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1 Orbital elements

e Solar system very old: 5,000,000,000 rotations of earth around Sun; 50,000,000,000

rotations of Moon around Earth.

e Planetary trajectories almost solved by Kepler in 17*" century; interest now focuses
on slow evolution of orbits from one Kepler ellipse to another.

o Kepler ellipses valid so long as can consider just two bodies: Earth and Sun, or
Moon and Earth. Slow evolution driven by third, fourth,..., bodies. Evolution slow
because 2-body approx good: e.g. Mo /Mj; = 1047, aj/ap = 5.2, so force exerted by
Jupiter on Earth smaller by factor 2 10* than that exerted by Sun.

e The problem perfectly suited to perturbation theory, with small parameter M ;/ Mg
etc:

Step 1: Solve unperturbed (Kepler) problem.

Step 2: Describe general motion in terms of instantaneous Kepler orbit. ‘Orbital
elements’ specify the current Kepler orbit (‘osculating ellipse’).

Step 3: Obtain and solve equations of motion of orbital elements.

Choose a plane, the fundamental plane, fixed in inertial space (current ecliptic)
and a fundamental direction (the Earth-Sun line at the current vernal equinox).
Then any Kepler orbit about the Sun is confined to a plane inclined with respect
to this fundamental plane at an angle 7 called the inclination. The orbital and
fundamental planes intersect in a line called the line of nodes. The fundamental
line and the line of nodes make an angle € called the argument of the ascending
node. The orbit is an ellipse of semi-major axis « = GM/2|E| and eccentricity
e=/1—0/a®> =/1— L?/GMa. The line of nodes and the Sun-pericentre line make
an angle w, the argument of perihelion. These 5 orbital elements define a Kepler

ellipse.

The orbital elements of satellites are defined analogously by substituting a planet
for the Sun.

Exercise (1):
By considering a Kepler orbit in plane polar coordinates (r, ¢), show that for such
an orbit r~! = C'cos(¢ — ¢g) + GM/L*. Hence show that « = GM/2|E| and
e=+/1—L?/GMa.
Since the solar system isn’t a two-body system, the orbital elements of a planet
or satellite are all (slowly-varying) functions of time. An elegant derivation of the
equations that govern their motion requires a review of Hamiltonian mechanics.
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2 Review of Hamiltonian Mechanics

2.1 Poisson brackets and symplectic structure

Newton’s laws are valid only in inertial Cartesian coordinates, (x,v). In terms of these
coordinates one defines the Poisson bracket [A, B] of any two functions A(x,v),
B(x,v) on phase space by

0A 0B 0A 0B
ABl=— ——— —. 2.1
4, B] ox Ov  Ov Ox (2.1)
It is straightforward to verify that the coordinates (x,v) satisfy the canonical com-
mutation relations

[vi,vj] = [zi,2;] =0 and  [zi,v,] = 8ij. (2:2)

If we write (z; = @4, z34; = v; @ = 1,2,3), and define the symplectic matrix ¢

by
_ +1 fora=p4F3,1<a,3<6;
Cap = [20:25] = {0 otherwise,

(3a)

we have
6

J0A OB
4B = § et 8 2.3h
[4, B] a%;l 5 020 025 (2.3b)
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Any set of 6 phase-space coordinates {Z,, a = 1,...,6} is called a set of canonical
coordinates if [Z,, Z3] = cap. Let {Z,} be such a set; then with equation (3b) and
the chain rule we have

6
24 0B 07, 92,\ 0A OB
I o TR M OO e L
oz,ﬁ 1 KA aﬁ (2.4)
0A OB 0A OB
= Z[ZmZA =237 9z,
KA

aZ YA 07, 07y

Thus the derivatives involved in the definition (2.1) of the Poisson bracket can be
taken with respect to any set of canonical coordinates, just as the vector formula
V-a=> (0a;/0x;) is valid in any Cartesian coordinate system. It is conventional to
denote the first 3 coordinates W; by ¢; and the last 3 by p; = Ws4,;.

