Group Theory for Graduates

Dr J.J. Binney

Hilary & Trinity Terms 1995

1 Basic Concepts

Group axioms Generators Cosets & classes Representations Equivalent representations Generation of inequivalent representations Irreducible representations

2 Schur's lemmas and orthogonality relations

Orthogonality relations; characters of representations; reduction of representations; the regular representation; reduction of a direct product representation.

3 Applications to quantum mechanics

Function spaces; commuting observables; dynamical symmetries; two-particle states & Clebsch-Gordon coefficients; Wigner-Eckart theorem.

4 Important Lie Groups

 \mathcal{R}^3 ; $\mathcal{R}(3)$; $GL(n,\mathcal{R})$; $SL(n,\mathcal{R})$; $SL(2,\mathcal{C})$; $\mathcal{O}(n)$; SO(n); U(n); SU(n).

5 General theory of Lie Groups

Summary of the theory; proof of key results; concrete calculations.

6 Infinitesimal generators

The Lie algebra $\Lambda(\mathcal{R}(3))$; the Lie algebra $\Lambda(SU(2))$ the Lie algebra $\Lambda(SU(3))$

7 Representations of Lie groups

Representations of $\Lambda(SU(2)) = \Lambda(\mathcal{R}(3))$; characters of the $D^{(j)}$ irreps; integration over a Lie group; Casimir operators.

8 Representations of SU(3)

Quarks and SU(3); Young's tableaux; colour;

9 The Lorentz Groups

The Lie Algebra $\Lambda(L)$; the Lorentz group with inversions; the Poincaré group.

Most topics are covered in either vol. 1 or vol. 2 of *Group Theory in Physics* by Elliott & Dawber (OUP).