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Books

The single most useful book is B. Schutz Geometrical Methods of Mathematical
Physics (CUP). However, in preparing these lectures I have made extensive use of
N.J. Hicks Notes on Differential Geometry (van Nostrand). I believe this book to be
out of print, but it emphasizes completely coordinate free methods to a degree that I
find useful. My treatment of classical mechanics leans on V.I. Arnold Mathematical
Methods of Classical Mechanics. For gauge theories I have used L.H. Ryder Quantum
Field Theory and C. Quigg Gauge Theories of the Strong, Weak, and Electromagnetic
Interactions.



1 Basic equipment

A manifold M is a topological space S together with a collection of continuous 1-1 maps ¢, : U, — R"
between an open set U, C S and an open set of R™ for some integer n. The collection {U,} must cover

S.

The pair (¢4, U,) is called a chart for S. U, is called the domain of the chart. A complete set of
charts is called an atlas for M.

Example 1.1
A circle is a manifold. One chart is provided by the angle 6 and the open interval 0 < 6 < 2.
Since the origin is excluded from the domain of this chart, we need another chart. We could use 8
in the domain —7 < 6 < 7. Locally the circle looks like R', but globally it is quite different. This
difference gives rise to the need for more than one chart.

Since for s € S, ¢o(s) € R™ we may consider ¢, to provide n real-valued functions ¢!, on S, the
i*? such function returning the value of the it" coordinate of the point in R" to which s is mapped.

In U, N Ug we obtain a map ¢, © qﬁgfl : R* = R™ of R" into itself. The manifold is C'
differentiable iff all of the n? derivatives
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exist. It is C* differentiable if all higher-order derivatives up to k' ones exist. I shall assume throughout
that we shall are working with C'*° manifolds.

Example 1.2
We require at least two charts for the 2-sphere S2. These might be two systems of spherical polar
coordinates S — (1, ¢) with non-parallel polar axes. [So that the coordinate singularities at (0, 0)
do not coincide.] Thus ¢} =9, ¢? = ¢ for the first orientation of the polar axis. It is evident that
the map ¢y o ¢ !is in this case a complex trigonometric function of two arguments. Alternative
charts are provided by embedding the sphere in R3: then we can use ¢t = z,¢? = y, with U; the
hemisphere 2z > 0, and ¢} = z, $3 = y, with Us the hemisphere z < 0.

Exercise (1):
Explain why additional charts are required for the sphere in the last example, and supply same.
Let f be a real-valued function on some open set U C M. We say that f is a C* function iff all
the maps fo¢,! : R® — R are k times differentiable at all points x that satisfy ¢~1(x) € U N U,.
I shall henceforth assume that functions are C'*°. Given a point m € M, let F,, denote the set of all
real-valued functions that are defined in a neighbourhod of m. The coordinate functions ¢’ of any chart
are elements of F,,.

1.1 Tangent vectors

The big difference between curved and flat spaces lies in the nature of vectors. In a flat space we can
think of a vector as joining two points in the space. This idea fails in a curved space and we proceed as
follows. Let f,g € F, for m € M. Then a tangent vector X,, at m is map X,, : 7, — R that has
the following properties

Xm(af +bg) =aX,(f) +bXn(g) witha,beR

(1.1)

Xm(fg) = g(m) X (f) + f(m)Xm(g)-
The first condition states that X,, is a linear function. The second states that it obeys Leibnitz’ rule
for differentiating a product. We shall see that X,,,(f) returns the rate of change of f as one moves past
m along a curve that is tangent to X,, at a rate that is determined by the magnitude of X,,.
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Exercise (2):

Show from (1.1) that X, annihilates any constant function.

It is clear that if X,,, and Y,,, are tangent vectors at m, then so is Z,,, = aX,,, +bY,, for any a,b € R.
That is, the tangent vectors at m form a vector space in the sense of ordinary linear algebra. This space
is called the tangent space at m, T,.

Given a chart (¢,U) with m € U it is easy to see that the following are elements of T,:

(%Jm mﬂe(é%hjz;;h¢*@)ﬁnm:¢*@y (1.2)

On applying (8/0¢%),, to ¢/ € F,, it becomes clear that these are linearly-independent elements of 7,,.
It is not hard to show that they form a basis for the vector space 7,,. In fact, for any X,, € 7,, and
f € F. we have!

0

ook
The numbers X! = X,,(¢') are called the components of X, in the chart ¢.

Equation (1.3) shows that 7, has (as a linear vector space) the same dimension n as M. If M is
flat, and therefore itself a linear vector space, 7T, becomes indistinguishable from M, and this is why
we do not normally have to bother with 7,,.

Xon(f) = ixmw‘)( ) 1. (1.3)

Let C be a curve on M that passes through m and let ¢ € R be parameter which specifies a location
on C in such a way that ¢ = 0 corresponds to m. Then it is easy to check that (d/dc)g lies in T,.

1.2 Vector fields and Lie derivatives

A vector field X on U C M is a rule that assigns to each m € U a tangent vector X,,, € T,,. When
we apply X to f € F,, we obtain another function g € Fp,: g(m) = X, (f) € R. So vector fields map
Fm to itself.

If we apply a second vector field Y to the function X f, we get a further function Y X f. Does this

imply that Y X is itself a vector field? No, because we can show that (Y X),, satisfies only the first of
the defining conditions (1.1):

(1.4)
=Y ()Xo (f1) + F2(m)Yi (X (1)) + Vi (1) Xin (f2) + fr(m) Y (X (f2)).

The second and final terms in the last line are all that is required for satisfaction of the second of
conditions (1.1):
Srm)(Y X)m(f2) + f2(m) (Y X)m (f1)-

The other two terms in (1.4) are unwanted. Notice that we would get them also if we calculated
(XY),, f1f2 rather than (Y X),, f1 fo. From this it follows that commutator

[X,Y]= XY -YX (1.5)

is a vector field, since the unwanted extra terms from the two products will cancel. [X,Y] is called the
Lie bracket of X and Y or the Lie derivative £xY of Y, for reasons which will emerge shortly.

Exercise (3):
Show that P
(557 ag7) =0 Viod (1.6)
I The proof involves writing f(m') = f(m) + 3, ' f;(m'), where z* = ¢*(m') — ¢’(m) and the f; equal 8f /¢ at
m! = m. This done, one exploits the linearity of Xy, and the fact that it annihilates constant functions.
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We showed above that for any curve C the differential operator (d/dc) is an element of 7y,. In fact,
given a vector field X and a point m we can construct a curve such that near m, X = (d/dc) along the
curve. To see this we consider this system of coupled o.d.e.s:

d¢i (m.)

L= (Xe)m)  (i=1...m), (1.7)

where m. € M is the point that corresponds to ¢ € R. For sufficiently small U these 1st-order equations
have a unique solution with ¢'(mg) = ¢'(m). C(c) is called an integral curve of X.

Example 1.3
What is the integral curve of (9/9¢7)? For this choice of X equations (1.7) read

d¢i(m6) _si -
T_(Sj (i=1,...,n). (1.8)

so ¢! = const for i # j and ¢/ = c. i.e., the integral curves of a basis field run parallel to the
coordinate axes. Notice that (0/0¢") contains more information than just ¢ because its integral
curve depends on all the coordinate functions, not just ¢*().

Note:

By analogy with the case of the pair (¢¢, (0/9¢%)) people often write d/dc in place of X. The ad-
vantage of this notation is that it explicitly associates with a vector field its associated parameter c.
The disadvantages are (i) that it uses the symbol ‘d’ for something other than exterior differentia-
tion (see below), (ii) that it implies that X is defined by a function ¢, which it is not, and (iii) that
it can obscure the fact that that c is a real parameter on a curve, and can be incremented without
conceptual fuss. I usually prefer to denote a vector field by a capital letter and its parameter by
the corresponding small letter.