The Hamiltonian is just the particle’s energy written as a function of the phase-
space variables. For Kepler motion it is

. GM

v —

HK(Xv V) =

: . (2.5)

Hamilton’s equation express the rate of change of (x,v) in terms of gradients of H:

OH OH
v 8-v,< v (9;1}, ( 6)
Hamilton’s eqns may be written
;= z;, H) 5 v = [vi, H]. (2.7)

The rate of change of an arbitrary canonical coordinate Z, along an orbit is

6

0Z, .
=) el (2.8)

where, as usual, z = (x,v). With Hamilton’s equations (2.7) and equation (2.4) this
becomes

[ H].

Thus Hamilton’s equations (2.7) are valid in any canonical coordinate system.

325 OH 0Z, OH
[Zﬁ’ Z azﬁ "0z, 025 ;075%% (2.9)

A neat way of making canonical transformations is to use a generating function.
For example, suppose you have a function S(P, q) of some new variables P;, i = 1,2,3
and the ‘coordinates’ ¢; of a canonical system such that the equation

a8

P= g (2.10a)
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can be interpreted as defining P(p,q). Then a straightforward calculation (see Ap-
pendix I) shows that the coordinates (P, Q) are canonical, where

_os
_ s

That is, [Q;,Q;] = 0, [Q:, P;] = 6ij, [Pi,Pj] = 0. The transformation (p,q) —
(P, Q) is called a canonical transformation and S the generating function of the
transformation.

Q (2.10D)

3 Hamilton-Jacobi Equation

A constant of motion is a function I(q,p) on phase space which takes the same
value at all points on an orbit:

dI oI .

8

Suppose we could find 3 constants of motion Iy, I3, I3. And suppose it were possible to
find a system of canonical coordinates (J, w) such that J; = I; etc. Then the equations
of motion for the .J’s would be trivial,

0=J; =[Ji, H]
_0H (3.2)
Oow;’

and would demonstrate that H(J) would be independent of the w’s. This last obser-
vation would allow us to solve the equations of motion for the w’s: we would have

_0H
~

w; =w;i(J), aconstant = w;(t) = w;(0)+ wit. (3.3)
So everything would lie at our feet if we could find 3 constants of the motion and
could embed these as the ‘momenta’ of a system of canonical coordinates.! The magic
coordinates (J, w) are called action-angle coordinates, the J’s being the actions and
the w’s the angles. If the orbit is bound, the Cartesian coordinates x; cannot increase
without limit as the w; do. From this we infer that the x; are periodic functions of the
w;. In other words if we scale the w; correctly, we can expand x in a Fourier series

x(w,J) =) Xu(J)e™, (3.4)
where the sum is over all vectors n with integer components, and the w; have been

scaled so that x returns to its original value after w; has increased by 27. The 3-surface

L Notice that to be able to embed the .J’s as a set of momenta, we require [.J;, Jj] = 0; functions

satisfying this condition are said to be ‘in involution’.
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of fixed J and varying w constitutes a 3-torus. The best set of labels .J; for this torus
are the Poincaré invariants

(3.5)

where the path ~; is that followed when w; is varied from 0 to 27 while holding
everything else constant. (J! can be thought of as 1/27 times the area of torus’s 7*!
cross-section—in 1-d the (J,w) system constitutes polar coordinates with %-rQ used

as the radial variable.) Actually, J] = J;. To see this, let S(J,x) be the generating

(2
function of the transformation from Cartesian to action-angle coordinates. Then

R (36)
> 1 [ 8s
szgf a—-dq
v 94 (3.7)
A8
T 2r

But we also have (See Appendix II)

AS:f J.-dw = 27J;.
~

)

We can use S(J,q) to eliminate p = 95/0q from H, expressing H as a function
of (J,q):
aS
59
By moving on an orbit we can vary the ¢; pretty much at will while holding constant
the J;. As we vary the ¢; in this way H must remain constant at the energy E of the
orbit in question. This suggests that we investigate the partial differential equation

H(I,q) = H< (3.8)

aS

H(a—, q> = F, (Hamilton-Jacobi equation). (3.9)
q

If we can solve this equation, we identify the arbitrary constants on which the solution

S(q) depends with functions of the .J;.

