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• The book 
Available at Clarendon Reception for £20 
Also for free download at 
http://www-thphys.physics.ox.ac.uk/ 
people/JamesBinney/QBhome.htm 
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• The film: podcasts can be reached from 

 http://www-thphys.physics.ox.ac.uk/people/JamesBinney/lectures.html 



Physics  

• It’s about predicting the future from knowledge of the present 

• We do it with numbers 

• Knowledge of the present derives from measurements 

• Measurements are prone to error – our knowledge is imperfect 
) physics is ultimately probabilistic 

– eg ladder 

– eg pendulum 

• To push physics to its limits you must quote probabilities 
– eg R=14 § 0.1 Ohms  



Measurement 1 

• To measure you must disturb 
• The disturbance may be too small to matter 

– measure a star’s position! 

• But often the disturbance matters 
– eg measuring V across a circuit component 

• Small things are more strongly disturbed by measuring 
kit than large ones 

• Atoms, electrons, etc are significantly disturbed 
• Ideal measurements are reproducible:  

– if I say “the momentum p of this electron is 3 GeV/c” I’m 
claiming that if you measure p with precision, you’ll get 3 
GeV/c 



Measurement 2 
• Key to QM is the idea that any system has states in which 

the outcome of a measurement is certain – these states are 
abstractions but crucial abstractions 
– eg |E1> is state in which a measurement of energy will yield E1 J 
– eg |+> is a state in which a measurement of the z-component of 

spin angular momentum will yield +½~ (kg m2/s) 

– eg |E1+> is a state in which the results of measuring either E and 
sz are certain 

– eg |p> is a state in which a precision measurement of 
momentum is certain to yield p GeV/c 

• In a generic state |Ã>, the result of measuring E is uncertain 
• But after a high-precision measurement the result of 

measuring E again is certain (reproducibility!) 
• So the act of measuring E jogs the system from the generic 

state |Ã> into one of the special states |Ei> 
 
 



Measurement 3 
• If we do a high-precision measurement of p when the 

system is in the state |Ã> we jog it into a state |pi> in which 
the result of measuring p again is certain 

• In general a precision measurement of E when the system 
is in the state |pi> yields an uncertain result – we can only 
calculate probabilities Pji of finding Ej 

• Once we have found Ej and jogged the system into the state 
|Ej> the result of measuring p is uncertain because the 
system is no longer in one of the special states in which the 
outcome of a precision p measurement is certain 

• That is, each thing you can measure jogs the system into 
one of a different set of states, so it’s not possible to get 
the system into a state in which the outcome of any 
precision measurement is certain 
– measurements are generally incompatible  
– dynamical variables are questions you can ask, not intrinsic 

properties 



Quantum physics 

• We take on board that 
– we have to calculate probability distributions P(x) not just 

expectation values <x> 
– measurements disturb the system & leave it in a state that 

differs from the pre-measurement state 

• Q physics tackles these tasks using the idealisation of 
reproducible measurements 

• So far everything has been straightforward & inevitable 
– this is just grown-up physics 

• But it’s clear that Q physics is going to be 
mathematically more challenging than C physics 
because calculating a whole (non-negative) function 
P(x) is much harder than calculating one number <x> 
 



Quantum amplitudes 

• Q physics is built on a wonderful mystery: 
– It (& it alone) obtains a probability P from a complex number A 

the quantum amplitude for P: 
– P=|A|2 

• Nobody knows why this is the correct thing to do 
• No application of this formalism has been successful 

outside Q physics 
• The whole mathematical formalism of Q physics follows 

naturally & easily once you accept the use of quantum 
amplitudes 

• The formalism is immensely convenient 
– It allows us to calculate probability distributions much more 

easily than in C physics 

• Aren’t we lucky: in our hour of need a powerful new 
formalism comes to our rescue! 



