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1 Dirac notation

1.1 Quantum amplitudes

According to quantum mechanics the future is to an extent unpredictable and the best we can do is to
calculate probabilities for the outcomes of measurements. This unpredictability isn’t peculiar to QM —
the existence of classical chaos ensures that something similar is true in classical physics and real life.
What is amazing is how the probability P of any event E is calculated in QM: p = |A|?>, where the
complex number A is the amplitude for the event E. While probabilities are widely used throughout the
natural and social sciences, as far as I know, probability amplitudes are unique to quantum mechanics
and nobody has the faintest idea why they arise.

Imagine that you’re investigating some physical system: some particles in an ion trap, a drop of
liquid He, the e.m. field in a resonant cavity. What do you know about the state of this system? You
have two types of knowledge: (1) a specification of the physical nature of the system (e.g., size & shape of
the resonant cavity), and (2) information about the current dynamical state of the system. Information
of type (1) goes to define the system’s Hamiltonian H. Information of type (2) is more subtle. It
must consist of predictions for the outcomes of measurements you could make on the system. Since
these outcomes are inherently uncertain, your information must relate to the probabilities of different
outcomes, and will ideally consist of values of the relevant probability amplitudes. For example, your
knowledge might consist of amplitudes for the various possible outcomes of a measurement of energy,
or of a measurement of momentum.

Given the amplitudes for a certain set of events, it is often possible to calculate amplitudes for other
events. For example, if I know the amplitudes for finding the spin of an electron to be either parallel or
antiparallel to the z axis, I can calculate from these two complex numbers the amplitude for the spin to
be parallel to any other axis. On the other hand, if I know only the amplitude for the spin to be parallel
to the z axis, I can’t calculate the amplitude to be parallel to any other axis. Generalizing from this
example, we have the concept of a complete set of amplitudes: the set contains enough information
to enable one to calculate amplitudes for the outcome of any measurement whatsoever. Hence, such a
set gives a complete specification of the physical state of the system. A complete set of amplitudes is
generally understood to be a minimal set in the sense that none of the amplitudes can be calculated
from the others.

Dirac introduced the symbol |¢), pronounced ‘ket psi’, to denote a complete set of amplitudes for
the system. If the system consists of a spin-zero particle trapped in a potential well, |0} could consist
of the amplitudes a,, that the energy is E,, (n = 1,2,...) the nth eigenvalue of the Hamiltonian H, or it
might consist of the amplitudes 1(z) that the particle is found at z (—oco < & < 00), or it might consist
of the amplitudes t(p) that the momentum is measured to be p (—oco < p < 0c). Using the abstract
symbol |¢) enables us to think about the system without committing ourselves to what complete set
of amplitudes we are going to use. Moreover, the symbol |¢)) encapsulates the crucial concept of a
quantum state, which is independent of the particular set of amplitudes that we choose to quantify
it with in the same way that a geometrical point is independent of the coordinates (z,v, z), (r,6,$) or
whatever by which we refer to it. The idea of a quantum state is fundamental to several branches of
physics.

The interference phenomena that are the hallmark of quantum mechanics occur because amplitudes
must sometimes be added: if an outcome can be achieved in two different ways and we do not monitor
the way in which it is achieved, we add the amplitudes associated with each way to get the overall
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amplitude for the outcome. The classical example is two-slit diffraction: the amplitude for a particle to
get from r; on one side of the screen to ro on the other is A; + Ao, where A; is the amplitude to go via
the ith slit. In view of this additivity, we write

[Y3) = [1) + |4h2) (1.1)

to mean that every amplitude in the complete set |13) is the sum of the corresponding amplitudes in
the complete sets |[¢)1) and |12). Since amplitudes are complex numbers, for any complex number a we
can define

[¥') = aly) (1.2)

to mean that every amplitude in the set |[¢)') is a times the corresponding amplitude in |¢)).

1.2 Vector spaces and their adjoints

Mathematicians say that objects that you can add and multiply by complex numbers inhabit a vector
space. We now take some time to review the general theory of vector spaces. The ground we cover is
as relevant to special relativity as it is to quantum mechanics.

For any vector space V' it is natural to choose a set of basis vectors, that is, a set of vectors |i)
that is large enough for it to be possible to express any given vector i) as a linear combination of the

set’s members:
)y =" aili). (1.3)

The set should be minimal in the sense that none of its members can be expressed as a linear combination
of the remaining ones.

An important role is played by complex-valued linear functions on V. Let (f| (pronounced ‘bra f’)
be such a function, i.e., an object such that for and any |¢), (f|¢) is a complex number and for any
complex numbers «, 3

(fI(ely) + Bl)) = ol f1¥) + B{f]9)- (1.4)

Then these functions can be added and multiplied by complex numbers because for given (f| and (g|
we can define (h| = (f] + (g| and (p| = a(f| by

(hlY) = (fl¥) +{glv) 5 (plY) = a(fl). (1.5)

Since the functions can be added and multiplied by complex numbers, they themselves form a vector
space V', the adjoint space of V.

The dimension of a vector space is the number of vectors required to make up a basis for the
space. We now show that V and V' have the same dimension. Let |i), (¢ = 1, N) be a basis for V. Then
a linear function (f| on V is fully defined once we have given the N numbers (f|i) — to see that this is
true, we use (1.3) and the linearity of (f]| to calculate (f|¢)) for an arbitrary vector |):

N
(1) = Y il (1.6

This result implies that we can define N functions (j| (j = 1, N) through the equations
(jli) = dij, (L.7)

where §;; is as usual 1 if ¢ = j and zero otherwise. Now consider the following linear combination of

these bras:
N

(FI =Y (1l (1.8)

Jj=1
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It is trivial to check that for any i we have (F'|i) = (f|i), and from this it follows that (F'| = {f| because
we have already agreed that a bra is fully specified by the values it takes on the basis vectors. Since we
have now shown that any bra can be expressed as a linear combination of the N bras of (1.7), and the
latter are manifestly linear independent, it follows that the dimensionality of V' is N, the dimensionality
of V.

In summary, we have established that with every N-dimensional vector space V there is associated
the N-dimensional adjoint space of linear functions on V. Moreover, we have shown that once we have
chosen a basis for V, there is an associated basis for V.

1.2.1 Changes of basis From our experience of 3-dimensional space we know that it is sometimes expe-
dient to swap the basis vectors that we employ for others that are better suited to the problem in hand
(i.e., rotate our coordinates). So let’s investigate what happens if we make a unitary transformation to
a new basis for V. That is, we define new basis vectors by

where the complex numbers U,,; satisfy the unitarity condition

> UnilUpi =bpm < U =UL (1.9b)

The bras associated with the kets |n') will be linear combinations of the old basis bras, so we write out
their defining equation in the form

Omn = (m'|n") <Z Bpili )(Z Un,-|j)> = ;BmiUm. (1.10)

Comparing this equation with (1.9b), we deduce that B,; = U ., i.e., that under (1.9) the basis bras

mi?
transform by the rule

| = 3 Uil (1.11)
Now let’s ask how the expansion coefficients a; of equation (1.3) transform under (1.9):

) = 3l = Y ') Za;Um|j>

1

(1.12)
= Z anUpi = Z [TS
where we have again used (1.9b). There is a corresponding rule for the transformation of bras:
Zb |_Zb’ n|_2b’ U
(1.13)

= bi:Zb; Ui = n:ZUnibi-
n i

These rules are such that the complex number (¢[¢)) comes out the same no matter which basis we use
for its evaluation:

(61) = (Zb )(Zam):z}biai
(pl) = <Zb’ ')(Zn:aun) Zb = UnibiUp,ja; = Zba

mij

(1.14)
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where the unitarity of U has again been used.!

Equations (1.9a) and (1.11) suggest that with any ket |1)) we associate a bra (i| by the rule
W)=Y aili) & (= ailil (1.15)
i i

In addition to being consistent with the rule for transforming basis vectors, this rule implies that
W) = ¥ ,]ail*> > 0 so that we can speak of (¥|¢) as the ‘length squared’ of |¢)). Notice that if
o =3, cili), then with (1.14) the rule (1.15) implies that

(Wlo) =D _ajei (1.16)

which we identify as the dot product of |¢) with |o).