Exercise (2):
Show that for a harmonic oscillator of frequency w the Hamilton-Jacobi equation
reads

<g>2 4+ m2w?2? = 2mE.
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Identify a new momentum P which allows S to be written

S(P,x) =(6+ %sin 20)P where 6(P,z)= arcsin <1 / 7;; >
Hence show that the action-angle coordinates of this system may be taken to be

2
2w@+m ),

Q = arctan(mwa/p).

3.1 Delaunay variables

The H-J eqn for Kepler motion is

GM
E=1vs?—-"=
.

=1{(5) + (03) + Gmaze) |-

We write S(x) = Sy(r)+ Ss(8) + Ss(¢) and solve (3.10) by separation of variables. We
find

(3.10)

2
constant = L? = (%) = pi (3.11a)

L 955\’
L’ — —2 = = ps 11b
sin” 6 ( 06 > Pe (3 )

GM L [0S\’
- <&>:ﬁ. (3.11c)

Each of these 3 eqns is a relation of the form p;(¢;). The orbital torus is the 3-surface
generated by varying the phase-space coordinates through all values compatible with
these eqns. Since ¢ doesn’t occur in (3.11a), it can take any value while py is restricted
to the single value L.. Eqns (3.11b) and (3.11c) restrict § and r to ranges and allow

non-zero variation of pgy and p,. The orbit’s inclination is just 1 = = — #,i, and from

2
eq (3.11b) we have that 6yin = L./L, so

i = arccos(L./L).
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The actions are

Jo =5 § pelé)do = L.
Jo = i f pe(8)d6

2
:_%\/QE 2GM L L

v

The last equation can be written

=L-L. (3.12)

G2M2
E=H—=— , 3.13
2(Jr 4+ Jo + Jp)? ( )
from which it follows that w, = wy = wy = —2H/(J, + Jo + J4). It is this unusual
double degeneracy that causes all Kepler orbits to close, and gives rise to specially

complex behaviour when we perturb Hp .

Three of the 5 constants of motion of a Kepler orbit may be taken to be its three
actions. The other two are constant by virtue of the system’s degeneracy: this makes
two differences in angles constant, for example w; = wg — wy and wy = wp — w,. It
is useful to make a canonical transformation to a set which includes these new angles.
The generating function of this transformation is

= (wy —wg)J1 + (wg — wy)Jy + w,J5. (3.14)

Differentiating S’ w.r.t. the old angles we discover the connection between the new and
old actions:

Jo =T
Jg=Jy— ] = J2:J9+J¢:L
Jr=Js— Jo Js =T+ Jo+ Jy.
Replacing the old actions by the new in our formulae, we have
G* M? GM
H=— 2J2 = — = J3 GMa7

/ Yy (3.15)
GM 37

1 = arccos(Jy/.J2).

It remains only to relate wq and w2 to Q and w (which they actually equal). We have

w; = (05/0J;). Now replacing E, L and L. in our expressions for 95,;/0¢ etc we find

2 2 2 2
Jldqﬁ /1/J2 J d9+/\/ G M G J2 dr. (3.16)
T 7“
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(We take the negative square root in Sy because as planet passes through the ascending
node, 6 is decreasing and so pg < 0.) Differentiating we get

a8 61 / dé
W] = —— =
a9y sin 9\/sin2 fsec?i—1 (3.17a)

:qﬁ—u,

where
sinu = cot 7 cot 6. (3.17b)
A figure demonstrates that the new variable u is actually ¢ — 2 and thus that w; = :
A z
6 1
cos6
>y
sinf
Q 1
1cosH cot i

Exercise (3):
By differentiating (3.16) show that ws = G*M?t/.J3. Obtain this result by another
route.

Exercise (4):
Show that the integrals obtained by differentiating (3.16) w.r.t. .J5 evaluate to
arcsin(cos §/sin) and ¢, where ¢ is the angle in the orbital plane between the
direction of pericentre and the position of the planet. Hence conclude that wy, = w,
the argument of perihelion.