Equation (1.7) defines exactly one integral curve of X through any m € M. We use these curves
to define the exponential map exp(X) : M — M as follows. exp(X)(m) is the point one reaches by
integrating equations (1.7) from ¢ = 0 to ¢ = 1 from initial condition mo = m. The notation follows
from the evident fact that exp(X) o exp(X) = exp(2X), and more generally that exp(aX) o exp(bX) =
exp ((a + b)X). However, in general exp(X) o exp(Y) # exp(X +Y).

Taylor expanding the left side of (1.7) about ¢ = 0 we have for sufficiently small ¢

. 2 . (1.9)
= () + X (§1) + 5 X (X(6) 4+
Hence we have a Taylor expansion for the coordinates of exp(cX);
¢ (exp(cX)(m)) = ((1 X+ (C;i)z +---)¢Z‘> (m). (1.10)

Let us denote the power series in the operator X that appears on the right of this equation as e°¥.

Then we have

gzﬁi(exp(cX)(m)) = (eCngSi)(m) (1.11)

Now suppose we have two vector fields A, B and that we use the exponential map to push m first by a
parallel to A and then by b parallel to B. The coordinates of the final point exp(bB) o exp(aA)(m) are

¢' (exp(bB) o exp(ad)(m)) = (ebBe“Aqﬁi)(m). (1.12)
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If, on the other hand we push m first along B and then along A our final point will have coordinates
¢’ (exp(aA) o exp(bB)(m)) = (e”AengzSi) (m). (1.13)

Hence recalling that e?4 is just a shorthand for the power series in (1.10) we have that the difference
between the coordinates of the two final points is

@' ( exp(aA) o exp(bB) (m))
o (exp(0B) o explaa)m) = ( [e+4,687] " ) om) 114
= ((abl4, B] + O(a?)) ') (m),

If the integral curves of A and B were to mesh together to form a coordinate system, both end points
would have coordinates (a,b). Hence the integral curves of A and B form a coordinate system iff the
difference (1.14), which to lowest order is proportional to the Lie bracket, vanishes.

1.3 Mapping manifolds

Let M; and M- be manifolds (not necessarily of the same dimension) and let o : M; — M, be a map
between them. This map is said to be C*° if, in appropriate coordinate patches, ng,'ocwngj_1 R — R™2
is analytic, where ¢;, ¢; are coordinates for M; and M, respectively.

a induces a map Ty, — To(m) as follows: given f € Fo(m) and X € Ty, define (axX) € To(m) by
(X)) =X(foa). (1.15)
a, is called the Jacobian map of a.

Exercise (4):

Given a third manifold M3 and a C* map [ : My — Mj3, show that (8o a). = B« o .

For any vector field, the Jacobian of the exponential map maps tangent spaces into each other. The
image exp(X).Yy, of a vector Y, € T, under this map is said to the ‘result of Lie-dragging Y;, along
X

The following result explains the origin of the name of £xY:

exp(_tX)*)/exp(tX)(m) —Yn
r .

£xY = tlgr(l) (1.16)
1.4 Tensors and forms

As in ordinary linear algebra, an important réle is played by the linear real-valued functions on 7,.
We call these objects covectors or 1-forms. They form an n-dimensional vector space 7,%, called the
cotangent space. Thus if w € 7, we have

w(Xm) € R with w(aX,;, + b0Ys) = aw(Xp) +bw(Ye) (Xm,Yim € T a,b € R). (1.17)

Given any f € Fp,: we define a 1-form df like this. For any X,, € Tp,
df(Xm) = Xin(f)  (f € Ty Xin € Tin). (1.18)
Notice that here ‘d’ has nothing to do with an infinitesimal. Soon we shall generalize d into an operator

that makes a field of (n + 1)-forms out of a field of n-forms, so it is handy to regard elements of F,, as
fields of 0-forms. The result of using d on a form w is called the exterior derivative of w.
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Exercise (5):
Show that d(fg) = f(m)dg + g(m)df for f,g € Fin.
Given a chart ¢, we have n 1-forms d¢’. With (1.18) we have that

d¢i(8%j)m = 4. (1.19)

From this we can see (i) that the d¢’ are n linearly independent elements of 7, and therefore constitute
a basis for T, and (ii) that this basis is, in the usual sense of linear algebra, the one that is conjugate

to the (0/0¢"), basis for Tp,.

Exercise (6):
From (1.18) derive the chain rule

Z 54700 (X (1.20)

A second-rank covariant tensor or (g) tensor S is a real-valued bilinear function on the tensor
product 7, ® Tp. (The elements of a tensor product are simply ordered pairs of elements of the
producted spaces.) Thus S is a real-valued linear function with two slots: S(X,Y) € R. A second-
rank contravariant tensor or (;) tensor 7' is a real-valued bilinear function on the tensor product
T @ T, ie., a function with two slots T'(w,x) € R. It is obvious that one can go on to define all

manner of tensors including ( ) tensors, (}) tensors (functions on 7, ® 7.%) etc.

It is natural to classify homogeneous 2nd-rand tensors by symmetry: If 7" is a (g) tensor, from it
we extract antisymmetric and symmetric tensors:

A(X,Y)ET(X,Y)—T(Y,X), A(YaX):_A(XaY)v

S(X,)Y)=T(X,Y)+T(V,X); S(Y,X)=+S(X,Y). (1.21)

Antisymmetric () tensors play an especially important role and are called differential forms. (0-forms
and 1-forms are deemed to be antisymmetric.) A 2-form is an antisymmetric (5) tensor. A 3-form is
a totally antisymmetric (g) tensor, etc. Thus if F' and G are a 3-form and a 4-form, respectively,

F(X7Y7Z) = _F(Y’XaZ) :F(Y,Z,X) ="y

1.22
GW,X,)Y,Z)=-GX,W,Y,Z)=G(X,Y,W,Z)=-G(X,Y,Z,W) = (122)

Given two 1-forms w, y, we can form a 2-form as follows
(WAX)(X,Y) = w(X)x(Y) = w()x(X). (1.23)

Analogously we define the wedge product of three 1-forms as the totally antisymmetric part of the
tensor product:2

(WAXAD)X,Y, Z) =0(X)x(Y)(Z) + w(Z)x(X) (V) + w(Y)x(2)$(X)

— wV)X(X)(Z) = w(Z)x(Y)h(X) — w(X)x(2)(Y). (1.24)

If we are now given a 1-form w and a 2-form x we must clearly define w A x such that, if y were itself a
wedge product xy = 1 A n of 2 1-forms, we would have

WAX=wA () An). (1.25)

2 There is no 1/n! in front of the definition of the wedge product of n 1-forms.
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The required rule is
(WAX)X,Y, Z) =w(X)x(Y, Z) + w(Y)x(Z, X) + w(Z2)x(X,Y). (1.26)
Proceeding in this way one may show that if w and x are p- and ¢-forms, respectively, then
1 ™
(WA X) (X1, o0, Xpyg) = ol DD O(Xry s X X Xy X)) (1.27)
Here the sum is over all permutations 7 of the numbers (1,2,...,p+ ¢) and (—1)" is =1 depending on
whether the permutation is even or odd. With this rule we have
wAx=(-1PxyAw. (1.28)
It is straightforward to check that with these definitions the product is associative:

WA(XAY)=(wAx)AY. (1.29)

The wedge product of 4 or 5,. .., 1-forms is similarly defined to be the totally antisymmetric part of the
relevant tensor product. It is trivial to show that w A (ax) = aw A x for a € R.

