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Further Quantum Mechanics TT 2014

Problems 3 (TT)

Exchange Symmetry

3.1 Show that when the state of a pair of photons is expanded as

|ψ〉 =
∑

nn′

bnn′ |n〉|n′〉, (3.1)

where {|n〉} is a complete set of single-photon states, the expansion coefficients satisfy bnn′ = bn′n.

3.2 Explain the physical content of writing the wavefunction of a pair of electrons in the form

〈x,x′|ψ〉 =







ψ++(x,x
′)

ψ−+(x,x
′)

ψ+−(x,x
′)

ψ−−(x,x
′)






. (3.2)

Which of these functions vanishes when the pair is a spin singlet? What relation holds between
the non-zero functions? Suppose |ψ〉 for a spin singlet can be expanded in terms of products of the
single-particle states |u,±〉 and |v,±〉 in which the individual electrons are in the states associated
with spatial amplitudes u(x) and v(x) with Sz returning ± 1

2
. Show that

|ψ〉 = 1

2
(|u,+〉|v,−〉 − |v,−〉|u,+〉+ |v,+〉|u,−〉 − |u,−〉|v,+〉)

and explain why this expansion is consistent with exchange symmetry.
Given the four single-particle states |u,±〉 and |v,±〉, how many linearly independent entangled

states of a pair of particles can be constructed if the particles are not identical? How many linearly
independent states are possible if the particles are identical fermions? Why are only four of these
states accounted for by the states in the first excited level of helium?

3.3 A state of a composite system can be expanded |ψ〉 = ∑

ij cij |A; i〉|B; j〉 in terms of products

of states |A; i〉 and |B; j〉 of the individual systems. What property does the matrix cij have if the
systems are not entangled in the sense that |ψ〉 can be written as a product |A〉|B〉 of states of each
subsystem? Show that this condition is always violated in the case that A and B are both electrons,
so any two electrons are always entangled.

Helium

3.4 Show that the exchange integral
∫

d3xd3x′
Ψ∗

1(x)Ψ2(x)Ψ
∗

2(x
′)Ψ1(x

′)

|x− x′|
is real for any single-particle wavefunctions Ψ1 and Ψ2.

3.5 The H− ion consists of two electrons bound to a proton. Estimate its ground-state energy by
adapting the calculation of helium’s ground-state energy that uses the variational principle. Show
that using single-particle wavefunctions u(x) ∝ e−r/a the expectation of the Hamiltonian is

〈H〉a = R(2x2 − 11

4
x) where x ≡ a0

a
. (3.3)

Hence find that the binding energy of H− is ∼ 0.945R. Will H− be a stable ion? [A more accurate
calculation shows that the binding energy of H− is 1.056R (C. L. Pekeris, Phys. Rev., 125, 1470
(1962)).]
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3.6∗ In terms of the position vectors xα, x1 and x2 of the α particle and two electrons, the centre
of mass and relative coordinates of a helium atom are

X ≡ mαxα +me(x1 + x2)

mt
, r1 ≡ x1 −X, r2 ≡ x2 −X, (3.4)

where mt ≡ mα + 2me. Write the atom’s potential energy operator in terms of the ri.
Show that

∂

∂X
=

∂

∂xα
+

∂

∂x1

+
∂

∂x2

∂

∂r1
=

∂

∂x1

− me

mα

∂

∂xα

∂

∂r2
=

∂

∂x2

− me

mα

∂

∂xα

(3.5)

and hence that the kinetic energy operator of the helium atom can be written

K = − h̄2

2mt

∂2

∂X2
− h̄2

2µ

(

∂2

∂r21
+

∂2

∂r22

)

− h̄2

2mt

(

∂

∂x1

− ∂

∂x2

)2

, (3.6)

where µ ≡ me(1 + 2me/mα). What is the physical interpretation of the third term on the right?
Explain why it is reasonable to neglect this term.

3.7∗ In this problem we use the variational principle to estimate the energies of the singlet and
triplet states 1s2s of helium by refining the working of Appendix K.

The idea is to use as the trial wavefunction symmetrised products of the 1s and 2s hydrogenic
wavefunctions (Table 8.1) with the scale length aZ replaced by a1 in the 1s wavefunction and by a
different length a2 in the 2s wavefunction. Explain physically why with this choice of wavefunction
we expect 〈H〉 to be minimised with a1 ∼ 0.5a0 but a2 distinctly larger.