The variables (w;, J;) are called Delaunay variables. Let the true Hamiltonian of
a planet be written H = Hg + eHy, where Hp is the Kepler Hamiltonian defining the
Delaunay variables and € < 1, then the equations of motion of the Delaunay variables
are

. OH . OH . OH
J = —e ! i Jo = —e€ ! i J3 = —e€ !
3w1 6w2 8w3 (3 18)
" _€3H1 o _€3H1 o __QHK —I—eaﬂl ’
Yan P Tan, T g EYA

Thus the rates of change of five of these variables are of order €, and to zeroth-order,
the sixth increases linearly in time.
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4 The disturbing function

The only snag with this elegant scheme is the tedium of expressing H; as a function of
Delaunay variables. Since the Newtonian gravitational force is not velocity-dependent,
H, is a function of the planet’s spatial coordinates. Thus it is a function on three-
dimensional real space. Unfortunately, Delaunay variables are coordinates for six-
dimensional phase space, so we have to treat H; as a function in this bigger space.
Since x is a periodic function of w, Hy can be expanded in a Fourier series:

Hy(x(3,wit)) =Y hn(J5t)e™™, (4.1)

where n runs over vectors with integer components.

Let’s see how this works out in a simple case. Consider the disturbance of an
asteroid m, by Jupiter. The eqns of motion of the three bodies in the problem are

.. Gmgym Gmgymy,
R "|3 (x5 —Xs) + I, |3( 0« — Xs) (4.2a)
.. Gmgsmy Gmamj
= -7 s — (X4 — 4.2b
m X |XJ—X5|3(XJ Xs) + I%s —xJ|3(X X7) ( )
. Gmgymy, Gmam
MagXqg = —m(xa - Xs) — m(xa — Xj). (4:2C)

We take suitable multiples of (4.2a) from (4.2b) and (4.2¢) to obtain eqns of motion
of the heliocentric vectors r, = x, — X, etc:

. G(m, Gm, Gm ym,
my = — (m —|—3mJ)erJ Lmjg(ra ) - L‘;mra? (4.3a))
Ty |I'a - I'j| Ta
. G S a a G a G a
mafs = - GMst Ma)a - Gmamny Ly Gamny g
T Ira — 1y Ty

Eqn (4.3b) can be written

_— 0 Mg+ My my | IR
Fo= o [G(— e tmy )} (4.4)

Exercise (5):

Generalize (4.4) to the case of n planets.

The left side of (4.4) plus the first term on the right are the eqn of motion for
Kepler motion around a Sun fixed at the origin. The other two terms in the potential on
the right can be considered to constitute a perturbing potential. So in the Hamiltonian
formulation of this problem the zeroth-order Hamiltonian is Hx = —r 2 _G(ms+ma)/ra
and the perturbing Hamiltonian is

1 ry-YJ
H = -G ( - ) 45
! I v, — 1] r3 (4.5)

Minus H; is called the disturbing function.
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5 Perturbation Theory

Consider first the simple case in which both Jupiter and the asteroid are on circular
orbits in the ecliptic. Then

G
H=-—"

. <(1 + a? = 2acos )% — acos Lp), (5.1)

where o = a,/ay and ¢ is the angle between r, and r;. The radical in (5.1) is often
expanded in a Fourier series to give

Gmy( N~ 1(m
H = — ( 1p(m — ) 5.2
1 e Z 501 o COSTNY — a COS P (5.2)

m=—o0

The functions b(l /2)(oz) are known as Laplace coefficients and are tabulated, e.g., in

Brouwer & Clements.

wy = § is redundant for orbits confined to the ecliptic and may be set to zero.
Then ¢ = wy + w3 — wh — wj, where the primes denote Jupiter’s coordinates. The
natural thing to do now is to solve for the evolution of the unprimed coordinates with
the primed coordinates replaced by their unperturbed values, w), = constant, w} = v st,
where v = 27 /T is Jupiter’s angular frequency. For example,

Gmy O

Jo =
2 ay 3w2

<Z 61/2 cos m(w2 + w3 — I/Jt)> — acos(wy + w3 — I/Jt)> (5.3)

There is clearly no difficulty integrating these coupled equations. The solutions will
show the .J; to wiggle around without going anywhere much.