1.3 Operators and observables

After this orgy of algebra, let’s get back to physics. QM asserts that with every possible measurement
there is associated a linear operator on V, i.e., a beast @) that turns kets into other kets, |¢p) = Q|¢), in
a linear way: Q >, a;/i) = Y, a;Q|i). The operator is claimed to be Hermitian in the sense that for any
two kets |1}, |¢), the complex numbers (1)|Q|¢) and (p|Q|¢) are complex conjugates of one another:

(¥[Qlo) = (¢lQ[¥))*  (Hermitian Q). (1.17)

By expanding the input and output kets in our chosen basis we discover that () is completely determined
by the array of numbers (matrix elements)

@i = 1IQ1)- (1.18)

In fact

lp) = Zbi|i> = Z%‘QU) = b= Z%‘(“QU) = ZQijaj- (1.19)

The matrix @Q;; is Hermitian: Q;; = @Q7;.

It would be natural to imagine that the act of measurement, which disturbs the system, changed
its amplitude set from [¢)) to |¢) = Q|v). This is not what QM asserts, however. Rather it asserts
that when we make the measurement, |¢)) ‘collapses’ into one of the eigenkets of @, i.e., a ket |¢;) that

satisfies the eigenvalue equation
Qlai) = aila), (1.20)

where ¢; is a number (which we can prove is real). In principle the normalization of an eigenvector is
arbitrary, but we always insist that they have unit length-square:

(gilgi) = 1. (1.21)

We may assume that the eigenvectors are mutually orthogonal, so that with (1.21) we have
(gilaj) = 6i;. (1.22)

QM asserts that if [1)) — |¢;), the measuring instrument shows the number ¢;, and just after the
measurement the state of our system is |g;). The amplitude that we measure ¢; is claimed to be

a; = (qi|), (1.23a)

L Multiplying (1.9) by Urtj and summing over n we find that ), Urtj UniUpi = U;”- which implies that )" Urtj Upi =

d;7, which is the relation required in (1.14).

ij>
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which is precisely the coefficient of |¢;) if we use the eigenvectors as a basis in which to expand |¢):

) = Z%‘Mi) (1.23b)

i

The condition that we measure some value for @ is that the resulting probabilities add up to one:
1= Pi=) lail* = @), (1.24)

so the ket that describes our system has to have unit length-squared.

The ket |g;) describes the state of the system in which it is certain that a measurement of ¢ will
yield the value ¢;. Hence, it is directly connected to the complete set of amplitudes (g;|g;), (j = 1, N).

Suppose we know the amplitudes a; = (g;|¢V) and we want to calculate the probability that a
measurement, of some quantity R will yield the value r,. Then we have to calculate the amplitude
(rul), where R|ryp) = ry|ryp). Multiplying (1.23b) by (ry,| we find

(ral®) = > (rulg){ailv) (1.25)

(3

Substituting a!, = (r,|v¥), a; = (g:|v) and U}, = (r,|q;) this becomes identical with (1.12).

Exercise (1):

Show that the matrix U}; = (r,|g;) is unitary.
Hence a unitary transformation in the space of kets corresponds to the process of calculating the ampli-
tudes for a new set of events given the amplitudes for some other complete set of events. This conclusion
is very remarkable because it implies that the amplitude for any event can be expressed as a linear com-
bination of some basic set of amplitudes; a priori it’s far from obvious that all functional relationships
between amplitudes are linear.

1.3.1 The identity operator and functions of operators Equations (1.23) imply that for any |¢)) we have

) =32, 1)@, so
Z lgi}{gi| = I, the identity operator. (1.26)

For any operator () we may write

Q= Z l9:)q:{a:] (1.27)

as we may verify by operating with each side on the expansion (1.23b) of an arbitrary ket |¢). If f(x)
is any function of the real variable z, we define the operator f(Q) by

Q) = Z g} £ (a:){(i]- (1.28)

If f is a polynomial or has a convergent Taylor series f(z) = ), fnz™, we can alternatively define
f(Q) =3, f»Q". It is straightforward to show that this less general definition of f(Q) is equivalent to
(1.28).

1.3.2 Hermitian adjoints The complex conjugate of (¢|1) is (¢|¢). But if @ is an operator, what is
the complex conjugate of the number (¢|Q|¥)? If @ is a Hermitian operator, the answer is (1)|Q|¢).
But if it is not Hermitian, there is an operator Q%, called the Hermitian adjoint of () such that for
any |¢), [¢)

@1QT6) = (41Q1))" (1.29)

In the special case in which |¢), |¢) are two members of a complete set of states, this equation becomes
a relation between the matrix elements of @ and Q:

Q= Q5 (1.30)
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i.e., the matrix elements of Q' are the transposed complex conjugates of those of Q). Let R be another
operator. What then is the Hermitian adjoint of the product QR? To find out we substitute QR for @
in (1.30):

(QR), = (QR);; =Y QRii =Y RLQL = (R'Q");. (1.31)
k k

Thus, to dagger a product we reverse the terms and dagger the individual operators. By induction it
is now easy to show that (ABC...Z)" = ZT...CTB' At If we agree that the Hermitian adjoint of a
complex number is its complex conjugate and that |4)! = (¥| and (|t = |¢), then we can consider
the basic rule (1.29) to be an application of the rule we have derived about reversing the order and
daggering the components of a product.

1.8.8 Commutators The commutator of two operators A, B is defined to be

[A,B] = AB — BA. (1.32)
Three invaluable rules are

[A+ B,C]=[A,C] +[B,C]
AB = BA+ [A, B] (1.33)
[AB,C] = [A,C]|B + A[B,C].

All three rules are trivial to prove by explicitly writing out the contents of [,]. With these rules it is
unnecessary subsequently ever to write out the contents of a commutator — thus eliminating the com-
monest source of error and tedium for beginners. Notice the similarity of the third rule to the standard

rule for differentiating a product:?> d(ab)/dc = (da/de)b + a(db/dc). The rule is easily generalized by
induction to the rule

[ABC'...,Z]=[A,Z|BC ...+ A[B, ZIC ...+ ABI[C, Z] ... (1.34)

1.4 The position representation

The x coordinate of a particle is associated with an operator . The set of numbers that are eigenvalues
of an operator is called the spectrum of the operator. The spectrum of Z consists of the real numbers
—o0 < z < 00. |x) is the state in which the particle is certainly at = and satisfies the eigenvalue equation
Z|z) = x|z). If the particle is in some state |¢), the amplitude to find the particle at x is the complex
number (z|t)). The functional dependence of this number on z is what’s called the wavefunction ¢ (z):

P(x) = (2|d).

Since the particle has to be somewhere, the sum of the probabilities |¢(z)
values of x are continuous rather than discrete, this implies

|> has to be unity. Since the

1= / de [(a)? = / da () {xl), (1.35)

which should be compared with the corresponding expression (1.24) for the case of discrete eigenvalues.
The generalization of (1.26) to the case of an operator such as & that has continuous eigenvalues is

/dx|x)(m| =1 (1.36)
Multiplying this by (z'| and |¢)) we have
@) = [ do @ lo)alu). (1.37)

2 This similarity arises because a commutator (like a Poisson bracket in classical mechanics) is intimately associated
with a ‘Lie derivative’ in differential geometry.
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Comparing this equation with the definition of the Dirac delta function

W) = / dz 6z — 7)) (1.38)

we see that
(x'|z) = §(x — 2'). (1.39)

This result makes good sense physically because (z'|z) is the amplitude to find the particle at =’ given
that it is known to be at x. Clearly this vanishes for 2’ # z and it has to be extremely large for 2’ = z
if it is to satisfy the normalization condition (1.35).

Pre- and post-multiplying (1.36) by (¢| and |¢)) we obtain the important formula
0l) = [ da (@) ali) = [ doo @) (1.40)

Many quantum-mechanical calculations are carried out using the numbers ¥(z) as the complete
set of amplitudes. Such calculations are said to be conducted in the position representation. In
this representation, the functional form () is to be identified with |¢)) and the complex number 9 (z)
with the amplitude (z|¢)). The operator & turns the function that evaluates to () into the one that
evaluates to z1(x); that is, it operates on functions by multiplying them by their argument.