Since a 2-form is linear in each slot, we can evaluate it on any set of vectors if we know the values
it takes for all possible pairs from a set of basis vectors:

w(X,Y) :w(zijxia%i,zjjwazi)
= %:Xinw(%, 8;251)

Hence the number of linearly independent 2-forms is equal to the number of pairs of distinct basis
vectors, namely %n(n —1). Hence any 2-form can be expanded in terms of coordinate forms as

(1.30)

w = Z Wijd¢i Ad¢?,  where wij = w(@%ﬁi’ E%J)
=

(1.31)

Similarly, the number of linearly independent 3-forms is 3;n(n — 1)(n — 2) and so on. In particular there
is only 1 linearly independent n-form, and there are exactly as many linearly independent n — k forms
as there are linearly independent &k forms.

1.5 Exterior derivatives

Equation (1.18) defines the operator d that makes a field of one-forms from a field of 0-forms. It is a
derivative operator of a sneaky kind: it uses the derivative power of the extra argument for which it
makes space rather than doing any differentiation itself. Consider the following scheme for making a
two-slot function out of a 1-form:

(6w)(X,Y) = Xw(Y) — Yw(X). (1.32)

This object is antisymmetric and a linear function of both its arguments. Yet it in not a 2-form! The
trouble is that its value at m does not depend only on X,,, but also on the values of X in an entire
neighbourhood of m. (To see this, evaluate dw on the field aX, where a € F,, satisfies a(m) = 1.) An
object that does depend only on X,,,Y,, is dw, which is defined by

(dw)(X,Y) = Xw(Y) - Yw(X) — w([X,Y]). (1.33)

Exercise (7):
Prove the last statement by showing that dw(Z,Y) =0V Z s.t. Z,,, = 0.
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Exercise (8):
Show that
ddf =0. (1.34)

The action of d on a general p-form x is defined by

p+1
(@) (Xrs- s K1) = S (=D XX (X, Koy Xpi)
‘ (1.35)

j=1
+ Z(—l)i—i_‘jx([Xi,Xj],Xl, ‘e ,Xi, “e ,Xj, . ,Xp+1),
i<j
where a hat indicates that that item should be omitted from the list. In words this says, that first you
use each argument in front with the others inside x and then you put the commutator of each pair in
the first slot and the remaining arguments following in order. Meanwhile you keep alternating the signs
in front of your terms.
If we expand dx as a linear combination of coordinate forms as in (1.31), we get a reasonably simple
expression for the expansion coefficients because all the basis fields 8/9¢* commute:

it x= > xijk.d¢' Adg -
i<j<k...

then dy = Z dxijk... Ndg' Adg -

i<j<k...

(1.36)

(The proof of the second line simply involves evaluating the action of both sides on an arbitrary collection
of basis fields (9/9¢").)

The following rules for exterior differentiation follow easily from the coordinate representation (1.36)
and equation (1.34):

o d(w+x)=dw+dyx;
e d(wAyx) = (dw) A x+ (—1)Pw A (dx) where w, x are p, ¢ forms; (1.37)
e dd=0.

When dw = 0 we say that w is closed. If w = dy, we call w exact. We have just seen that all exact
forms are closed. On a non-trivial manifold the converse is untrue: there exist non-exact closed forms.
The existence of such forms depends upon, and is an important diagnostic of, the global topology of the
manifold. Poincaré’s lemma states that on R"™ all closed forms are exact. Since locally every M is
like R"™, given dw = 0 we can always find x such that w = dy in a (often large) neighbourhood of any
point.

1.6 Integration of forms

If you have an p-form w and a p-dimensional (sub)-manifold N, then you can integrate w over N as
follows. First set up a coordinate grid (u!,...,u?) on N. Then work out the Riemann integral

0 0

where du is an infinitesimal, not a 1-form. That is, at the centre of each small cell on NV we evaluate w
on the vectors conjugate to the coordinates, and then add the resulting numbers for each cell. For the
definition (1.38) to make sense it is clearly important that [ w should be independent of what coordinate
system u’ that we place on N. Let’s rewrite (1.38) in terms of new coords (v!,...,v?). By (1.3)

0] ol 9

out - oui Ovi”
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We substitute this expansion into w in (1.37) and exploit the linearity of w to extract the coefficients of
the (8/0v?). By the complete antisymmetry of w we find

(o) = Ao (D), (1.39)

g awr) = ot e \aur e

where 9()/0() denotes the usual Jacobian determinant. On the other hand, from conventional calculus

we have
A(ul,. .. uP)

A(vt,...,vP)
When (1.39) and (1.40) are used in (1.37) the two Jacobian determinants cancel by the usual theorem,

so that 5 5
= oo P = —
/w—/dv dv w(avl,...,avp). (1.41)

Hence it does not matter what coordinate system you use to evaluate [ w.

dut - du? = do' - do?. (1.40)

The exterior derivative has been defined such that integration by parts yields Stokes’ theorem

/Ndw:/asz’ (1.42)

where ON denote the boundary of the (p + 1)-dimensional region N.

Proof: We break N into small (but not infinitesimal) regions N’ that can be covered by a single chart
and first prove the result for such a region. We use coordinates designed for the job: the integral curves
of (8/0¢4°),...,(0/0¢P) lie in N', and the boundaries of N’ coincide with surfaces ¢¢ = const. From
the second of eqgs (1.36) we have

n—1
dw=> Y Oijhoe g s p dgi A dgpl - - (1.43)

a [}
a=0i<j<k... ¢

The value of this on (8/9¢°),...,(0/0¢P) is

d A W 0Wor 4 p

where the hat again implies that that item should be omitted from the list. Hence

o (1.45)
= (—l)a/dqﬁo"'@"'d(ﬁp [WOI...&...p]z:fw-

But the last expression is simply fBN’ w. Indeed, by construction each of the 2(p + 1) faces of N is a
surface of constant ¢’ and they come in pairs: left and right faces. Each term in the sum over «a is the
sum of integrals of w over these faces. The alternating sign out front varies the order in which left and
right are taken. This ensures that we integrate ‘around’ the boundary. For example the ordinary line
integral

7[} dl-A:/0 dz (A (z,0) — Ag(z, 1)) —/0 dy(4,(0,y) — A(1,y)).

When we add the result we have proved for N’ over all N’ C N (1.42) follows because the contributions
from common faces of adjoining N’ will cancel, leaving only the contribution from the various parts of
ON.
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2 Hamiltonian mechanics

The Hamiltonian mechanics of a time-independent system with N degrees of freedom takes place in
phase space M of dimension n = 2N. This space is structured by a closed 2-form w that has the
property that if w(X,Y) =0 VY, then X = 0. It is called the symplectic form.

The physics of the system is specified by a O-form H(m). Specifically, systems move with time ¢
along a vector field H, whose parameter ¢ is. H is related to H by

w(,H) =dH. (2.1)
Analogously with (2.1), w enables us to associate a unique vector field F with any function f:
w(, F) =df. (2.2)

Note:

More generally, w establishes a 1-1 correspondence between the elements of 7. and those of 7p,.

Exercise (9):
Prove that F is unique.

Now the rate of change of the local value of f as one moves with a system is

dr _

o7 = Af(H) = (M, F) = —dH(F). (2.3)

The function {g, f} = w(F,G) is called the Poisson bracket of f and g. (Notice the reversal of order!)

Corollary
H = constant along any trajectory.

Let S be a surface in M and let S’ be the surface obtained when every point in S has been evolved
for time ¢. Then the Poincaré invariant theorem states that fs w = fS, w.