The problem becomes considerably more interesting and complex when we allow
for non-zero eccentricity. Heliocentric distance r is related to w3 by

r =a(l —ecosn) where the eccentric anomaly 7 solves 7 —esinn = ws. (5.4)

Using this in (4.5)

G
H =— mj{ [(1—¢"cosn')? +a*(1 —ecosn)?
" (5.5)
_ 1— - '
—2a(1 — €' cosn’)(1 — ecosn) cos | 12 _ (Olé(_ - i;gigl cos Lp}.

Now imagine replacing ¢ with wq + ws — v st, substituting from (5.4) for n and n' in
terms of w3 and vst, and expanding the right side in a Fourier series in ws, w3 and t.
The products of circular functions will clearly generate all sorts of sum and difference
frequencies, so Hy will be of the form

Gmy .
H — — hn ! 1(n11/Jt—|—n2w2—|—n3w3). 5.6
1 a; §n (67 € )6 ( )
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The eqns of motion of .J5 and ws are now

J'_2 _ GmJ Zithn(e7 e/)ei(nlth+n2w2—|—n3w3)
agy
" 5.7
ey — _ij Ohn Je i(nivyt+nows+nzws) ( )
’ ay <= Oe 0 '

The n; are expected to range over all positive and negative integers, and in the un-
perturbed motion w9 is constant and w3 = v,t + ¢¢, where ¢ is the asteroid’s phase
with respect to Jupiter. So for an asteroid with v, = 3v; the right side of (5.7) will
contain ‘long-period terms’ such as those with n of the form n = (3,ny, —1)—that is,
it will contain terms in which the exponent is constant in the unperturbed case. These
terms cause disaster when we integrate up (5.7) with the right side evaluated along
the unperturbed orbit:

!

J2 _ GmJ Z n2hn(676 ) eit(nluJ—anl/a)ei(n2w2+n3¢0) _I_ COIlStaIlt. (5.8)
ag nivy + navq

The local spot of bother caused by the near vanishing of some of the denominators

nivy + nav, is called the ‘small divisor problem’. Despite the efforts of the greatest

mathematicians up to and including H. Poincaré, it was only mastered, and then but

partially, in the 1950-60s by Kolmogorov, Arnold & Moser (the ‘KAM’ theorem).

5.1 Pendulum equations

The physical origin of the small denominator problem is that the forces described
by long-period terms act in one sense for long enough to cause the orbit to deviate
significantly from its unperturbed form. So these terms which cause grief are actually
the interesting terms. The basic idea of celestial mechanics is to neglect the short
period terms on the grounds that they average out to zero, and to concentrate on the
long-period terms.

Suppose we are interested in an asteroid along whose orbit Nyvj; 4+ N3, ~ 0. To
keep things simple let’s set Jo = wz = 0 and concentrate on the evolution of (J3,ws).
We define a new variable

77/) = Nll/J't + N3’Ll)3 (59)
and discard all terms in the sum (5.6) for Hy except the zero-frequency term and the
terms (at positive and negative frequency) that comprise cos()):?

Hy ~ hg + hyes cos ). (5.10)
This discarding of the short-period terms is called ‘averaging the Hamiltonian’. If we

are to use 1 as a coordinate, we need to know what its conjugate momentum .Jy is.
The generating function for the transformation (ws, Js) < (¥, Jy ) is

a8

Y = a7, Nyv gt + Naws,
S(ws, Jy) = (Nvst + Nyws)Jy, = v (5.11)
J= 25 g
3 Dws 3Jap-

2 We can arrange for the phase of the cosine to be zero by choosing our origin of time intelligently.
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Since the generating function contains explicit ¢-dependence in the new variables, the
Hamiltonian (5.10) is

as
Hi(Jy, ) = Hi(Js,ws,t) + S+ (5.12)

= ho + N1v1Jy + hres cos .

Neither the unperturbed Hamiltonian Hy(.J3) = Hy(N3.Jy) nor the new Hy contains
explicit t-dependence. So the motion is confined to surfaces of constant

H(Jyp,) = Ho+ ho + NivgJy + hres cos )
= a(Jy) — B(Jy) cos .