In the position representation z-momentum, p, operates on wavefunctions by differentiation:
N

{lplv) = (pv)(z) = —ih (1.41)

We find the wavefunction u,(z) = (z|p) of a state of well defined momentum from the defining equation
of p)

)=o) > {elile) = A = pla) = puy (x) (1.42)

The solution of this differential equation is
uy(z) = AelP/m, (1.43)

The constant A may be determined as follows. By analogy with (1.39) we require (p'|p) = d(p — p').
When we use (1.36) to insert an identity operator into this expression, it becomes

5(p—p') = / dz (p'|)zlp) = | AP / dz 0 P)2/0 = 90| ARS(p — ), (1.44)

where we have taken the value of the integral from the theory of Fourier transforms. Thus |A|?> = h~!
and the correctly normalized wavefunction of a particle of momentum p is

up(z) = % eiPz/h, (1.45)

In the position representation the Hamiltonian for a particle acts by a combination of differentiation
and multiplication:

) = ()@ = (2 + V)0 = (— g 24w uie) (1.40)

2m 2m dz?



8 Chapter 2: Harmonic oscillators

1.5 The energy representation

|Ey) is the state in which a measurement of H certainly returns the value E,,. Its defining equation is
H|E,) = Ep|En), (1.47)

which is called the time-independent Schrédinger equation (TISE). H has a special status in
non-relativistic QM because it isn’t just something you can measure; it governs the time evolution of
the system through the time-dependent Schrédinger equation (TDSE):

L Ol)
ih=s" = HIv). (1.48)

Since physics is all about predicting what will happen, this is the fundamental equation of non-relativistic
QM. The ket of any system must satisfy this equation. By contrast the TISE (1.47) is satisfied only for
states of well-defined energy. These states evolve in time in an exceptionally simple way

9|En)

i
BT

=H|E,) = E,|E,) = |BE,,t)=]|E,,0e Et/ (1.49)

That is, the passage of time simply changes the phase of the ket at a rate E,, /h. Let’s use this result to
calculate the time evolution of an arbitrary state |1). In the energy representation the state is

[, t) = an(t)|En,t) (1.50)

Substituting this expansion into the TDSE (1.48) we find

ih% v <an|En) . anal;ﬁ) =" a,H|E,). (1.51)

n n

The right side cancels with the second term in the middle, so we have a,, = 0. Since the a,, are constant,
on eliminating |E,,t) between equations (1.49) and (1.50), we find that the evolution of |¢) is simply
given by

.ty = ane™ P B, 0). (1.52)

States of well-defined energy are unphysical and never occur in Nature because they are incapable
of changing in any way, and hence it is impossible to get a system into such a state. But they play an
extremely important role in QM because they provide the almost trivial solution (1.52) to the governing
equation (1.48).

1.6 Conserved quantities

Let @ be an operator that commutes with the Hamiltonian: [@, H] = 0. Then we may show that for
any state |¢) the expectation value of () is constant in time, or a ‘conserved quantity’:

i 2 IQI) = —(wIHI) + WIQHIY) = Q. H]l) = 0. (153

where we have used both the TDSE (1.48) and its Hermitian adjoint. Moreover @ also commutes with
H so (Y|(AQ)%|¢Y) = (|Q?v) — ({(4|Q|))? is also constant. If initially 1) is a state of well-defined
Q, i.e., [1) = |q;) for some i, then (1)|(AQ)?|¢)) = 0 at all times. Hence, if [Q, H] = 0, a state of well
defined () evolves into another such state, so the value of ) can be known precisely at all times. The
value ¢; is then said to be a good quantum number.
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2 Harmonic oscillators

Consideration of the mechanics of a harmonic oscillator provides a particularly convenient example
of how the energy representation works in practice. Harmonic oscillators are, moreover, of enormous
importance for physics because most of condensed-matter physics and quantum electrodynamics centre
on weakly perturbed harmonic oscillators and use the results we will derive. The Hamiltonian is

H= %{pQ + (mwz)?}. (2.1)

We introduce the dimensionless operator

mwax + ip

V2mhw

This operator isn’t Hermitian. Bearing in mind that z and p are Hermitian, we see that its adjoint is

A

(2.2a)

mwx — ip

Al = (2.2b)
2mhw
The commutator of A and AT is
1
[AT, Al = m[mwx — ip, mwz + ip]
! i 2.3
= 57 {m*w?[z, 7] + imw([z, p] — [p, 7]) + [P, p]} (2.3)
=1
The product AtA is
H
A= 2 -1
AT = o {(mwa)” + 2mwlz,pl + p*} = = — 5. (2.4)

We now multiply both sides of the defining relation of |E,) by Af:

E,AY\E,) = A'H|E,) = (HA" + [A", H))|E,)
= (HA' + ho[AT, AT A + 1)) |E,) = (HAT + hw AT[AT, A))|E,,) (2.5)
= (HA" — hwA"))|E,)

Hence
(En + hw) (AY|Ey)) = H(AY|E,)). (2.6)

Provided |b) = Af|E,,) has non-zero length-squared this shows that |b) is an eigenket of H with eigenvalue
E,, + hw. The length-square of |b) is

| A1 E,) |

= (Bn|AAYE,) = (E,|(H + 3hw)|E,) = E, + 1hw (2.7)

Now squeezing H between (E,| and |E,,) we find with (2.1) that

E, = (E,|H|E,) = (|plE)| + m2w?|2|EL)[F) > 0 (2.8)

1
2mw
Thus the energy eigenvalues are non-negative, so |AT|En) |2 > 0 and by repeated application of AT we
can construct an infinite series of eigenstates with energy E,, + khw for £k =0,1,....

Similarly, we can show that provided A|E,) has non-zero length-squared, it is an eigenket of H for
energy E, — hw. Since we know that all eigenvalues are non-negative, for some energy Ey, A|Ey) must
vanish. Equating to zero the length-squared of this vector we obtain an equation for Ey:

0= |A|E)|’

— (Eo|(H — $hw)|Ey) = By — Lhw. (2.9)
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This completes the proof that the eigenvalues of H are hiw x (%, %, ey @)

Let |r) denote the state of energy 25t hw. In this notation the ground state is [0) and we obtain
its wavefunction by writing its defining equation, A|0) = 0, in the position representation. From (1.41)
and (2.2) this equation reads
1 0 )

——— | mwz + h— | (z|0) = 0. 2.10

o (e gy ) 0 210
This is a linear, first-order differential equation. Its integrating factor is exp(mwz?/2h), so the correctly
normalized wavefunction is
1 712/2112 h

where a=1/—-. (2.11)

(z]0) = W ) e

Notice that this solution is unique, so the ground state is non-degenerate. We obtain the wavefunctions
of excited states by applying powers of the differential operator A to (z]0). Equation (2.7) enables us
to find the normalization constant « in the equation |n + 1) = aAt|n); it implies that a®> = n + 1. the
generalization of equation (2.9) enables us to determine § in [n — 1) = SA|n), and we have finally
L_Alfn) 5 - 1) = —=Aln) (2.12)
n)y ; |n—1)=—=An). .
Vn+1 NG
The normalization constant is always the square root of the largest value of n appearing in the equation.
As a specific example

|n+ 1) =

1 8 \/5 Z 2 2
= —— — h— E ) Sa— /2a .
(/1) 2mhw <mwx héﬂf) tel0) (a?m)'/* a ¢

Notice that the product A A is Hermitian and (2.12) implies that A A|n) = n|n), so its eigenvalue tells
you the number of excitations the oscillator has. Hence N = A’ A is called the number operator.

(2.13)

Exercise (2):

Calculate (x|2).

Let’s use these results to find the mean-square displacement (n|z|n) when the oscillator’s in its nth
excited state and check that for large n our result agrees with classical physics as the correspondence
principle requires. Adding equations (2.2) we express z as a linear combination of A and Af

= %(AJFAT), (2.14)
(nlain) = 51— (nl(A + A1) (215)

When we multiply out the bracket on the right we need only retain the terms that involve equal numbers
of As and Afs. Thus
E,

(n|z?|n) = 5 (n|(AAT + AT A)|n) = (2n+1) = —=, (2.16)

mw 2mw
where we have used (2.3). Classically, the average value of z? is proportional to the average potential
energy, which is just half the total energy. Hence, averaging the Hamiltonian (2.1) we conclude that
classically 22 = E/(mw?), which agrees with the QM result for any value of n, not just large n as the

correspondence principle requires.