Proof: Consider the cylinder C that is bounded by S, S’ and the trajectories that carry points on
0S into points on S’ — let R denote this last ‘curved’ part of the cylinder. Since dw = 0, we have on
applying Stokes’ theorem to the interior of C' that fac w = 0. Since 9C is made up of S, S’ and R, we

have
—/w+/w+/w:0. (2.4)
s ' R

where the first term has a minus sign because we choose to orient both S and S’ in the same sense
while Stokes’ theorem requires opposite ends of a volume to have opposite orientations. To evaluate
S w we need to choose two coordinates for R. One obvious candidate is t. A second coordinate s can
be generated by deciding on any scheme for denoting position around 0S such that the same point
corresponds to s = 1 as to s = 0. (i.e., after incrementing s by 1 you’ve gone right round 9S.) Then
the points (s,t) € R is the point s € 35 reaches at time t. We have

/Rw:/otdt/oldsw(%,’}-l)
:/Otdt/oldsdH(%)
:/Otdt/olds(%—f)

- / At [H(s(1)) — H(s(0))] = 0.

Thus wa =0 and it follows that fs w = fs' w as stated.
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/w/\w:/ wAw
S4 A

/w/\w/\w:/ WAwWwAwW (2'6)
Se !

6

Immediate corollaries are that

where successive lines relate integrals of dimension 4,6, ..., n. The n-dimensional version of this result
is known as Liouville’s theorem.

2.1 Canonical coordinates

Coordinates (p,q) in which w takes the simple form

N
w = Z dp' A dg’ (2.7)

are called canonical coordinates. Notice that w is closed because w = d Zipidqi. When N copies of
w are wedged together, the result is essentially the standard measure of phase-space volume:
WAwWwA--Aw=N!ldp' Adg' Adp®> A--- AdgN

Note:

Canonical coordinates may be constructed for any symplectic form such that any given field X
coincides with (9/0p'). The construction is closely analogous to Gram-Schmidt orthogonalization.

We recover Hamilton’s equations by determining the action of H on canonical coordinates:

= (35) = (St nat) (g-%)
= dqi(H) =H(q") = ¢’
()~ (St nad) ()

= ~dp'(H) = ~HG) = 1

More generally this calculation shows that in canonical coordinates the relation between a function f
and its vector field F is

. (2.8)

oq'

. 0
5 Fp') = a;
F= Z ( (q )8—) where i (2.9)
To find the canonical form of the Poisson bracket we calculate®
af 9 af 9 dg 0 dg 0
lo.f}=wl(7.9) = de A dg (Z oy 0g 9 op'’ zj:apﬁaqf dq7 Op7
(2.10)

(2000 00 0
p 8qk 8pk 8pk aqk ’

For each function f the operator {, f} is manifestly a vector field, and comparison of (2.10) with
(2.9) shows that it is precisely the field F that the symplectic structure associates with f.

3 Notice the reversal of the order of f, g in the definition of {g, f1.
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Theorem 1

Poisson brackets satisfy the Jacobi identity

Hf g}, by +{{g,h}, f} +{{h. f},9} = 0. (2.11)

Proof: Every term in the sum on the l.h.s. of (2.11) contains a second derivative of one of f,g,h
Any 2nd derivatives of h must arise from the partial sum {{g, h}, f}+ {{h, f}, ¢g}- By the nature of the
operator {,a}, this partial sum equals [G, F]h. But since the commutator of any two fields is itself a
field, [G, F]h can contain only first derivatives of h. By symmetry it follows that the Lh.s. of (2.11) can
contain no 2nd derivatives of any function, and must vanish.

Exercise (10):
Show that [F, ] is the vector field associated with {f, g}.

Exercise (11):

An important tool in studies on integrability and chaos in systems with N = 2 is a surface of
section (SoS). This is a plot of (p',q!) at points on an integral curve of # at which ¢> = 0 and
p?> > 0. Given a point in the SoS and a value E of H we can solve H(p,q) = E for p?, and
then (numerically?) follow a trajectory until it next returns to the SoS. For a fixed value of E
this procedure defines the Poincaré return map of the SoS onto itself. Show that this map is
area-preserving. [Hint: first show that (P, Q, H,t) provide canonical coordinates for phase space,
where P, () are the coords at which the integral curve of A through a given point last hit the SoS
and ¢ is the time elapse between this hit and the given point.]

2.2 Canonical transformations

Suppose {P?,Q'} is another set of canonical coordinates. Then w = d)_, P¥dQ* = 4, p*dq"
(locally)

> (PRAQF - pFdg*) = dS (2.12)
k

for some function S. If we take as coordinates of this function S(Q, q), we have

ds = Z (anko + —d ) (2.13)

Equating coefficients of dQ* and dg* between (2.12) and (2.13) we conclude that

oS oS
k _ k_ 72
P" = 508 D o (2.14)

One says that S has generated the canonical transformation {p,q} — {P,Q} through (2.14)

Exercise (12):
By writing w = —d ), Q*dP* obtain

a5 » 08

k_ 90 _ 95

for a generating function of the form S(P, q)

Here there has been time to only sparsely sample the geometrical aspects of Hamiltonian mechanics.
Much more on this topic can be found in V.I. Arnold’s beautiful book Mathematical Methods of Classical
Mechanics (Springer).
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3 Fibre bundles

Much of physics takes place on a fibre bundle. To construct one of these, E, we attach a manifold
F' (the fibre) to each point on the base space M. So to specify e € E we specify m € M and f € F
and say e = (m, f). Usually the fibre carries more structure than M. For example it might be a vector
space as in the tangent bundle, in which an element ¢ € 7, is associated with m € M, and in the
analogously defined cotangent bundle. Another example of a fibre bundle is provided by the quantum
field of a spin-0 particle: at each point m the value of the field is a complex number ¢ € C. In certain
circumstances (a ‘broken’ symmetry) |¢| will everywhere take essentially the same value, and the fibre
is for most purposes the circle S'. Broken symmetries of fields that lie in spaces of higher dimension
make F' into still more non-trivial spaces.

A chart for E obviously contains charts for both M and F. Let e = (m, f) lie in the intersection of
the domains Uy, Us of two charts, ¢; and ¢2. Then gzﬁfl 0 ¢ is map FF — R"™ — F of F onto itself. By
choosing charts with sensibly aligned coordinate systems we can ensure that this map is the identity and
&1(f) = ¢2(f). But can we choose coordinates for all fibres such that ¢;(f) = ¢,(f) simultaneously for
every pair of charts 7, j at all points in U; NU;? If this can be done, the bundle is ‘trivial’ and is globally
just the tensor product M ® F'. The interesting case is when we cannot avoid mismatching coordinates
somewhere. Then the smallest possible set of transformations gzﬁ;l o¢; of F — F'is a non-trivial group,
the structure group of the bundle.

The classic example of a non-trivial bundle is for M a circle and F' a line. This bundle can be
represented by a strip of paper whose ends have been glued together. If the band forms a cylinder, the
bundle is trivial, while if it forms a Md&bius strip the bundle is non-trivial and the structure group is

{1,-1}.
3.1 Connections

We assume that it makes sense to add points on a fibre F'. For example, in the case of a spin-0 particle,
a point on the fibre is a complex number ¢ (m), and these can be added. A ‘connection’ is a rule that
specifies how we are to difference points that lie on different fibres, as is essential if we are to evaluate
the gradient of ). We first define a connection for the tangent bundle.
A connection D for M assigns to each pair of vector fields X,Y on M a third vector field Dx (V)

such that

o Dx(Y+2)=Dx(Y)+ Dx(2);

* Dx1y(Z) =Dx(Z)+ Dy (Z);

e Dyx(Y)=fDx(Y);

e Dx(fY)=X(f)Y + fDx(Y).

Here f € F,,. According to this definition D is fully linear in its subscript and is a derivation in its
argument. Heuristically, DxY is the rate of change of Y as you move along the integral curve of X.