We assume that § > 0—if it isn’t we define ¢’ = ¢ + 7 and then ' = —3 will be

positive. Note that 3/|a| ~ m ja,/msa is small.

(5.13)

For some value Jy of Jy near the asteroid’s action the unperturbed orbit is per-
fectly resonant, i.e. 0 = z/) = 0H,/0Jy = da/dJy. So Taylor expanding « in powers of
A = Jy — Jo we have

H(AY)=A+ %BA2 — [ cos, (5.14)

where A and B are constants. Since /3 is small, 5(.Jy) ~ 3(Jo) to a sufficient approxi-
mation and the eqns of motion are approximately

v =BA ~ = —BBsiny (5.15)
A:—ﬂsinz/) B . .

This is the eqn of motion of a pendulum. Two qualitatively different motions are
possible: either the pendulum circulates in a constant sense because it has enough
energy to carry it over top dead centre, or it lacks this critical energy and swings to
and fro. Quantitatively it circulates when

K.E. at bottom = %1/}2 > 2Bf3 = P.E. difference between top and bottom. (5.16)

When ) is oscillating around 1» = 0, one says that the asteroid is librating in ws;.
There are asteroids trapped in this way for Ny /Ny = 1 (Trojan asteroids) and 3/2
(Hilda asteroids). Other important resonances are marked by Kirkwood gaps.

Exercise (6):
Show that the Hamiltonian of a pendulum of length / making angle ¢ with the

2
2= — glcosip. Plot curves of constant H is phase space.

Now let’s unfreeze (.J3,w2). We again discard from the eqns of motion (5.7) all
but the slowest-varying terms. Since wsy is constant along an unperturbed orbit, in
these terms ny = Ny and n3 = N3 as above. Of the remaining terms, that with ny =0
is the most important because this causes wy to drift steadily. In fact, ws increases
as Jupiter depresses the frequency of the asteroid’s radial oscillations below that of its

vertical 1s H, =
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rotation about the Sun, causing perihelion to precess forward. That is, to first-order
woy > 0.

Only terms with ny # 0 contribute to the eqn for J,. These have constant expo-
nents when

nivy + nows + nzv, = 0, (5.17)

a condition satisfied for slightly different actions than those satisfying niv;+nsv, = 0.
The method used above to handle the case of fixed (J2, w2 ) can be used here too: we
now define

77Z) = Nll/J't—|—N2w2 —|—N3’Ll)a (518)

and transform to angles which include . On throwing away rapidly varying terms we
find that ¢ again satisfies a pendulum eqn.

Notice that the resonance condition (5.17) can be satisfied for any value of ns
because wy is small. However, the h,, are very small for large |ny| unless e is large.

The analysis of the motion of (Jy,w;) proceeds similarly to that reviewed for
(J2,w2). However, the first-order contribution to wq is negative; Jupiter causes the
line of nodes to precess backwards since it raises the vertical frequency above the
circular frequency. Hence vertical resonance occurs on rather different orbits from

which satisfy (5.17).

Each stable resonant orbit is surrounded by a family of trapped librating orbits—
the stable orbit is that on which ¥» = 0 and the librating orbits are those on which the
pendulum swings to and fro. Chaos ensues when two or more families of neighbouring
resonances claim the alegance of the same orbits, that is, when resonances ‘overlap’.
Whether or not resonance overlap occurs depends on (i) the magnitude of the hy,
(which determine the width of the resonances), and (ii) the nearness of the renonaces.

The ring systems of Saturn and Uranus are profoundly affected by the flattenings
of the planets, which depress wy below zero and raise wo above zero.

Exercise (7):
Model the effect of the planet’s flattening by adding to the regular monopole
potential —GM/r a quadrupole term a«GM (32% —r?)/r>. Verify these statements
about w; and wy by showing that the radial and vertical epicycle frequencies are

given by
2 M 2 M
K;,%:<1—30‘—2>G : m§:<1+90‘—2>G .
T T

3 3

Around Saturn the resonances are sufficiently well separated for order to be the rule.
Around Uranus many important resonances overlap and chaos is widespread.