Exercise (3):
Use (2.14) to write out the first 16 entries of the matrix x,,,. Similarly calculate part of the matrix

pmn

Exercise (4):
Show that for any two N x N matrices A, B, trace[4, B] = 0. Comment on this result in the light
of the results of the last exercise and the canonical commutation relation [z, p] = ih.
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2.1 Motion in a magnetic field

The formalism we’ve just developed for a harmonic oscillator enables us to solve an important, and
you might have thought unconnected, problem: the motion of a particle of mass m and charge @ in a
uniform magnetic field of flux density B. The Hamiltonian is

1
H=—(p—QA)* 2.17
S (p— QA). (2.17)
where A is the vector potential. Let the z-axis be parallel to B and choose the gauge in which A =

+B(—y,z,0). Then H is

1 2
H = s—{(p. + $QBy)" + (p, — QB2)” + 12|
2 (2.18a)
= %hw(ﬂi + WZ) + %7

where w = @ B/m is the Larmor frequency and we have defined the dimensionless operators

p:+35QBy py — 5QBx

= = 2.18b
=TveBrn T JQBh (2180)
H has broken into two parts. The A2mmigfust the Hamiltonian of a free particle in one dimension
and isn’t interesting. The part H,, involving the ; is essentially the Hamiltonian of a harmonic oscillator
because 1
[, my] = ﬁ([yapy] - [pw,:v]) =1 (2.19)
The ladder operators are
A= (m, +im)
= —(m, +inm
V2 ’ A AT =i =1 2.20
; 1 = [ ) ]—l[ﬂ'yaﬂ'x]— ; ( )
Al = — (7, —im
and in terms of them H,, is
H,y=hw(ATA+ 3) (2.21)

It follows that the energy levels are £ = hw(%, %, ...). These discrete energy levels for a charged particle

in a uniform magnetic field are known as Landau levels.

To find the associated wavefunctions, we write the ground state’s defining equation in the position

representation
a . a 1 .
A0y =0 h(% + la—y) +1QB(z +iy) Ha]0) = 0. (2.22)
We transform to new coordinates u = x + iy, v = = — iy and find that (2.22) becomes
9{x|0)
2h al + $QBu(z|0) = 0. (2.23)
Solving this first-order linear o.d.e. we find
(]0) = g(u) e~ (@B/1Mu (2.24)

where g(u) is an arbitrary function. Choosing g = 1 the wavefunction of the ground state becomes?

(z]0) = o= (@B/4n)(z*+y?) (2.25)

A particle in this state is localized near the origin. Since the underlying physics [unlike the Hamiltonian
(2.18)] is invariant under displacements within the zy plane, there must be other ground-state kets that
are localized elsewhere. You can investigate this in the first problem set.

3 Aficiondos of functions of a complex variable may be nervous about the derivation of (2.25). They should reassure
themselves by checking that it really does solve (2.22).
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3 Angular momentum

If you rotate the axes you are using, the components that describe a fixed physical vector have to change.
In fact, if the axis around which we rotate our axes by an infinitesimal angle ¢ is parallel to the unit
vector n, then the components of any fixed vector B have to change such that

B - B' = B — §¢(n x B). (3.1)

B’ is proportional to B so we must be able to express B’ as a matrix R(n, ¢) times B. To find R we
write out (3.1) in components

0 -—n. ny B,
=RB=B-¢p| n. 0 —ng B, |. (3.2)
—Ny  Ng 0 B,

Next we make the linear dependence of B’ — B upon n manifest by rewriting (3.2) as

i)
RB = {I+ %(anz +ny,J, +n.J.)}B (3.3a)

where we have defined three Hermitian matrices J; by

0 0 O 0 0 1 0 -1 0
J,=h|0 0 —i ; Jy=h| 0 0 O ;o J.=h|1 0 O (3.3b)
0 i 0 -i 0 0 0 0 0

It is straightforward to show that these matrices satisfy the commutation relations

[3:,3;] =ih Z eijndi, (3.4)

where €5, is the object that changes sign if any two subscripts are interchanged and has €;,. = 1. The
physical content of these commutation relations is that when we rotate our axes by d¢; about the z
axis and then rotate by d¢o about the y axis the resulting vector B’ differs from the result B"” obtained
by performing the same rotations in the opposite order by an amount

102 i0¢ id¢y id¢po
B’—B”:{(I ! J><I+—Jm>—<1 J)(I J)}B
h h h h 35)

5¢15¢2[J 3,]B = 15¢15¢2J B
h? h

which is the change in B induced by a rotation through an angle d¢1d¢2 about the z axis.

Suppose now that we rotate our system by angle §¢ about n while continuing to use the same axes.
This will cause the components of vectors that rotate with the system to change by the same amount
as if we had kept our system fixed and rotated our axes by —d¢ about n. Thus the matrices J; describe
how vectors fixed to a system change when the system is rotated.

The discussion above is purely classical in nature, although cancelling factors of A have crept in
with the definition of the J;. Turning to QM, we must expect the amplitudes of a complete set to
change when we rotate the system because the state of the system is changed by the rotation. Rotation
through a small angle §¢ will leave states almost unchanged, so for infinitesimal angles the new ket will

be
) = R, 09)) = (1+ 5ns) o), (3.

where the S; are three operators to be determined. Since the difference between rotating the system by
d¢p1 about z and then d¢o about y must be the same as the change induced by a rotation by d¢1d¢2
about z, these operators, like the J;, must satisfy

[Si, S;] = ih Z €ijkSk- (3.7)
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Since the normalization of |¢) should be unaffected by rotation, the operators must be Hermitian:

1= (¢'[v') = (Y| (I - i%(bn-sf) (I - i%(ﬁ“'s) v

~1+ i%‘1)(11.5 —n.SH|y).

(3.8)

Since they are Hermitian, it is likely that they are associated with observable quantities, and we must
ask ‘what are the possible values that these observables can take’ — or in mathematical language, what
are the eigenvalues of the S;. Remarkably, we can establish what these eigenvalues are using only the
commutation relations (3.8).

We first show that the operator S* = S2 + S; + S? commutes with all three Sj:

[SZ, Sz] = [SZ, 53] + [SZ, S;] = [SZ, Sx]sz + Sx[SZa Sx] + [SZ, Sy]Sy + Sy[SZa Sy]

3.9
= ih(Sy S, + S2S,) — ih(S.S, + SySa) = 0. (3.9)

Hence there is a complete set of mutual eigenkets of S? and, say, S.. Let |3,m) be a member of this
set, the labels being such that

§%|8,m) = BR*|B,m) ; S.|B,m) =mh|8,m). (3.10)

Notice that no claim is being made here: the eigenvalues contain explicit factors of i to ensure that the
labels # and m are dimensionless. We define

St =5, £1i5,. (3.11)
These objects clearly commute with S$2, while their commutation relation with S, are
[S+,S:] = [Sa, S:] £1i[Sy, S:] = —ihSy F hS, = FhS+. (3.12)

Since Si commutes with S2, the ket S.|3,m) is an eigenket of S? with eigenvalue Sh%. Operating with
S. on this ket we find

S.S+|B,m) = (S+S; +[Sz,54]) |8, m) = (m £ 1)hSL|B, m). (3.13)

Thus, S.|8,m) is also a member of the complete set of states {|3,m)} but its eigenvalue with respect
to S, differs from that of |3, m) by +h. Therefore, we may write

S:|:|ﬂam> :Oé:th|ﬂ,m:|:1> (314)

We determine the dimensionless constant s by taking the length-squared of both sides of (3.14).
Bearing in mind that Sl = S+ we find

| [7* = (8,m|SzS|B.m) = (B,m|(S; F1S,)(S, £1S,)|8,m)

\ (3.15)
— (8,m|(S% — S2 F hS.)|B,m) = K*{B — m(m £ 1)},

SO

ayr =+/f—m(m=*1). (3.16)

From the definition of $? and the fact that the S; are Hermitian operators so (1| SZ[¢) = |S;[¢) |2 >0,
we infer that m? < 8. So notwithstanding (3.14) it cannot be possible to create states with ever larger
eigenvalues of .S, by repeated application of S;. All that can stop us doing this is the vanishing of a
when we reach some maximum eigenvalue mmax that satisfies

ﬂ - mmax(mmax + 1) =0. (317)
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Similarly, & must vanish for a smallest value of m that satisfies
,8 - mmin(mmin - 1) =0. (318)

Eliminating § between (3.17) and (3.18) we obtain a relation between m,ax and my,;, that we can treat
as a quadratic equation for m,;,. Solving this equation we find that

Mmin = {1 & (2Mmax + 1)} (3.19)

The plus sign yields a value of my;, that is incompatible with our requirement that mpyi, < Mpax, SO
we must have My, = —Mpax. To simplify the notation, we define s = myax, so that (3.17) becomes
B =s(s+1) and —s < m < s. Finally, we note that since an integer number of applications of S_ will
take us from |3, s) to |3, —s), 2s must be an integer. In summary, the eigenvalues of S? are s(s + 1)i?
with 25 = 0,1,2,... and for each value of s the eigenvalues mh of S, are h(s,s —1,..., —s). Henceforth
we simplify the labelling of kets by defining |s,m) to be what has hitherto been denoted |3, m) with
B =s(s+1).