Using the scaling properties of the expectation values of the kinetic-energy and potential-energy
operators, show that

〈H〉 =
{

a20
a21

− 4a0
a1

+
a20
4a22

− a0
a2

+ 2a0(D(a1, a2)± E(a1, a2))

}

R,

where D and E are the direct and exchange integrals.
Show that the direct integral can be written

D =
2

a2

∫

∞

0

dxx2e−2x 1

4y

{

8− (8 + 6y + 2y2 + y3)e−y
}

,

where x ≡ r1/a1 and y = r1/a2. Hence show that with α ≡ 1 + 2a2/a1 we have

D =
1

a1

{

1− a22
a21

(

4

α2
+

6

α3
+

6

α4
+

12

α5

)}

.

Show that with y = r1/a2 and ρ = αr2/2a2 the exchange integral is

E =

√
2

(a1a2)3/2

∫

d3x1 Ψ
0∗
10(x1)Ψ

0
20(x1)

×
{

1

r1

(

2a2
α

)3 ∫ αy/2

0

dρ (ρ2 − ρ3/α)e−ρ +

(

2a2
α

)2 ∫ ∞

αy/2

dρ (ρ− ρ2/α)e−ρ

}

.

Using
∫ b

a

dρ (ρ2 − ρ3/α)e−ρ = −[{(1− 3

α )(2 + 2ρ+ ρ2)− 1

αρ
3}e−ρ]ba

and
∫ b

a

dρ (ρ− ρ2/α)e−ρ = −[{(1− 2

α )(1 + ρ)− 1

αρ
2}e−ρ]ba
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show that

E =
2

(a1a2)3

∫

∞

0

dr1 r
2
1

(

1− r1
2a2

)

e−αr1/2a2

×
{

1

r1

(

2a2
α

)3
[

2(1− 3

α )− {(1− 3

α )(2 + αy + 1

4
α2y2)− 1

8
α2y3}e−αy/2

]

+

(

2a2
α

)2

{(1− 2

α )(1 +
1

2
αy)− 1

4
αy2}e−αy/2

}

=
8a22
α5a31

(

10− 50

α
+

66

α2

)

,

Using the above results, show numerically that the minimum of 〈H〉 occurs near a1 = 0.5a0 and
a2 = 0.8a0 in both the singlet and triplet cases. Show that for the triplet the minimum is −60.11 eV
and for the singlet it is −57.0 eV. Compare these results with the experimental values and the values
obtained in Appendix K.

Adiabatic Principle

3.8 We have derived approximate expressions for the change in the energies of stationary states
when an electric or magnetic field is applied. Discuss whether the derivation of these results implicitly
assumed the validity of the adiabatic principle.

3.9 Explain why E/ω is an adiabatic invariant of a simple harmonic oscillator, where ω is the
oscillator’s angular frequency. Einstein proved this result in classical physics when he was developing
the “old quantum theory”, which involved quantising adiabatic invariants such as E/ω and angular
momentum. Derive the result for a classical oscillator by adapting the derivation of the wkbj

approximation to the oscillator’s equation of motion ẍ = −ω2x.

3.10 Suppose the charge carried by a proton gradually decayed from its current value, e, being at
a general time fe. Write down an expression for the binding energy of a hydrogen atom in terms of
f . As α → 0 the binding energy vanishes. Explain physically where the energy required to free the
electron has come from.

When the spring constant of an oscillator is adiabatically weakened by a factor f4, the oscillator’s
energy reduces by a factor f2. Where has the energy gone?

In Problems 3.14 and 3.15 we considered an oscillator in its ground state when the spring
constant was suddenly weakened by a factor f = 1/16. We found that the energy decreased from
1

2
h̄ω to 0.2656h̄ω not to h̄ω/512. Explain physically the difference between the sudden and adiabatic

cases.

3.11 Photons are trapped inside a cavity that has perfectly reflecting walls which slowly recede,
increasing the cavity’s volume V . Give a physical motivation for the assumption that each photon’s
frequency ν ∝ V−1/3. Using this assumption, show that the energy density of photons u ∝ V−4/3 and
hence determine (without quoting results from thermodynamics) the scaling with V of the pressure
exerted by the photons on the container’s walls.

Black-body radiation comprises an infinite set of thermally excited harmonic oscillators – each
normal mode of a large cavity corresponds to a new oscillator. Initially the cavity is filled with
black-body radiation of temperature T0. Show that as the cavity expands, the radiation continues
to be black-body radiation although its temperature falls as V−1/3.


