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Introduction to Quantum Mechanics MT 2009
Problems 2 (Weeks 7–8)

2.1 Write down the time-independent (tise) and the time-dependent (tdse) Schrödinger equa-
tions. Is it necessary for the wavefunction of a system to satisfy the tdse? Under what circumstances
does the wavefunction of a system satisfy the tise?

2.2 Why is the tdse first-order in time, rather than second-order like Newton’s equations of
motion?

2.3 A particle is confined in a potential well such that its allowed energies are En = n2E , where
n = 1, 2, . . . is an integer and E a positive constant. The corresponding energy eigenstates are |1〉, |2〉,
. . . , |n〉, . . .. At t = 0 the particle is in the state

|ψ(0)〉 = 0.2|1〉+ 0.3|2〉+ 0.4|3〉+ 0.843|4〉. (2.1)
a. What is the probability, if the energy is measured at t = 0 of finding a number smaller than

6E?
b. What is the mean value and what is the rms deviation of the energy of the particle in the state

|ψ(0)〉?
c. Calculate the state vector |ψ〉 at time t. Do the results found in (a) and (b) for time t remain

valid for arbitrary time t?
d. When the energy is measured it turns out to be 16E . After the measurement, what is the state

of the system? What result is obtained if the energy is measured again?

2.4 Let ψ(x) be a properly normalised wavefunction and Q an operator on wavefunctions. Let
{qr} be the spectrum of Q and {ur(x)} be the corresponding correctly normalised eigenfunctions.
Write down an expression for the probability that a measurement of Q will yield the value qr. Show
that

∑
r P (qr|ψ) = 1. Show further that the expectation of Q is 〈Q〉 ≡

∫∞
−∞ ψ∗Q̂ψ dx.1

2.5 Find the energy of neutron, electron and electromagnetic waves of wavelength 0.1 nm.

2.6 Neutrons are emitted from an atomic pile with a Maxwellian distribution of velocities for
temperature 400K. Find the most probable de Broglie wavelength in the beam.

2.7 A beam of neutrons with energy E runs horizontally into a crystal. The crystal transmits
half the neutrons and deflects the other half vertically upwards. After climbing to height H these
neutrons are deflected through 90◦ onto a horizontal path parallel to the originally transmitted beam.
The two horizontal beams now move a distance L down the laboratory, one distance H above the
other. After going distance L, the lower beam is deflected vertically upwards and is finally deflected
into the path of the upper beam such that the two beams are co-spatial as they enter the detector.
Given that particles in both the lower and upper beams are in states of well-defined momentum,
show that the wavenumbers k, k′ of the lower and upper beams are related by

k′ ' k

(
1− mngH

2E

)
. (2.2)

In an actual experiment (R. Colella et al., 1975, Phys. Rev. Let., 34, 1472) E = 0.042 eV and
LH ∼ 10−3 m2 (the actual geometry was slightly different). Determine the phase difference between
the two beams at the detector. Sketch the intensity in the detector as a function of H.

2.8 A three-state system has a complete orthonormal set of states |1〉, |2〉, |3〉. With respect to this
basis the operators H and B have matrices

H = h̄ω

 1 0 0
0 −1 0
0 0 −1

 B = b

 1 0 0
0 0 1
0 1 0

 , (2.3)

where ω and b are real constants.
a. Are H and B Hermitian?
b. Write down the eigenvalues of H and find the eigenvalues of B. Solve for the eigenvectors of

both H and B. Explain why neither matrix uniquely specifies its eigenvectors.
c. Show that H and B commute. Give a basis of eigenvectors common to H and B.

1 In the most elegant formulation of qantum mechanics, this last result is the basic postulate of the theory, and
one derives other rules for the physical interpretation of the qn, an etc. from it – see J. von Neumann, Mathematical
Foundations of Quantum Mechanics.



Oxford Physics Prof J Binney

2.9 Given that A and B are Hermitian operators, show that i[A,B] is a Hermitian operator.

2.10 Given a ordinary function f(x) and an operator R, the operator f(R) is defined to be

f(R) =
∑

i

f(ri)|ri〉〈ri|, (2.4)

where ri are the eigenvalues of R and |ri〉 are the associated eigenkets. Show that when f(x) = x2

this definition implies that f(R) = RR, that is, that operating with f(R) is equivalent to applying
the operator R twice. What bearing does this result have in the meaning of eR?

2.11 Show that if there is a complete set of mutual eigenkets of the Hermitian operators A and B,
then [A,B] = 0. Explain the physical significance of this result.

2.12 Given that for any two operators (AB)† = B†A†, show that

(ABCD)† = D†C†B†A†. (2.5)