3.1 Spin-half

Consider a system for which s = 3. The possible eigenvalues of S are then £3%. Let |[+) = |1, +1) and
|-) = |, —1). Then any state for which s = 1 can be written as a linear combination |¢)) = a|+) +b|—)
and the operators S; are associated with the 2 x 2 matrices [cf (1.18)]

_ ( (FISalH) (F[Sa]=)
Sz B <<_|Sz|+) <_|Sz|_)> - S = <<+|SZ|+> <+|Sz|_>> (3 20)
g — <<+|Sy|+) <+|Sy|—)> TS (IS ) '
PNEIS) (=1Sy)

The elements of the matrix S, are trivially evaluated because |£) are the eigenkets of .S, with eigenvalues
+1h. To evaluate the other two matrices we replace S, by 1(S; + S-), Sy by (5S4 —S_) and use
the relations Sy |—) = h|+) and S_|+) = h|—) which follow from (3.14) and (3.16). The result of these

operations is

Sy = zhoy = 5h <? Bl>

where the Pauli matrices o; have been defined.

0 S.=Lho.=1n 10 , 3.21
2 27\ 0 -1

From equation (3.6) we can derive a differential equation for the evolution of |¢/) when the system
that it describes is rotated around the direction n:

L
i l) = n.SJy). (3.22)

It is interesting to solve this equation for the case of a spin-half system. We orient our z axis parallel
to n and replace n.S by 1o to obtain

5l) = ho 1o (3.23)
It is easy to verify that this equation is solved by
i¢
) = exp (50 ) [¥0), (3.24a)
where ” ” b\
exp (IEUZ) =7+ (%Uz) + % (1502) + e (3.24b)
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and [¢0) is the value of |¢) for ¢ = 0. Now o7 = I, the identity matrix, so

o () =11 3(8) b (§) - 0(E) 0 )

= cos(¢/2)I +isin(¢/2)o, (3.25)

eld/2 0
- 0 e i¢/2 )"

For ¢ = 27 this becomes —1I rather than I, so when the system is rotated through 27, |¢)) does not
return to its original value but minus it. In other words, a spin-half system is not restored to its original
state by rotation through 27. This is a surprising result and contrasts with the case of integer-spin
systems, which (as we will see) are returned to their original state by rotation through 27. Does the
unexpected behaviour of spin-half kets under rotation imply that spin-half systems don’t exist? In fact,
electrons and quarks are all spin-half objects, so spin-half objects are extremely common! We find their
behaviour under rotations disconcerting because the fields associated with spin-half objects never attain
macroscopic values: the quantum uncertainty in the value of a spin-half field is always on the same
order as the value of the field itself. This contrasts with the case of integer-spin fields, such as those
associated with electromagnetism and gravity, which can attain macroscopic values: values that are
vastly greater than their quantum uncertainties. Our intuition about what happens when a system is
rotated has grown out of our experience of fields with macroscopic values, so we consider that things
return to their original state after rotation by 27. If we had hands-on experience of spin-half objects,
we would recognize that this is not generally true.

Q=

3.2 Spin one

In the case that s = 1, three values of m are possible, —1,0,1, so the S; are represented by 3 x 3
matrices. The calculation of these matrices proceeds exactly as for spin-half, the main difference being
that (3.14) and (3.16) now yield

Sel=1) = V200 5 S410) = V1) ; S_|+) = V() ; S_|0) = V2| - 1) (3.26)

The result is

A 010
S.=—=11 0 1
v2\o 1 0 100
: S,=h|0 0 O (3.27)
y=—=11 —i
V2 0 i 0

Exercise (5):
Show that S, = BJ,B*, where J, is the matrix defined by (3.4) and

S )
V2 V2
B = 0O 0 1
1 i
vz vV

Hence show that S, would be the matrix associated with rotations of vectors about the x axis if
we used new coordinates X; = (z +iy)/v2, Xo = 2z, X3 = —(z — iy)/V/2.

One may readily verify that the matrices (3.27) satisfy S? = /°S; and thus from (3.22) show that
the effect on |¢) of rotating the system about the ith axis is to multiply it by

- . . . 2 .
Do) = exp (B2) = 1165+ 160 (3] + 36005+ e
3.28

2
= I+isin¢% + (cos¢ — 1) <%> .
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Since there is nothing inherently special about the coordinate directions, this equation must remain
valid if S; is replaced by the spin matrix associated with an arbitrary direction, n.S. In contrast to
the rule (3.25) for rotating a spin-half system, (3.28) implies that |¢)) returns to its original value on
rotation through 2.

3.3 Orbital angular momentum

Suppose we decide to use the position representation to describe the quantum state of a single parti-
cle. Then the state is represented by the function of position (x) = (x|1)). We use spherical polar
coordinates and ask how 1 (r,0, ¢) changes when we rotate the system. Rotation changes the angular
dependence of the wavefunction so » — ¢’ where ¥'(r, 6, ¢') = ¢(r,0, ¢), where (8, ¢') are the coordi-
nates of the position into which the rotation moves the point with coordinates (8, ¢). Since the spherical
harmonics Y;* form a complete set of functions on a sphere, any function ¢ can be expanded in the
form

[es) l
(r,0,0) = Z (0, ¢). (3.29)

I=0m

If ¢ is such that ¢, # 0 for only a single value of I, so that it is of the form (r,6, )
Zlm:_l em(r)Y]" (0, ¢), then one may show that

1

(8 d) = D (YO, ). (3.30)

m=—I

That is, the property of being expandable using only a single value of [ is unchanged by rotation.
Quantum states in which the total orbital angular momentum L? = |x x p|? has a well-defined value
have this property, and the corresponding value of [ is such that L%y = I(I + 1)h21/J. Moreover, the new
expansion coeflicients ¢/, are related to the old ones ¢,, by an (21 + 1) x (2] 4+ 1) matrix D:

l
= > Dncn. (3.31)

n=-—I

D depends on the angles (9;,19,,9;) through which the system is rotated. In the case I = 1 and
¥ = ¢d;;, the 3 x 3 matrix D is that given by (3.28). The 5 x 5 matrix D for the case of [ = 2 is given
by precisely the same formula with S; replaced by the value that S; takes for s = 2.

Exercise (6):

Write down the 5 x 5 matrix S, for s = 2.

To summarize, if we work in the position representation and use spherical harmonics to expand
the angular dependence of a wavefunction, we get numbers ¢, that transform into one another under
rotations. For any given [ they transform according to a rule that can be derived from the fundamental
commutation relations (3.7). Precisely half of all possible transformation rules can be encountered
in this way, because only integer values of s = [ occur. In real systems all the rules occur because
wavefunctions, like vector fields, are generically multi-component objects, and a half-integer spin rule
may be required to transform the components of the wavefunction when the system is rotated.

The angular momentum of a system is determined by how its ket transforms when the system is
rotated. The contribution to this transformation rule from the spatial dependence (x|t)) is called orbital
angular momentum, while that associated with the multi-component character of |¢) is called spin. One
often reserves the letters L and S for orbital angular momentum and spin, respectively, and uses the
letter J to denote angular momentum of any type.

3.4 Addition of angular momenta
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Box 1: Kets for composite systems

When we put together two pieces to make a single system, we have to multiply their kets to form
the ket of the whole system. The reason that physical addition leads to logical multiplication is
that the probability of finding the whole system in some state is the product of the probability that
the first subsystem is in the given state and the probability that the second subsystem is in its given
state, and we ensure that this multiplicative relationship holds by expressing the amplitude for the
whole system to be in a given state as the product of the amplitudes of the parts to be in their
allotted states. What we do for a single amplitude we must do for a complete set of amplitudes,
so we multiply the kets of the subsystems to form the ket of the whole.

To give a concrete example, a hydrogen atom consists of a proton and an electron. To specify
the state of the atom, we have to specify the state |p) of the proton and the state |e) of the electron.
So the state of the atom is |a) = |p)|e). If |a') = |p')|e’) is the state that the atom will be left in
after we’ve measured () to have the value ¢, then the amplitude to measure ¢ is

(a'la) = (('IP'D(Ip)]e)) = (PIp)(e'e).