(3.1)

Application of D to f € F times a constant field shows that it is expedient to extend the operation
of D to functions (rank () tensors) by the rule

Dxf=X(f). (3.2)

We extend the action of D to (2) tensors by the following rule:

k
(DxT)(V1,...,Yi) = X (T(V1,...,Y3)) = > T(Yi,...,DxV;,...,Y}). (3.3)

i=1
For example, for 1-forms w and 2-forms p we have

(Dxw)(Y) = X (w(Y)) —w(DxY)
(Dxp)(Y,2) = X(p(Y. Z)) — p(DxY, Z) — p(Y,Dx Z).
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Heuristically, DxT evaluated on the Y; is the part of X acting on the scalar T'(Y7,...) that is due to
the change in T rather than changes in the Y; as one moves along an integral curve of X.

Now that we have defined how D acts on forms, it is straightforward to define the action of D on
an arbitrary ( ) tensor T in precise analogy with (3.3).

If we are given a curve C(c) on M through m and Y,,, € Ty, then there is a unique field Y'(¢) on C
such that Y'(0) = Y,,, and D(q/4c)Y = 0. The values of Y for field are said to be the result of parallel
transporting Y,,, along C.

Proof: Let (¢,U) be a chart for m € U. Then define functions T;-k € Fm by

Ds/0%) (8¢7) Z ik 8¢’ (3.5)

Then by the 4th rule above Y = Y, Y(9/d¢%) has to satisfy

dy’ ng
0= Djae)Y = Z ( + ZY Jk> PR (3.6)
Thus we have to solve the linear first-order o.d.e.s

a7 Zw d¢k i, = 0. (3.7)

These equations have a unique solution.
F;k is called a Christoffel symbol. For fixed £ the matrix 6;- + " I‘;k gives the amount by which
the frame of the basis fields rotates as one moves d¢* along the k-axis.

The definition of D above for the tangent bundle generalizes easily to other fibre bundles. We
recognize that in general we have two sorts of vector fields, namely ones that lie in the tangent bundle
of the base manifold and ones that lie in the fibre bundle under consideration. D’s subscript field X
specifies a direction, so it lies in the tangent bundle, while D’s argument field Y lies in the fibre bundle.
Suppose ey, ..., e, are basis fields for the fibres. Then

n p
) .
X = ZXZW. Y = Z Yie (3.8)
i=1 i=1
and the Christoffel symbols are now defined by

Di(s)06)€5 = erkez (3.9)

Hence the second lower index of I" runs from 1 to k& while the other two go from 1 to p.

3.2 Electromagnetism as a gauge field

There is one very important case in which we can suppress the first two indices of I' entirely. This is
when the fibre is a part of the complex plane; we define e; = 1, es =i so that Y = R(Y)e; + S(Y)es
and we extend the operation of X to a complex function such as Y by the obvious rule X (V) =
X (R(Y)) + X(S(Y))i. Now for each k the sum L I‘Jke, is a complex number that is proportional
to Y, so it is plausible that we can write it as a product of the complex product of Y and some complex
number [';. An explicit calculation reveals when this is possible. Obviously,

Y VIThe; = YT = (R(V)R(Tx) — S(V)S(Th))er + (ROV)S(Tx) + S(YV)R(Tx))es (3.10)

ij
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so comparing coefficients of, for example, £(Y") and e; we discover that we require

I =S(Tr) T35 =R(Tx)

These restrictions on the I‘j.k reflect the fact that multiplication by a complex number (I'y) can only
effect a conformal transformation of the complex plane.

When the Christoffel symbols satisfy the symmetry of equations (3.11), we have for a 1-dimensional
complex fibre

n
DxY =X(Y)+ ) X'VTy. (3.12)
k=1

Let’s write this in conventional notation with ¢! = z?, Y = 4, T}, = —i(¢q/h) A}, and multiply through
by —ih for fun:

We recognize this as just the it component of the quantity which appears squared in the Hamiltonian of
a charged particle. Thus, in this interpretation the electromagnetic potential A is the Christoffel symbol
of a connection. The idea behind all gauge field theories, such as QED and QCD, is that interactions
between fields arise because some fields (‘gauge fields’) furnish connections for the fibre bundles that are
associated with particle fields. We shall see below that the field equations of a gauge field are determined
by the symmetry group of its fibre.

3.3 Torsion and curvature

DxY is not a tensor because it does not depend only on the value that Y takes at m. Two tensors are
associated with it though, the torsion 7" and the curvature R:

T(X,Y)=DxY — DyX — [X,Y] (3.14)
R(X,Y)ZEDnyZ—DyDXz—D[X’y]Z ’

T is manifestly antisymmetric in its arguments and R is manifestly antisymmetric in its first two
arguments. Clearly T is defined only for the tangent bundle, whilst R is defined for any fibre bundle.

Exercise (13):
Show that T is a tensor by showing that T(fX,Y) = fT(X,Y) for f € Fp,.

Exercise (14):
Show that R(fX,Y)Z = fR(X,Y)Z for f € Fp,.

Given the result of the last exercise, to show that R is a tensor we have only to show that for
f€Fm, RIX.YV)fZ = fR(X,Y)Z:

RX,Y)fZ=Dx((Yf)Z+ fDyZ) —Dy((Xf)Z+ fDxZ) — ([X,Y]f)Z — fDix yZ
=(XYNHZ+ Y[ )DxZ+ (Xf)DyZ+ fDxDyZ — (YX[)Z
—(Xf)DyZ - (Yf)DxZ - fDyDxZ — ([X,Y]f)Z — fDix v Z
— fR(X.Y)Z.

(3.15)
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3.4 Cartan structural equations

Since D is linear in its subscript, from (3.9) we have

DXej = ZXkD(8/3¢k)€] ZX F]ke,
k

= Zw;-(X e
i

(3.16a)

where

=> X'T, & T =uw) (a?bk) (3.16b
k

We can recast this definition in a form that does not mention the Christoffel symbols by introducing
the 1-forms w? dual to the basis vectors e’:

w'(e;) =65 =  wi(X)=w'(Dxe;). (3.17)

Dxy =% (X(Yi) +3 Yiwi (X))e,». (3.18)

We now calculate curvature tensor in terms of the Cartan forms w' and w; We define a set of
real-valued 2-forms by

In terms of w , DxY is

XYeJ_ZR’ X,Y)e (3.19)

and substitute this equation into the definition of R along with X = 3~ X'e; etc. We find the second
Cartan structure equation:
. . . .
Ri = dw} + Y wj Awh. (3.20)
k
This equation provides an alternative demonstration that R is a tensor by showing that it is soundly
constructed from forms.

Exercise (15):
Define a set of 2-forms by T'(X.,Y) = 37 | T*(X,Y)e;. By substituting this expression for T into
(3.14), obtain the first Cartan structure equation:

T =dw' + > wiAw. (3.21)
J
With (3.16b) it follows immediately from (3.20) that
o 0
i
= (e )

:aZaw;‘(a%b) azb (aw)*zk:{“’

ari,  ori,
= b _ o PR A S
dpe 9 zk:{ kel — ThoT, }-

Taking the exterior derivative of (3.20) yields an important identity:
AR} =3 (dwj A wt —wj A duw})
k

= Z ((RZ Zwk, A wk w — wk (R;c — Zw',z, /\wfl)) (3.23)
k K

:Z(Rz/\wj —w}C/\Rf)
k

This is the Bianchi identity.

.

(a¢a) (%)—wi(%)wf(a%l)} (3.22)
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Exercise (16):
Show from the Bianchi identity that

;kl;m + Rj‘lm;k + R;"mk;l =0 (324)

where A.;, = Dg/94m)A. [Hint: the calculation is horrendous unless carried out in a frame in
which w} = 0 at m. Argue that each term in (3.24) is a tensor and can be identified from its value
in any given frame.)

