Geometry & Physics

Prof. J.J. Binney

The course is designed to provide a self-contained introduction to the methods of coordinate-free differential geometry and describe some important applications of these concepts to mathematical physics.

The below are taken from the lecture notes, which may be downloaded from my webpage www-thphys.physics.ox.ac.uk/users/JamesBinney/

1 Basic equipment

- 1.1 Tangent vectors and Lie derivatives
- 1.2 Vector fields and Lie derivatives
- 1.3 Mapping manifolds
- 1.4 Tensors and forms
- 1.5 Exterior derivatives
- 1.6 Integration of forms

2 Hamiltonian mechanics

- 2.1 Canonical coordinates
- 2.2 Canonical transformations

3 Fibre bundles

- 3.1 Connections
- 3.2 Electromagnetism as a gauge field
- 3.3 Torsion and curvature
- 3.4 Cartan structural equations
- 3.5 General gauge fields and Lie groups
- 3.6 Yang-Mills theory

4 Riemannian spaces

- 4.1 The Hodge * operator
- 4.2 Riemannian connection