Imagine that we have two gyros in a box and that we know that the first gyro has total angular
momentum j;, while the second gyro has total angular momentum j,. Without loss of generality we
may assume j; > jo. A ket describing the state of the first gyro is of the form

J1

W)= > cmlii,m), (3.32a)
m=—ji
while the state of the second is ‘
J2
2y = Y dmlja,m), (3.32b)
m=—jz

and from the discussion in Box 1 it follows that the state of the box is

V) = [¢1)[t2). (3.33)

The coefficients ¢, and d,, are the amplitudes to find the individual gyros in particular orientations
with respect to the z axis. For example, if both gyros are almost certainly aligned parallel to the z
axis, we will have |cj,| = |dj,| = 1 and ¢, = dm, = 0 for mq # j1 and ma # jo. The operators of
interest are the operators J?, J;» and J;1 of the ith gyro and the corresponding operators of the box.
The operators J, and Jy for the box are simply sums of the corresponding operators for the gyros

Jo=Ji+Ja 3 Jr = Jix + Jox. (3.34)

Operators belonging to different systems always commute, so [J1;, J2;] = 0 for any values of 4, j. The
operator for the square of the box’s angular momentum is

P =01+ 1) =T+ J53 + 27,3, (3.35)
Now
J1+J2_ = (le + 1J1y)(J2w — IJQy) = (JlgUJQm + leJQy) + i(leJQa; — leJQy). (336)
The expression for J; _.Jo, can be obtained by swapping the labels 1 and 2 on the r.h.s., so?
J1+J27 + J17J2+ +2J1.Jo, = 2J1.J5. (337)

Using this expression to eliminate J;.J» from (3.35) we obtain

J2 =T} + I3+ Jip o + Ji_Joy + 2015 s (3.38)

% Recall that .J;; commutes with Jo; for all ij.
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While the total angular momenta of the individual gyros are fixed, that of the box is variable
because it depends on the mutual orientation of the two gyros: if the latter are parallel, the squared
angular momentum in the box might be expected to have quantum number j; + jo, while if they are
antiparallel, the box’s angular momentum might be expected to have quantum number j; — jo. We shall
show that this conjecture is true by explicitly calculating the values of the coefficients ¢,, and d,, for
which the box is in an eigenstate of both J2 and J,. We start by examining the state |j, j1)|j2, j2) in
which both gyros are parallel to the z axis. It is easy to see that this object is an eigenket of J, with
eigenvalue j; + j». We use (3.38) to show that it is also an eigenket of .J:

T g1, i)ld2s d2) = (JE 4+ J5 + JisJor + Ji—Joy + 2J1.052) 41, G1)|d2, Jo)

oo . (3.39)
=0 {j1(j1 + 1) + ja(j2 + 1) + 25142} 1, J1)lJ2, Jo),

where we have used the equation J; |j;, j;) = 0, which follows from (3.16). It is straightforward to show
that the expression in {.} in (3.39) equals j(j + 1) with j = j; + jo. Hence we may write

1 + J2,J1 + J2) = |71, J1)|J2, J2)- (3.40)

Now that we have found one mutual eigenket for the box of .J? and .J, we can easily find others
by applying J_ to reorient the angular momentum of the box away from the z axis. Again setting
Jj = j1 + j2 we find with equation (3.16)

J14,3) = (Ji— + Jo) g1, J1)lda, Jo)
= Vil +1) =G =Dljj = 1) = VG + 1) = j1Gr = Dljr, g1 = 1)z, o)
+ 20z + 1) = ja(jz = Dljr, 1), 2 — 1)
= V253,50 = 1) = V241 1, v — Dld2, J2) + /252 [, 1) |j2, J2 — 1).

A further application of J_ to the left side of this equation and of J;_ + Jo_ to the right side would
produce an expression for |7, j — 2) and so on.

(3.41)

We seek an expression for |j — 1,7 — 1). It is trivial to verify that any ket of the form a|ji,m1) +
B2, m2) is an eigenket of J, with eigenvalue (mj + ms2)fi. We require mj + ma = ji + j2 — 1, so either
my = j; — 1 and ma = ja, or my = j; and my = jo — 1. Equation (3.41) shows that |j,j — 1) involves
precisely these two cases, and must be orthogonal to |j — 1,j — 1) because it has a different eigenvalue
with respect to J2. So the ket we seek is the unique linear combination of the kets appearing in (3.41)
that is orthogonal to the linear combination that appears there. That is,

l7 = 1,5 = 1) = /g2 /ilir, 1 — Dlja, 32) — V31 /dljr, ji)l gz, ja — 1). (3.42)

All the kets in the sequence |j —1,m) m = j—2,... can be constructed by applying J_ to this equation
rather than to (3.41) as we did above. Moreover, |j — 2,j — 2), like |j,7 — 2) and |j — 1,5 — 2), will
be a linear combination of |j1,j1 — 2>|j2,j2>, |j1,j1 — 1>|j2,j2 — 1) and |j1,j1>|j2,j2 — 2) and must be
orthogonal to |4, —2) and |j — 1, j — 2) for which we already have expressions. Hence we can determine
which linear combination is required, and then generate the remaining kets of the series |j — 2,m) by
applying J_ to it.

Figure 1 helps to organize the results of this calculation. States of the box with well determined
angular momentum are marked by dots. The radius of each semi-circle is proportional to j', where
§'(j" + 1)R? is the eigenvalue of the kets with respect to J2. The height of each ket above the centre of
the circles is proportional to m. The left panel shows the case j; = 2, jo = 1, while the right panel is
fOI‘jl = l,jg = %

The numbers C(j, m; j1, j2, M1, ma2) = (4, m|j1,m1)|j2, m2) that we have been evaluating are called
Clebsch—Gordon coefficients. They have a simple physical interpretation: C(j,m; j1,j2, m1,ma) is
the amplitude that on opening the box when it’s in a state of well determined angular momentum we
will find the first and second gyros to be oriented with mih and myh of their spins parallel to the z
axis. For example, equation (3.41) implies that C'(3,2;2,1,1,1) = \/m, so if a box that contains a
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ij>

li—1,j—1>

D

h=1. e=1/2, j=3/2

jj—1>

j1=R, Je=1, j=3

Figure 1 The left panel shows states obtained by adding a system of angular momentum j5 = 1 to one with
j1 = 2, while the right panel is for j; = 1 and jo = %

Figure 2 Interpretation of Clebsch—Gordon coefficients in terms of vectors. The full line has length 1/3(3 + 1)

and its vertical component has length 2. The dotted lines labelled j; have length 1/2(2 4 1) and vertical
components of length 2 and 1.

spin-two gyro and a spin-one gyro has spin-three, there is a probability 2/3 that on opening the box
the second gyro will be nearly parallel to the z axis and the second significantly inclined, and only a
probability 1/3 of finding the reverse arrangement that is depicted by the upper dotted lines in Fig. 2.
The classical interpretation is that the two gyros precess around the fixed angular-momentum vector of
the box, and that the two configurations for which the Clebsch-Gordon coefficients give amplitudes are
two of the states through which the precession carries the system. This picture is intuitive and of some
value, but should not be taken too seriously. For one thing, the rules for adding angular momentum are
independent of any statement about the Hamiltonian, and therefore carry no implication about the time
evolution of the system. The gyros may or may not precess, depending on whether they are dynamically
coupled.

4 Perturbation theory

It is rarely possible to solve exactly for the dynamics of a system of experimental interest. In these
circumstances we use some kind of approximation to tweak the solution to some model system that
is as close as possible to the system of interest and yet is simple enough to have analytically solvable
dynamics. That is we treat the difference between the experimental system and the model system as a
‘perturbation’ of the model. Perturbation theory in this sense was an important part of mathematical
physics before quantum mechanics appeared on the scene — in fact the development of Hamiltonian
mechanics was driven by people who were using perturbation theory to understand the dynamics of the
solar system. Interestingly, while perturbation theory in classical mechanics remains an eclectic branch
of knowledge that is understood only by a select few, perturbation theory in quantum mechanics is
a part of main-stream undergraduate syllabuses. There are two reasons for this. First, analytically
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soluble models are even rarer in quantum than in classical physics, so more systems have to be modelled
approximately. Second, in quantum mechanics perturbation theory is a good deal simpler and works
rather better than in classical mechanics.