Example 3.1
In electromagnetism I'y, = —i(q/h) Ak, so equations (3.11) tell us that for real Ak the only non-zero
T are Ty, = =T}, = (¢/h)Ax. Also ey =1, e3 =is0o w' = R and w? = 3. Hence the only non-
zero w' are wj (0/0¢%) = —w?(0)0¢*) = (q/h)Ay. Tt follows that wi A w = 0 so that R} = dw!.
There are two non-zero curvature forms, R} = —R? = (q/h)dA. Spec1ﬁcally,
0 0 04,  0A;
(557 507) = @M (557 — 550 ) (3.25)

We recognize R} as q/h times the Maxwell field tensor Fjj,. In this case the Bianchi identity reduces
to dF' = 0, which represents four of Maxwell’s equations.

The geometrical significance of R is revealed by calculating the change in a vector Y,,, when it is
parallel transported around a closed curve C(c¢). By (3.7) we have at each point on the curve

dy? degb
= — YT 3.26
de Z de b ( )
7b
Consequently, the total change in each component Y on going around is
AYi = — f > de" YT, (3.27)
jb

In this integral both T, and Y7 are functions of m' = C(c). However, if we consider only infinitesimal
loops we may expand each component of I" and Y in power series about m:

) ori
Ty (m') = Ejy(m) + 36 ¢G»Mf+m
gy " (3.28)
Yj a a
(m' +Z¢ — 0" m) G|
Multiplying these two expansions together and substituting the result into (3.27), we get
4 oYi OT
b i v i J jb a N _ A
}{qu& F YI) <r]b o Y )m(qﬁ (m') — ¢%(m)) + } (3.29)

jab

Since the first term in I' is constant, it can be taken outside the integral sign. Summing its coefficient
d¢®(m') around our closed curve we then obtain zero. Now we note that (3.26) implies that

Z <a¢a +ZY'“ > - (3.30)

Integrating this expression around C' we find

Z % (¢a(m/) _ ¢(l(m)) = — Z (Ykria)m(qﬁa(m/) _ ¢a(m)) + O(CQ), (331)
@ m ak
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so we may eliminate (9Y7/0¢®) from (3.29). Then we have

F;:b j i J k b , @ , a
_ aYJ_ FJ.FGY dgb(m') (¢%(m") — ¢%(m)) + - -
%(% 2. Tul )mf ( )

oT o
-5 (G- Sornrd,) vt fastm) ot +-
ab ik m

AY?
(3.32)

A plot of the (¢, #°) plane shows that the integral in (3.32) equals an antisymmetric object S?° which,
for a # b, is numerically + the area inside the projection of our path onto the (¢%, ¢*) plane. Since only
the antisymmetric part of an object contributes to the contraction of that object with an antisymmetric
object, we may write

Z. ori, dri, i i s
AY'! = %Z < 8¢]jzb — T;b + erarib - Fjbria> yhget
kab J

= % ZRéabykSab'

kab

(3.33)

Here the (3.22) has been used to obtain the second equality. Since the numbers AY? are the differences
in the coordinates of two vectors in T, (Y before and after parallel transport around the loop), they
are themselves the coordinates of a vector in 7y,. In fact, we can write (3.33) in coordinate-free form as

AY =1 / R()Y, (3.34)
S

where S is a 2-surface that is bounded by C() and we exploit the fact that R() is a (matrix-valued)
2-form.

The physical idea underlying a gauge theory is that it takes energy to bend a dynamical field, so
that fields try to run straight, i.e., to be parallel at neighbouring points. In the presence of non-zero
curvature it is impossible for a field to run straight. Hence curvature should be associated with a
non-zero energy density. We shall ask below how this might be quantified.

3.5 General gauge fields and Lie groups

Before we try to quantify the energy density of curvature, let’s look at connections when a bundle’s
fibres support a representation of a Lie group* — as they do, for example, in high-energy applications.

In these applications each fibre is a p-dimensional vector space which supports an irreducible repre-
sentation (‘irrep’) of some Lie group G. For example, the Dirac electron field 1) is a 4-dimensional object
which supports the (%, 0) irrep of the Lorentz group. Similarly, each quark field ¢ is a 3-dimensional
object that supports the D(1:9) irrep of SU(3) (flavour). By ‘supporting an irrep’ we mean that each
element of G is associated with a linear transformation of the fibre into itself. When these transforma-
tions are expressed as matrices by the choice of a coordinate basis {e;} for the fibre, we find that these

matrices have the characters (traces) that are peculiar to the given irrep.

We are obliged to specify points on a fibre by a set of p numbers — the coordinates of that point
in a given basis. But any two coordinate systems that can be made out of each other by one of G’s
representing transformations are in some respects physically equivalent. Hence on neighbouring fibres we
are likely to be using coordinate systems that are related by a non-trivial transformation — a generalized
rotation. The job of the connection is to tell us if there is such a rotation, and, by compensating for it,
to recover the real difference between the values of ¢ at neighbouring points of the base manifold M.

We first examine how the connection works when there is no curvature, so a universal standard of
alignment can be set up by parallel-transporting a particular frame {e;} from m to all fibres. We call

4 My lecture notes on group theory are on my webpage, www-thphys.physics.ox.ac.uk/users/JamesBinney/
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this parallel frame {e§p)} and denote by {e;} the frame used at a general point m’. We assume that
the generalized rotation between the {e;} and {eg-p )} frames tends to the identity as m’ — m. Near the
identity transformation, all representing matrices are of the form T = exp(—i), a OFy (k)), Where the

a® are real numbers, the T(x) are matrices that represent the infinitesimal generators of G, and the
operator exp may be defined by the usual power series.® So

€l = exp(—iZa(k)T(k)) -egp)
k

(3.35)
~ (I — iZa(k)‘r(k)) . eg-p).
k
We now let m’ — m bearing in mind our assumption that in this limit a*) — 0. We find
w'(Dxej) = w! = —1Zda k)J (3.36)

where T(ik)j = w'(7(y) - ;) is the k'™ generator written in the {e;} basis. From (3.18) the action of the
connection can now be written

Dxy =3 (X(v) =i 3 VI da®) (X) iy, Jer (3.37)
i ik

Equation (3.37) gives the form of the connection when there is no curvature. In the general case the
1-forms da® in (3.37) are replaced by inexact 1-forms A%, so

= —IZA T(k
Dxy =% (X(Yi) —i Y VAP (X)), e

(3.38)

The 1-forms A®) are generally considered by be a set of n, vector gauge potentials labelled by &.
When X is a basis field, (3.38) reads

ayi .
DojosmY = (875& —i Y VAP e, (3.392)
i ik
where 9
(k) — 4(k) _ o
A = 4 ((%a) (a=1,...,n; k=1,....n,). (3.39b

Gauge transformations

Let {e;} and {e;} be two sets of basis fields that are related by a position-dependent gauge trans-

formation .
6; = Z Ti]ej, (340)
J

where T(g) is one of the representing matrices of the fibre’s group G. We often need to be able to
express the Cartan form w}’ of the {e}} system in terms of wj. Before we begin the calculation proper,
we establish some basic relations. Let

Y =) Yie=> Y. (3.41)
i J

5 The number of infinitesimal generators is equal to the dimension ng of G: for SU(2) it is 3; for SU(3) it is 8 etc.
The matrices, 7, used here are complex but Hermitian objects.
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Then immediately

YE=3"viTk = v =) "vEy! where ) Ttk =65 (3.42)
J k i

Since t is the right inverse of T and every right inverse is also a left inverse, we have ), t T = 627 .
Using this on (3.40) we find

ej = ti'e}. (3.43)
i
Now we calculate

> wi™(X)ey, = Dx(ef) =Y Dx(T;"e))
jk

m

= 3" (X(Tj")er + T Dx (ex))
- (3.44)
=57 (X(TMer + TS wh(X)er)
1

= S (X @M + TS wh (X)) el
l

When we now use (3.38) to eliminate the Cartan forms we find that the gauge fields transform thus

S AMX) ;= 3 (X @M + Y A COT ™). (3.45a)
n k In

Bearing in mind that the 7 are skew-symmetric, in matrix notation (3.45a) reads

> A (X7 = —iX(T) - T + 3 A (X)T -7, - T (3.45D

We can clean up equation (3.45b) by defining a matrix-valued 1-form

A= Z A(k)'r(k). (3.46)
k=1
Then
A(X)=—-X(T)-T'+T-AX)- T, (3.47)

Only the second term in this transformation law is proportional to A. When the curvature R vanishes,
this fact can be exploited to ensure that A’ = 0.

