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Physics

It’s about predicting the future from knowledge of the present
We do it with numbers
Knowledge of the present derives from measurements

Measurements are prone to error — our knowledge is imperfect
= physics is ultimately probabilistic

— eg ladder
— eg pendulum

To push physics to its limits you must quote probabilities
— eg R=14 £ 0.1 Ohms



Measurement 1

To measure you must disturb
The disturbance may be too small to matter
— measure a star’s position!
But often the disturbance matters
— eg measuring V across a circuit component

Small things are more strongly disturbed by measuring
kit than large ones

Atoms, electrons, etc are significantly disturbed

ldeal measurements are reproducible:

— if | say “the momentum p of this electron is 3 GeV/c” I'm

claiming that if you measure p with precision, you’ll get 3
GeV/c



Measurement 2

Key to QM is the idea that any system has states in which
the outcome of a measurement is certain — these states are
abstractions but crucial abstractions

— eg |E;> is state in which a measurement of energy will yield E, J

— eg |+>is a state in which a measurement of the z-component of
spin angular momentum will yield +}2A (kg m?/s)

— eg | E,+>is a state in which the results of measuring either E and
s, are certain

— eg | p>is a state in which a precision measurement of
momentum is certain to yield p GeV/c

In a generic state |¢>, the result of measuring E is uncertain
But after a high-precision measurement the result of
measuring E again is certain (reproducibility!)

So the act of measuring E jogs the system from the generic
state |1> into one of the special states |E>




Measurement 3

If we do a high-precision measurement of p when the
system is in the state |¢> we jog it into a state |p,> in which
the result of measuring p again is certain

In general a precision measurement of E when the system
is in the state | p,> yields an uncertain result —we can only
calculate probabilities P;; of finding E;

Once we have found E, and Jogged the system into the state
|E;> the result of measurmg p is uncertain because the
system iS no Ionger in one of the special states in which the
outcome of a precision p measurement is certain

That is, each thing you can measure jogs the system into
one of a different set of states, so it’s not possible to get
the system into a state in which the outcome of any
precision measurement is certain

— measurements are generally incompatible

— dynamical variables are questions you can ask, not intrinsic
properties



Quantum physics

We take on board that

— we have to calculate probability distributions P(x) not just
expectation values <x>

— measurements disturb the system & leave it in a state that
differs from the pre-measurement state

Q physics tackles these tasks using the idealisation of
reproducible measurements

So far everything has been straightforward & inevitable
— this is just grown-up physics

But it’s clear that Q physics is going to be
mathematically more challenging than C physics

because calculating a whole (non-negative) function
P(x) is much harder than calculating one number <x>



Quantum amplitudes

Q physics is built on a wonderful mystery:

— It (& it alone) obtains a probability P from a complex number A
the quantum amplitude for P:

— P=|A|?

Nobody knows why this is the correct thing to do
No application of this formalism has been successful
outside Q physics

The whole mathematical formalism of Q physics follows
naturally & easily once you accept the use of quantum
amplitudes

The formalism is immensely convenient
— |t allows us to calculate probability distributions much more
easily than in C physics

Aren’t we lucky: in our hour of need a powerful new
formalism comes to our rescue!



Quantum interference

 Quantum amplitudes have a key, logic-defying
property:
— If something can happen in 2 mutually exclusive ways,
1 and 2, and the amplitude for it to happen by route 1
is A; and by route 2 is A, then the probability for it to
happen by either 1 or 2 is
Pro=[ALL12 = [A+A, 12 =| A2+ |A, 12 HAAFALA))
=P, +P, + 2Re(A;"A))

* That is: we add amplitudes not probabilities

* The extra term is a manifestation of “quantum
interference”
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Quantum states 1

There are certain things we can measure
“observables” — a terrible name

With each observable Q there is a list of possible values
q; returned by a precise measurement of Q
The set of q; is called the spectrum of Q

— eg spectrum of x coordinate is (-oo ,00)

— eg spectrum of KE is (0,00)

— eg spectrum of any component of angular momentumis {...,
(k-1)A, kh, (k+1)A,..), where k=0 or Y2 and 2= 1.05 x 1034 J s

Elements of the spectrum are called allowed values of Q



Quantum states 2

With each element of the spectrum g, there is a probability
amplitude A, that a precise measurement will return that value and
a state | > in which the system will be left after the measurement

QM is the science of calculating from the set {A.} the amplitudes,
say {a;}, for getting a value such as b, on measuring another
observable B

A complete set of amplitudes contains sufficient amplitudes to
enable the amplitudes for any measurement to be predicted

Conventionally a complete set is a minimal set:

— None of its members can be calculated from a knowledge of the other
members alone

A complete set of amplitudes characterises the current state of the
system as precisely as is physically possible

That state, |1¢>, is pointed to by the complex numbers {A.} in just
the way a geometric point a is pointed to by its coordinates (a,,a,,a,)

— So |9> <+ {A}justasa <> {a}
|1)> is a vector with complex components



Quantum states 3

Just as many different sets of coordinates (a,,a a,) or
(a, 39,3, ) all pick out the same geometrical pomt a, SO many
sets of amplltudes pick out the same physical state |>

By designating a state |y> (“ket psi”) we keep open our
options as to which complete set of amplitudes we will use
for calculations

In C physics choosing the appropriate coordinate system is
often the key to solving a given problem

In Q physics choosing the appropriate set of amplitudes is
often the key
— eg we can specify the state |¢> of an electron by giving the

amplitudes a(p) to measure momentum p or the amplitudes
1)(x) to measure location x

— (x) is called the wavefunction and its values are quantum
amplitudes



Dirac notation 1

We already discussed the physical significance of the sum
of 2 amplitudes

Soif [¢ >=(A,,A,,..) and |$ >=(B,,B,,..) are 2 states of the
same system, we should consider

— |Y>+|¢p> < (A;+B,, A+B,,..)

— Standard rule for adding vectors

Because probabilities for all possibilities must sum to 1, we
require 2; |A|?=1and 2, |B;|%=1, & we need to normalise

| >+| > by multlplymg by o =1/ A + B |2)2
So a new physical state is|y/'> = a(|¢>+|¢>)

Objects that you can add & multiply by numbers constitute
a vector space

It’s often useful to choose a basis {|i>} for a vector space:
Any state |¢>=2. a.|i> for some amplitudes a.



Dirac notation 2

With every vector space V we get the dual space V’ for free:
— V'’ is the space of all linear (complex-valued) functions on V

We denote members of V' by <f| (“bra f”) & then <f|i>is a
(complex) number, the value taken by the linear function
<f| on the vector |¢>

— In traditional notation f(|y>)

If |i>is a basis for V, a basis for V' is provided by the
functions <j| defined by the rule

— <jli> =0
Given |¢> =2 a.|i> we choose to define
— <t| =2, a,<j| so that

— <> =Zij aj*ai<j|i>=zi|ai|2= 1

If | > =2 b;|j>then

— <ply>=2,ba; = (< ¢>)



Energy representation

For a particle trapped in a potential well the
spectrum of energy E is discrete so there are
states |E.> in which a measurement of E has a

certain outcome

These states form a basis for V so any state

— |>=2 A |E>

If we “bra through” by <E;| we have

— <E|¢>=A,

This is a key rule & explains the importance of

bras: they enable us to extract experimentally
important amplitudes from the system’s state



