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In the quantum-mechanical picture, shielding shifts the energy of the
S state below that of the P states, thus ensuring that, in the absence of an
imposed field, the atom is spherical and has no dipole moment. An electric
field deprives L2 of its status as a constant of motion because the field can
apply a torque to the atom. Shielding is a very weak effect in hydrogen
(because it relies on the vacuum’s virtual electrons and positrons), so the
S state lies very little below the P states and in even a weak electric field
this offset becomes irrelevant. The lowest-energy state becomes (|200〉+
|210〉)/√2. This is not an eigenket of L2 but it is an eigenket of Lz

with eigenvalue zero. Thus its angular momentum is perpendicular to the
field, as we expect from the classical picture of a Kepler ellipse with its
major axis parallel to E. Figure 10.1 shows that in this state the charge
distribution comprises a dense cloud around the origin and an extended
cloud centred on R = 0, z ≃ −3a0. We can think of these clouds as
arising from the pericentre and apocentre, respectively, of eccentric orbits
that have their major axes roughly aligned with the negative z-axis. The
integral

∫

d3x, z|ψ|2 = −3a0, so in this state the atom has dipole moment
P = +3ea0.

10.1.3 Effect of an external magnetic field

When an atom is placed in a magnetic field, the wavelengths of lines
in its spectrum change slightly. Much of quantum mechanics emerged
from attempts to understand this phenomenon. We now use perturbation
theory to explain it.

In Chapter 9 we discussed the motion of a free particle in a uniform
magnetic field. Our starting point was the Hamiltonian (9.1), which gov-
erns the motion of a free particle of mass m and charge Q in the magnetic
field produced by the vector potential A. This is the Hamiltonian of a free
particle, p2/2m, with p replaced by p − QA. Hence we can incorporate
the effects of a magnetic field on a hydrogen atom by replacing pn and
pe in the gross-structure Hamiltonian (8.1) with pn − eA and pe + eA,
respectively.

The magnitude of A is gauge dependent, and we should choose a
gauge that makes |eA| small relative to |p|. Since atoms are very small,
it should be satisfactory to treat the magnetic field B as uniform within
an atom, so a possible choice is A = 1

2
B×x (page 255). We saw in §9.3.1

that shifting the coordinate origin along a vector a so x → x′ = x−a and
A → A′ = 1

2
B × x′ amounts to a gauge transformation. It is clear that

the values taken by A within the atom will be minimised if we place take
the coordinate origin at the atom’s centre of mass, so we will do this.

With Z = 1 the kinetic-energy term in the Hamiltonian then becomes

HKE ≡ (pn − 1

2
eB× xn)

2

2mn

+
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eB× xe)
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2me

=
p2n
2mn
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(
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pe

2me
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2mn

)

+O(|B|2),
(10.20)
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where we have taken advantage of the fact that p·B×x = B×x·p because
this triple scalar product involves only products of orthogonal components
of x and p, which commute with each other. Moreover, we can exploit the
usual symmetry of a scalar triple product to replace B×x ·p by B ·x×p.

We neglect the terms that are O(|B|2) on the grounds that when the
field is weak enough for the O(|B|) terms to be small compared to the
terms in the gross-structure Hamiltonian, the O(|B|2) terms are negligi-
ble. With this approximation, the magnetic field’s contribution to the
Hamiltonian is

HB ≡ eB ·
(

xe ×
pe

2me

− xn ×
pn

2mn

)

. (10.21)

Now we need to express HB in terms of the centre-of-mass coordinate
X and the position r of the reduced particle. From the definitions (8.3)
we have

xe = X+
mn

me +mn

r and xn = X− me

me +mn

r. (10.22)

Equation (8.4) and the corresponding equation for ∂/∂xn imply that

pe =
me

me +mn

pX + pr and pn =
mn

me +mn

pX − pr, (10.23)

where pX is the momentum associated with the centre-of-mass coordinate
X, while pr is the momentum of the reduced particle. In terms of the
new variables
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When we multiply out the brackets, the terms with X × pX will cancel
and what remains is

HB = 1

2
eB ·

{(
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me

+
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)
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1

me +mn
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+
mn/me −me/mn

me +mn
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}

.

(10.25)

We will require matrix elements of HB formed by squeezing the op-
erator between states of the set |pX〉|n, l,m〉 in which the atom has mo-
mentum pX and internal structure characterised by the usual quantum
numbers n, l,m. Since we have placed the coordinate origin at the centre
of mass, and we want the atom to be at rest in our coordinate system to
the extent that the uncertainty relation allows, in the states of interest
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both 〈X〉 = 0 and 〈pX〉 = 0. Consequently, the first two terms in our
expression (10.25) for HB, which involve X and pX, will not contribute to
the relevant matrix elements, and we can take the perturbing Hamiltonian
to be

HB =
e(mn −me)

2memn

B · r× pr ≃
eh̄

2me

B · L, (10.26)

where L = r × pr/h̄ is the usual orbital angular momentum operator. If
an atom has more than one unpaired (‘valence’) electron, each electron
will contribute a term of this form to the overall Hamiltonian. We can fold
these separate contributions into a single contribution HB by interpret-
ing L as the sum of the angular-momentum operators of the individual
electrons.

For future reference, note that since B · r×pr = B× r ·pr = 2A ·pr,
we can also write the perturbation introduced by a magnetic field in the
form

HB =
e(mn −me)

memn

A · pr ≃
e

me

A · pr. (10.27)

In §8.2.1 we discussed terms that must be added to hydrogen’s gross-
structure Hamiltonian to account for the effects of the electron’s intrinsic
dipole moment. We found that the coupling with an external field is
generated by the Zeeman spin Hamiltonian (8.76). Adding this to the
value ofHB given in equation (10.26), and orienting our coordinate system
so that the z-axis is parallel to B, we arrive at our final result, namely
that a uniform magnetic field introduces a perturbation

HBs =
eh̄

2me

B(Lz + 2Sz) = µBB(Jz + Sz), (10.28)

where S is the sum of the spin operators of all the valence electrons.
The Hamiltonian formed by addingHBs to the gross-structure Hamil-

tonian (8.1) commutes with L2, Lz, S
2 and Sz. Its eigenkets are simply the

eigenkets of the gross-structure Hamiltonian upgraded to include eigen-
values of S2 and Sz . The only difference from the situation we studied in
§8.1 is that the energies of these eigenkets now depend on both Lz and
Sz. Hence, each energy level of the gross-structure Hamiltonian is split
by the magnetic field into as many sublevels as ml + 2ms can take. For
example, if l = 0 and s = 1

2
, there are two sublevels, while when l = 1

and s = 1

2
there are five levels in which ml + 2ms ranges between ±2.

In practice the perturbation HBs always acts in conjunction with
the spin–orbit perturbation HSO of equation (8.77).3 The general case in
which HBs and HSO are comparable, requires numerical solution. The ex-
treme cases in which one operator is larger than the other can be handled
analytically.

Paschen–Back effect In a sufficiently strong magnetic field, HSO af-
fects the atom much less than HBs, so HSO simply perturbs the eigenkets

3 There is no spin–orbit coupling for an S state, but an allowed spectral line from

an S state will connect to a P state for which there is spin–orbit coupling. Hence the

frequencies of allowed transitions inevitably involve spin–orbit coupling.