Inserting T = exp (— i), a'¥) 1)) into (3.47) and evaluating for small a(¥), we find

SAX)= (A" - A)(X) == X(aM)rpy +1) AW (X)aD [, 7). (3.48)
k jk

Curvature tensor of a gauge theory

Since for a gauge theory the Cartan form w! is just =i}, T(ik)jA(k), (3.20) gives the curvature as

Rj= =iy 7);dAW =3 "l mli ;AW A AT
k k'k 1

=~ 7y dAY = 53 [y, ] AN A AR
k k'k

(3.49)
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Here the square bracket in the last line denotes the commutator of two matrices. We have that

[Ty, T()] = Yok cfj'r(k), where the numbers cfj are the structure constants of G.

By evaluating the r.h.s. of (3.49) on two fields X,Y, it is straightforward to show that in our
cleaned-up notation, (3.49) can be written

R = —idA — [A, A], (3.50)

where every symbol is a matrix-valued form and [A; A}(X,Y) = [A(X), A(Y)] does not vanish because
the first and second occurrences of A evaluate to different matrices.

We know that R;- transforms like a tensor — that is, its transformation law involves only T and not
its derivatives. This property suits it to a role in the Lagrangian of a field theory. In electromagnetism
the Lagrangian density, £ = TrF -F /4, is essentially the square of the only independent, non-vanishing
element of R; However, to form this square we need a metric, which do not yet have.

3.6 Yang—Mills theory

The prototype non-Abelian gauge theory is that worked out in 1954 by Yang & Mills (Phys. Rev.,
96, 191). In this theory G = SU(2), so n, = 3 so there are 3 generators 7(;) and they satisfy the
commutation relations

[T 7)) = iz €ijkT(k)- (3.51)
k

There are two important representations of this theory: (i) the spinor one, when the fibres are 2-dim
complex spaces and 7(;) = %O'(k) are proportional to the Pauli matrices; (ii) the vector one, when the
fibres are real 3-dim spaces and T(Zk)j = i€jjk-

In the vector rep. we have
Cartan form wi(X) = Z e AW (X)
k

Connection (Dxy) =X+ Z eipth? AR (X))

jk
N 3.52
Gauge transf.  JA(X) =-— Z X(a(k))r(k) - Z erijalP AU (X) T (3.52)
k kij
Curvature R(X,Y) =-i) dA(X,Y)r — A(X) x A(Y) ,
k

where A(X) x A(Y) =3, €kim AX (X)AD (V) 7).
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4 Riemannian spaces

A metric is a symmetric (g) tensor g that is non-degenerate in the sense that g(X,Y) =0VY =
X = 0. A manifold that is equipped with a metric is called a Riemannian manifold if ¢(X,Y) >
0V X,Y, and is otherwise called a pseudo-Riemannian manifold. Clearly, space-time is a pseudo-
Riemannian manifold. None the less, I shall concentrate on Riemannian manifolds below because they
have everything that a pseudo-Riemannian manifold has and more.

Exercise (17):
Show that the metric tensor of a Riemannian manifold satisfies the Schwartz inequality,
g(X,Y)? < g(X,X)g(Y,Y), and the triangle inequality, ¢(X + Y, X +Y)'/? < g(X,X)'/? +
g(V, )2,

On a Riemannian manifold any curve C(c) has a length

I(C) = / dcg(%, %)”2. (4.1)

C1

Thus possession of a metric makes it possible for the first time to specify distances between points —
hence g’s name.

g associates the 1-form g(, X') with every vector X. With every basis vector (9/9¢') we have already
associated the 1-form d¢’ by the rule d¢*(9/8¢’) = d%. A basis for which d¢* coincides with g(,d/d¢")
is called an orthonormal basis:

0 0 .
Q(W’ 8—¢’) =0;; (orthonormal basis). (4.2)

The coordinate representation of this association is as follows. We define numbers X; by

Zde¢Z = g(aX)

and compute

0

o5 0 9 ) (4.3)

X= 55 9

X) = Zginj where g;; = g(
J
Thus g;; is an index lowering operator.

The non-degeneracy of g implies that the matrix g;; has an inverse. Let this be denoted ¢%. Then
multiplying both sides of equation (4.3) by g% we have

Xt= Zgijxj (Zgikgkj = 6;'.). (4.4)
J k

We can use g;; or g¥/ to raise or lower any index in the coordinate expansion of a tensor of any type.
For example
Tij...k — Tk = Z gipgjq Xoeee X ngqu...T‘a (45)

Pg...T

or, equivalently
. ) o) 0
TG4t = 3 g7 x o x T (5 50)

pq...T
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4.1 The Hodge * operator

On an orientable manifold® g gives rise to a natural volume n-form Q as follows. Let {(9/9¢%)} be an

orthonormal basis. Then
Q=de' A---Ade™. (4.7)

One proves that € is unique up to a sign by showing that if {(9/9%%)} is a second orthonormal basis,
then
Q=+d' A AdyY™. (4.8)

Indeed, if

a 5 Z N 5 W (4.9)
then 5 8 5 5
0ij = (3(1)2 3¢3) zkl:AkAl ( 1/,1:’3—1/,1)
_ZAkAl(skl ZAkAk

So A is an orthogonal matrix and has determinant det A = £1. On the other hand, if we set Q =
Adwt ... dyp" and evaluate \ by requiring that Q(9/9¢,...,0/0¢™) = 1, we find with (4.9) that

(4.10)

Q= (det A) "dyp' Ao AdY” (4.11)
and the required result follows.

Exercise (18):
Adapt the proof just given to show that with respect to an arbitrary set of basis fields (9/0¢")

2 Agt A A dgn. (4.12)

= | det(gij)|
Exercise (19):
From the foregoing exercise show that Q;;. x = | det gab)| /262‘]‘.”]“ where € is the usual Levi-Civita
symbol. [Note that €;;. = €% ]
In §1.4 we developed the theory of forms — totally antisymmetric (g) tensors. By (4.6) g associates
with every p-form a totally antisymmetric (18 ) tensor. A volume form  establishes a 1-1 mapping
between such tensors and (n — p)-forms. Indeed, let T' be an antisymmetric (?) tensor. Then with it

we associate 9 5 9 9
(g a7) = g+ g )T 09)

EQ(T,%,...,%).

That is, the (n — p)-form 7 associated with T' is what’s left after you've stuffed the first p slots of 2
with T'. The sequence of operations just described, namely the use of g to turn a p-form w into a (g)
tensor and then the use of  to turn the latter into an (n — p)-form xw is symbolized by the Hodge *
operator. Substituting into (4.13) from (4.6) we have

) 0 9 g
‘*’(W""’%) 29(3731’“"%) (4.14)
x q_z_;glq X X gprw(a?pq ’%) |

(4.13)

6 An orientable manifold M is one on which one there exists an n-form that is everywhere non-zero.
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The mapping accomplished by * is possible because, as we saw in §1.4, there are exactly as many
linearly independent (n — p)-forms as there are linearly independent p-forms.