Quantum interference 

• Quantum amplitudes have a key, logic-defying 
property: 
– If something can happen in 2 mutually exclusive ways, 

1 and 2, and the amplitude for it to happen by route 1 
is A1 and by route 2 is A2 then the probability for it to 
happen by either 1 or 2 is 
P1+2 = |A1+2|2 = |A1+A2|2  =|A1|2 + |A2|2 +(A1

*A2+A1A2
*)                                                

= P1 +P2 + 2Re(A1
*A2) 

• That is: we add amplitudes not probabilities 

• The extra term is a manifestation of “quantum 
interference” 



2-slit interference 

• Expect |A1|2 to be roughly Gaussian 

• Write 

 

 

 

• Near centre line p1(x) ' p2(x) and P(x) 
oscillates from 0 to 4P1(x) 



Quantum states 1 

• There are certain things we can measure 

• “observables” – a terrible name 

• With each observable Q there is a list of possible values 
qi returned by a precise measurement of Q 

• The set of qi is called the spectrum of Q 
– eg spectrum of x coordinate is (-1 ,1) 

– eg spectrum of KE is (0,1) 

– eg spectrum of any component of angular momentum is {…, 
(k-1)~, k~, (k+1)~,..), where k=0 or ½ and ~ = 1.05 £ 10-34 J s 

• Elements of the spectrum are called allowed values of Q 



Quantum states 2 
• With each element of the spectrum qi there is a probability 

amplitude Ai that a precise measurement will return that value and 
a state |qi> in which the system will be left after the measurement 

• QM is the science of calculating from the set {Ai} the amplitudes, 
say {aj}, for getting a value such as bj on measuring another 
observable B 

• A complete set of amplitudes contains sufficient amplitudes to 
enable the amplitudes for any measurement to be predicted 

• Conventionally a complete set is a minimal set: 
– None of its members can be calculated from a knowledge of the other 

members alone  

• A complete set of amplitudes characterises the current state of the 
system as precisely as is physically possible 

• That state, |Ã>, is pointed to by the complex numbers {Ai} in just 
the way a geometric point a is pointed to by its coordinates (ax,ay,az) 
– So |Ã> $ {Ai} just as a $ {ai} 

• |Ã> is a vector with complex components 



Quantum states 3 

• Just as many different sets of coordinates (ax,ay,az) or 
(ar,aµ,aÁ) all pick out the same geometrical point a, so many 
sets of amplitudes pick out the same physical state |Ã> 

• By designating a state |Ã> (“ket psi”) we keep open our 
options as to which complete set of amplitudes we will use 
for calculations 

• In C physics choosing the appropriate coordinate system is 
often the key to solving a given problem 

• In Q physics choosing the appropriate set of amplitudes is 
often the key  
– eg we can specify the state |Ã> of an electron by giving the 

amplitudes a(p) to measure momentum p or the amplitudes 
Ã(x) to measure location x 

–  Ã(x) is called the wavefunction and its values are quantum 
amplitudes  



Dirac notation 1 
• We already discussed the physical significance of the sum 

of 2 amplitudes 
• So if |Ã >=(A1,A2,..) and |Á >=(B1,B2,..) are 2 states of the 

same system, we should consider  
– |Ã>+|Á> $ (A1+B1, A2+B2,..) 
– Standard rule for adding vectors 

• Because probabilities for all possibilities must sum to 1, we 
require i |Ai|

2=1 and i |Bi|
2=1, & we need to normalise 

|Ã>+|Á> by multiplying by ® = 1/(i|Ai + Bi|
2)1/2 

• So a new physical state is|Ã’> = ®(|Ã>+|Á>) 
• Objects that you can add & multiply by numbers constitute 

a vector space 
• It’s often useful to choose a basis {|i>} for a vector space: 
• Any state |Ã>=i ai|i> for some amplitudes ai 

 
 



Dirac notation 2 

• With every vector space V we get the dual space V’ for free: 
– V’ is the space of all linear (complex-valued) functions on V 

• We denote members of V’ by <f| (“bra f”) & then <f|Ã> is a 
(complex) number, the value taken by the linear function 
<f| on the vector |Ã> 
– In traditional notation f(|Ã>) 

• If |i> is a basis for V, a basis for V’ is provided by the 
functions <j| defined by the rule 
– <j|i> = ±ij 

• Given |Ã> = i ai|i> we choose to define  
– <Ã| = j aj

*<j| so that 
– <Ã|Ã> = ij aj

*ai<j|i> = i|ai|
2 = 1 

• If |Á> = j bj|j> then  
– <Á|Ã> = i bi

*ai = (<Ã|Á>)* 

 



Energy representation 

• For a particle trapped in a potential well the 
spectrum of energy E is discrete so there are 
states |Ei> in which a measurement of E has a 
certain outcome 

• These states form a basis for V so any state 
– |Ã> = i Ai |Ei> 

• If we “bra through” by <Ej| we have 
– <Ej|Ã> = Aj  

• This is a key rule & explains the importance of 
bras: they enable us to extract experimentally 
important amplitudes from the system’s state 


