leads to WKB breakdown even near LRs so waves partially reflected

* Noise manoeuvres disc into state that’s unstable at collisionless level

* The BL egn is hard to implement
e its value is as guide to physics of relaxation