4.1 Time-independent perturbations

Let H be the Hamiltonian of the experimental system and Hy the Hamiltonian of the model system.
We hope that A = H — Hy is small and define

Hs = Ho + BA. (4.1)

We can think of Hg as the Hamiltonian of an apparatus that has a knob on it labelled ‘3’; when the
knob is turned to 8 = 0, the apparatus is the model system, and as the knob is turned round to 5 =1,
the apparatus is gradually deformed into the system of experimental interest.

We seek the eigenkets |E) and eigenvalues E of Hg as functions of 3. Since the Hamiltonian of the
apparatus is a continuous function of 3, we conjecture that the |E) and E are continuous functions of
B too. In fact, we conjecture that they are analytic functions of 8 so they can be expanded as power
series

|B) = la) + B1b) + Zle) + -+ 5 E=Ey+BEy+Ec + - (4.2)

Beware of these conjectures! Much interesting physics is associated with phenomena in which a small
change in one variable can produce a large change in another (phase changes, narrow resonances, caustics,
...). In classical physics perturbation theory is bedevilled by such phenomena. In quantum mechanics
these conjectures do rather better, but they are still not trustworthy.

We plug our conjectured forms (4.2) into the TISE
(Ho + BA)(|a) + BIb) + B|c)+) = (Ea + BEy + B2E. +) (Ja) + BIb) + B7|c) + ). (4.3)

Since we require the equality to hold for any value of 3, we can equate to zero the coefficient of every
power of

B0 Hyla) = E,|a)
A Hy|b) + Ala) = E,|b) + Ey|a) (4.4)
B Holc) + Alb) = Eylc) + Ep|b) + Ecla)

The first equation simply states that E, and |a) are an eigenvalue and eigenket of Hy. Physically, |a)
is the state that we will find the system in if we slowly turn the knob back to zero after making a
measurement of the energy. To determine Ej we multiply the second equation through by (al:

(alHolb) + (alAla) = E,(alb) + E,. (4.5)

Now (a|Hy|b) = ((b|Hp|a))* = E,{a|b). Cancelling this with the identical term on the right, we are left
with

Ey, = (a|Ala). (4.6)
This important result makes intuitive sense: the first-order change in the energy is just the expectation
value of the change in the Hamiltonian when the system is in its unperturbed state.

To extract the second-order change in E we multiply the third of equations (4.4) by (a|. Cancelling
(a|Holc) on E,(a|c) by strict analogy with what we just did, we obtain

E. = (a|Ab) — Ey{alb). (4.7)

To proceed further we have to determine |b), the first-order change in the state vector. We express |b)
as a linear combination of the eigenkets |E,,) of Hy:

|b) = Zbk|Ek> (4.8)
k
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In the second of equations (4.4) we replace |b) by this expansion and multiply through by (E,,| # (a|
to find

L {EulAla)
" Ea - Em .
This expression determines the coefficient of every ket in (4.8) except the coefficient of |a), which we
know is identical with one of the |E}). Fortunately we can argue that the coefficient of |a) can be taken
to be zero from the requirement that |E) = |a) + 8]b) + O(S?) remain correctly normalized. We can
draw a useful analogy with changing a two-dimensional vector so that the condition |r| = 1 is preserved;
clearly we have to move r on the unit circle and the first-order change in r is necessarily perpendicular
to the original value of r. The QM normalization condition implies that as 8 increases |E) moves on a
hypersphere in state space and (b|a) = 0. So we exclude |a) from the sum in (4.8) and use this expression
with the by, given by (4.9) in (4.7) to find that the second-order change in E is

(4.9)

ka Ea_Ek

4.1.1 Normal Stark effect Let’s apply the theory we’ve developed so far to a hydrogen atom that has
been placed in an electric field. In this case Hy is the Hamiltonian of an isolated atom, and A = efz,
where e is the charge on an electron, £ is the strength of the field, and z is the component of the vector
from proton to electron in the direction of the field. Let the atom be in its ground state. Then the
first-order energy change in F is E, = e£(E;|z|E1). This vanishes because the ground-state ket |Ey)
has well defined (even) parity, so the integrand of the integral to which (E;|z|E;) gives rise is an odd
function of r and the integral vanishes. The change in F is therefore dominated by the second-order
term E.. Since the ground state has zero angular momentum [, the non-vanishing matrix elements® in
our expression (4.10) for this all have [ = 1, m = 0. Hence

100/2|n10)(n10|2[100
EC:e2522< |Z|gw>_<"E 1|Z| ), (4.11)

n>1

where the numbers in the kets are the values of n,l,m. It is easy to understand physically why the
change in E is proportional to £2: the field polarizes the atom, generating a polarization P that is o &.
This polarization is encoded in the coefficients by, which are indeed proportional to £. The energy of
the dipole P in a field is P&, so the energy change caused by the field is proportional to £2.

4.1.2 Anomalous Stark effect Consider now the shift in the energy of the n = 2, I = 0 state of Hydrogen
when an electric field is applied. The sum over k in (4.10) now includes the term
(200]z|210)(210|z]200)
Ey — Exn ’

which is infinite if you neglect the very small Lamb shift, because the top is non-zero and the difference of
energies on the bottom vanishes. It hardly seems likely that a negligible field will produce an arbitrarily
large change in the energy of the first excited state of H. So what did we do wrong?

Our error was to assume at the outset that a small stimulus produces a small response. Our infinite
contribution to E. can be traced to (4.9), which diverges as E,, — E,. That is, the change in the
wavefunction that a given field produces is inversely proportional to the energy difference between the
original state |a) and the state |E,,) we are pushing the system towards. This is an entirely reasonable
result, analogous to what happens as we push a marble that lies at the bottom of a bowl: the distance
the marble moves before coming into equilibrium depends on the curvature of the bowl. In the limit
that the curvature goes to zero, and the bottom of the bowl becomes flat, an infinitesimal force will
move the marble arbitrarily far, because all locations have the same energy. So we conclude that when

5 Here we exploit a result from group theory, the Wigner—Eckart theorem, which tells us that if the operator V' is
a component of a vector, then (j|V|j’) = 0 unless states with angular momentum j’’ = 1 can be made by adding systems
with angular momentum 5 and j' — we discuss the addition of angular momenta below.
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the system’s initial energy is a degenerate eigenvalue E4 of H, a tiny stimulus s liable to produce a
big change in the state (but not the energy) of the system. Disaster will attend an attempt to calculate
this abrupt change of state by the approach we have been developing.

So must we just give up in despair? No, because we can see that the only states that are going
to acquire a non-negligible amplitude during the abrupt change are ones that have the same energy as
E4. That is, the state to which the system abruptly moves can be expressed as a linear combination
of the kets belonging to E4q. Unless we are very unlucky, there will be only a small number of these
(4 in the problem of H on which we are working). What we have to do is to diagonalize the matrix
A;; formed by A squeezed between all pairs of these kets. The eigenkets of A in this small subspace
will be states of well-defined energy in the slightly perturbed system. As § is ramped up from zero to
unity their energies will diverge from E4. We conjecture that in the instant that 8 departs from zero,
the system’s state jumps to the eigenket with the lowest energy, and subsequently stays in this state
as 8 increases. If this conjecture is correct, we should be able to use the perturbation theory we have
developed provided we use as basis kets ones that diagonalize A as well as Hg.

So let’s diagonalize e€£z in the 4-dimensional subspace of Hydrogen kets with n = 2. We order the
kets 1 |200), 2 |210), 3 |211), 4 |21—1). Then the matrix of A looks like this

0 a 00
a@ 0 0 0

Ajj=e& 0 0 0 0 where a = (200]z|210) (4.12)
0 0 0 0

It is easy to show that the eigenvalues of this matrix are *|a| and 0, while appropriate eigenkets are
2-1/2(1,+1,0,0), (0,0,1,0) and (0,0,0,1). We conclude that as soon as the slightest perturbation is
switched on, the system is in the state [1)) = 271/2(]200) — |210)) and we use this state to determine
Ey. We find

By = 1e£((200] — (210])z(|200) — [210)) = —Le& ((200]2|210) + (210]2]200))

(4.13)
= zxagef

From our discussion of the normal Stark effect we know that a change in E that is proportional to
£ requires the dipole moment P of an atom to be independent of £. Thus an H atom in the n = 2 state
has a permanent electric dipole. In classical physics this result is to be expected because the orbit of
the electron would in general be elliptical, and the time-averaged charge density along the ellipse would
be higher at apocentre than at pericentre, because the electron lingers at apocentre and rushes through
pericentre. Hence the centre of charge would lie on the opposite side of the geometrical centre of the
ellipse from the focus, where the proton’s cancelling charge lies. Thus, if the electron’s orbit were a
perfect Kepler ellipse, the atom would have a permanent electric dipole moment parallel to the orbit’s
major axis. Any deviation of the radial force field from F oc r=2 will cause the major axis of the ellipse
to precess, and therefore the time-averaged polarization of the atom to be zero. In H the force-field
deviates verify little from an inverse-square law, and precession is unimportant in even a weak electric
field.

4.2 Time-dependent perturbation theory
We now describe two approaches to obtaining approximate solutions to the TISE.

4.2.1 Fermi golden rule Consider the evolution of a system that is initially in a state that is nearly,
but not quite, in a stationary state. Specifically, at ¢ = 0 it is in the Nth eigenstate of a Hamiltonian
Hy that differs by only a small; time-independent operator V' from the true Hamiltonian H:

H=Hy+V. (4.14)

Inspired by (1.52) we expand the solution to the TDSE for this H in the form

) =D an(t)e M E,), (4.15)
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where |E,) is a (time-independent) eigenket of Hy with eigenvalue E,. Substituting this form into the
TDSE we have Bl
: _ _ —iE.t/h
ih=" = (Ho + V)|) = > (EnlEn) + VIE))ane
"o (4.16)
= Z (ihan + Epay)e Ent/ME,).

We simplify this by multiplying through by (Eg|:

ihage M =N " e Bt B V| E,). (4.17)
This constitutes a set of linear ordinary differential equations for the a,,(¢) which must be solved subject
to the boundary conditions an(0) = 1 and a,(0) = 0 for n # N. Hence, at the earliest times the term

on the right of (4.17) with n = N will dominate the equation of motion of a; with k # N, and we have
the approximation

ay, ~ —%e’i(EN’Ek)t/WEk|V|EN). (4.18)
Integrating from ¢ = 0 we find
(EelVIEN) [ —i(Bx—BE0)t' /1]
t) = HEN k 4.1
wt) = E &y [ Jo- (4.19)

so the probability that after ¢ the system has made the transition to the kth eigenstate of Hy is
E|VIEN)|? (En — Ep)t
P(t) = 2 = |<7 2—9 A S
k() = |ak] (Ex — Ej)? cos h
2 sin? (Ex — Ej)t/2h)
(En — Ej)?

(4.20)
= 4[(Ex|V|EN)

For a time of order h/(Ey — En) this expression grows like #>. Subsequently it oscillates.

In applications of interest Hy has a large number of eigenvalues Ej, within an interval of width h/t
of En, and we are typically interested in the probability that the system has made the transition to
any one of these states. Hence we sum the Py, over k. Let there be p(E) dE eigenvalues in the interval
(E + dE,E). Then the total transition probability is

2 sin? (Ex — E)t/2h)

LURE / A p(B) IV )P =—

) (4.21)
2 i t

== /d:cp(EN — 2ha) (En — 2ha|V|EN)[? smm#

where we’ve introduced a new variable, z = (Ey —E)/2h. The function f;(z) = sin®(2t)/2? is dominated

by a bump around the origin that is of height #* and width 27/¢. Hence, the area under the bump is

proportional to ¢ and in the limit of large ¢, fi;(z) o té(x). We find the constant of proportionality by

differentiating [ dz f; with respect to ¢:

i/m dz fy(z) = /OO dp S22 (4.22)

dt J_ oo T

Replacing sin?(zt)/x? by 7té(z) in (4.21) and integrating over x, we have finally
27t .
Y P = = p(EN) |{out|V|in)|?. (4.23)
k

This simple result is Fermi’s golden rule of perturbation theory (which was actually first given by
Dirac).



24 Chapter 4: Perturbation theory

Scattering Let’s use the golden rule to study scattering by a localized potential V(x). In this
case Hy is the Hamiltonian, p?/2m, of a free particle. Initially our particle is in a state of well defined
momentum hk, and after some time V may have scattered the particle into a state of similar energy
that has momentum hk’. From §1.4 we know that the wavefunction of a particle with momentum hk
is proportional to e’** but we have to think carefully about the normalization. If our particle is free
to roam over all space, it has negligible probability of straying into the region in which V(x) # 0 and
being scattered. So we confine the particle in a box of side L with periodic boundary conditions. Then
the correctly normalized wavefunctions of the initial and final states are

ik.x

]_ [
and (x|out) = me‘k X, (4.24)

. 1
(x]in) = T3¢

Each state occupies (27/L)? of k-space, so the density of states with energy (E +dE, E) and k' in solid
angle d2Q is

N L7273 k"2dk" d2Q L\3
p(E):d :( /Z)k dk'd :(_) %k'd%l
dE nok'dE Jm 2/ R (4.25)
3.073/2 ’
= (ﬁ) T _V2EdQ.
2/ B3
Substituting (4.24) and (4.25) into (4.23) we find that the scattering rate is
. 3/2 B ! 2
p="""Ver VfEdQQ ‘ / PxeEK)xy(x) (4.26)
(2m)2R* L3

As expected this vanishes in the limit L — oco. We factor out this L dependence by defining the
scattering cross section o to be

P P L?P

incoming flux  L=3v | /2E |m
m? 2 34 Li(k—k')

= d=Q dx eV (x
(2m)2n* ‘/ )

a

, (4.27)

This is the Born scattering cross section. It is valid provided V is weak in the sense that the exact
wavefunction would not differ greatly from the plane-wave approximations we have used even in the
region ‘shadowed’ by the scattering potential V.

4.2.2 Adiabatic principle Consider the case in which the Hamiltonian depends on time — an example
would be an atom exposed to a slowly increasing electric field. The system’s ket still satisfies (1.48).
Equation (4.15) provides an appropriate trial solution for the case of constant Hamiltonian eigenvalues.
We modify this to allow for time-variation of the E,,:

0ut) = Saness (=3 [ 4 B@))IEa0), (4:28)

where E,(t) is the nth eigenvalue of H(t) and | E,(t)) is the corresponding eigenket. When we substitute
this expansion into the TDSE, we find

20— #0) = Yaneww (- 3 [ at Bu)) HOIE )
" (4.29)

= ({man F anEn ()} En(t)) + ihana|§t”>) exp ( - % Ot dt’ En(t’)).

Exploiting the fact that |E,(t)) is an eigenket of H(t) we can cancel a term from each side and are left
with

0= Xn: (an|En(t)) + an@) exp ( - %/Ot dt’ En(t’)). (4.30)
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Now we use the perturbation theory developed in §4.1 to expand | E,, (t+4t)) as a linear combination
of the complete set {|E,(t))}. That is, we write

|Bat +68) = |Ea(t) = D buml Em (1)), (4.31)

m#n
where from (4.9) we have
s AEn(0IH|E, (1)
" En(t) —En (t)

with §H the change in H between ¢ and ¢t + §t. Dividing (4.31) by 6t and substituting the result into
(4.30) we find

(4.32)

0=%" <an|En(t)) +an %: UIE@:((I))EIE:((;))) |Em)> exp ( - % [ar Eu(t)).  (433)

When we multiply through by (Ej(t)| this yields

an = — %an(t)% esp (- % /0 At (B(t') — Ex()}). (4.34)

Although we have used first-order perturbation theory, our working so far has been exact because we
can make dH as small as we please by taking dt to be small. Now we introduce an approximation by
supposing that H is a slowly varying function of time in the sense that it changes by very little in the
time A/ min(|E,, — Ei|). In this approximation, the right side of (4.34) is a product of a slowly varying
function of time times an approximately sinusoidal term that oscillates much more rapidly. When we
integrate this expression to get the change in ay, the integral vanishes rather precisely. Hence, if initially
ap, = 1 for some k, it will remain unity throughout the evolution. That is, if a system is initially in the
kth state of well-defined energy, it will stay in this state when the Hamiltonian is slowly changed. This
adiabatic principle is extraordinarily useful, because it allows us to solve the TDSE for slowly-varying
as well as for constant Hamiltonians.

The adiabatic principle enables us to calculate things such as forces very easily. Consider for
example the force exerted on its confining walls by a particle of mass m that is in the nth energy level
of an infinite square-well potential of width a. The particle’s energy is E,, = R r2n2 /(2ma?) and the
work done by the particle in pushing the walls apart by da is —(90E,,/0a)da = 2(E, /a)da. Equating
this to F'da, where F' is the force that the particle exerts on the walls, we obtain F' = 2E, /a.