In a general coordinate system the Hodge * is a mess. It is best applied in an orthonormal coordinate
system when Q;  r =e€;,.. 1, and g is the identity matrix. Then with

w= Y Wiy, ipdet A Ade', (4.15)
i1 <<
*w can be written down by replacing each ordered wedge product by an ordered wedge product of the
remaining d¢?. For example, in 4 dimensions d¢? A d¢? is replaced by —d¢' A d¢.
Theorem 2

For any two p-forms we have

*Q N = *p N\ . (4.16)

Proof: Since x and A are linear operators, it suffices to show the result for ¢ and v monomials
d¢! A -+ A d¢P. Both sides of (4.16) then vanish unless they are identical monomials and are trivially
equal when they are the same monomial. O

Theorem 3

* is, to within a sign, its own inverse:

sxw=(=1)P"Ply  pform w (4.17)

Proof: Since x is linear, it again suffices to demonstrate the result for an arbitrary monomial w =
d¢! A --- A dgP, where we have labelled our orthonormal coordinates to suit w. Then
sw=d¢PTI A AdP" = () j1ednp = €1200pf1eein—p- (4.18)
Hence (4.14) yields,
XK Wiy iy = €y g indt e ip €12 Pipgr . in s (4.19)

where 4; .. .14, is an arbitrary permutation of the numbers 1...n. Clearly the right side vanishes unless
i1...1p between them take the values 1...p, and is equal to £1 when they do take these values. To
obtain the sign we move each of the (n — p) first indices on the first € to its proper place in the list,
starting with 4,, and picking up p minuses for each index. We finally conclude that % w; = (—1)P(* Py
as required. O

Exercise (20):
Show that in 3d Euclidean space, with A and B 1-forms

Ax B=x(AANB)
V x A=xdA4 (4.20)
V- -A=dxA.

Exercise (21):
Show that four of Maxwell’s equations are contained in

*d * F = poj, (4.21)
where j is the 1-form of the current density.

Each of the operators *d xd and d % d* carries a p-form into a p-form. It is straightforward to show
that when applied to f € F,, *d xd yields V2 f, while d xd * f yields zero. This motivates the definition
of the Laplace—Beltrami operator

A=xdxd+ (—1)"dxdx*. (4.22)
A turns one p-form into another, and when used on 0-forms reduces to the Laplacian. A form that

satisfies AA = 0 is called a harmonic form. The theory of de Rahm cohomology — see below — shows
that the existence of certain harmonic forms has remarkable implications for the global topology of M.
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Exercise (22):
Show that in the Lorentz gauge (d x A = 0) half of Maxwell’s equations become AA = pqj.

4.2 De Rham Cohomology

In Euclidean space closed forms are exact: dw =0 = w = di. On a topologically non-trivial manifold
there are inexact closed forms and there proves to be a close relation between the number of such
forms and the number of harmonic forms. This relation is surprising because d does not depend on the
connection, whilst A does. To establish the relation we start by defining an inner product between any
two p-forms ¢, y:

(6,0) = /M b A (4.23)

This equation makes sense because *1) is an (n — p)-form so @ A x¢) is an n-form. We assume either that
M is closed or that all forms vanish on its boundary.

By (4.16) the inner product (4.23) is symmetric: (¢, ) = (¢, ¢).
By writing (4.23) in an orthonormal basis, we see that (¢, ¢) = 0 iff ¢ = 0.

Next we find the adjoint of d under the inner product. With ¢ a (p — 1)-form, ¢ a p-form and
(1.37) we have:

(@o,0) = [donsw
:/d(¢A*¢)—(—1)p‘1/¢Ad*¢

:(—1)”/(]5/\(/6**)d*¢

= (=D)"k(¢, xd x ).

From (4.17) k = (=1)l»==Dle-1) = (—1)7(=1)=(~1) 5o the numerical prefactor in (4.24) is
(_1)npfn+1 — (_1)np+n+1, and

(4.24)

§ = (1)t dx (4.25)
is the adjoint of d. With this definition (4.22) yields
A = k(6d + d9), (k=+£1) (4.26)
Theorem 4
A p-form w is harmonic iff
dw = dw = 0. (4.27)

Proof: The if part is trivial given (4.26). Further

0= (w, Aw) = (w, ddw) + (w, dow)

Aw =10
“ = (dw, dw) + (dw, dw),

(4.28)

where we have used the mutual adjointness of d and 6. The result now follows because, as we have seen,
each inner product is non-negative and a vanishing inner product implies that its contents vanish. O

Theorem 5
If w is closed but not exact, then there exists ¢ such that w — dv is harmonic.

Proof: Consider I = (w — d¢,w — dv), which is always positive. Hence it must have a minimum as a
functional of ¥. Let this minimum occur at ¢y and let n be any small variation around 1y. Then

0 = (dn,w — dio) + (w — debo, dn)
= 2(n, 6[w — dbo]) (4.29)
= Slw—dih] =0

The result now follows from the last theorem because d[w — dig] vanishes trivially. O
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Theorem 6
The difference between two distinct harmonic p-forms is never exact.

Proof: Let v, ¢ be two harmonic p-forms. Then w = 1 — ¢ is also harmonic, so dw = 0. Suppose
w = dv. Then
0= (0w,7) = (w,dy) = (w,w)
= w=0
and ¢ = ¢ contrary to conjecture. O

We now divide closed but inexact p-forms into cohomology classes such that the difference between
any two forms in a given class is exact; this is a consistent proceeding because if wy — ws = d¢, and
Wy —ws = dey, then wy —ws = d(¢q +¢s). The pt" Betti number bP of M is the number of cohomology
classes of p-forms.

Theorem 5 assures us that there is at least one harmonic form in each cohomology class by stating
that for any w we have that wg = w — d is harmonic. Theorem 6 states that there is only one harmonic
form per cohomolgy class. Hence, there are precisely as many harmonic forms as cohomolgy classes.

The cohomology classes depend on d but not on the metric, so they are invariant if we change the
metric whilst leaving the analytic structure alone. Physically changing the metric amounts to distorting
the space in a continuous way without changing “the way it is joined up”.

We can play a game with submanifolds and boundaries that is closely connected with the game we
have been playing with closed forms and d. We focus on p-dimensional submanifolds C' that have no
boundary: dC' = 0. Such objects are called cycles. For p = 1 we are speaking of closed curves; for p = 2
closed surfaces, etc. Sometimes the difference between two p-cycles that are not themselves boundaries
of p + 1 manifolds will form such a boundary, sometimes not. (Consider closed curves on a torus.) If
the difference is a boundary (C; — Cy = 9S), then we place Cy and C5 in the same homology class.
The number of homology classes of p-cycles is denoted b,. It turns out that b, = b?, so you can tell how
many harmonic p-forms M has by counting the number of inequivalent p-cycles it admits. For example,
there are no harmonic 1-forms on a 2-sphere because every closed curve on a 2-sphere is a boundary;
there are no ‘inexact’ curves.

4.3 Riemannian connection

A metric induces a natural connection on the tangent bundle of M. Specifically, we seek a connection
that has zero torsion and yields a vanishing derivative of g in the sense of the 2nd equation below:
0=DxY — DyX — [X,Y],

Z9(X,Y) =g(DzX,Y)+g(X,DzY). (4.30)

To see that these equations suffice to define D, we write out the last equation twice more, cyclically
permuting X, Y, Z as we go:
Xg(Y,Z) = g(DxY,Z) + g(Y,Dx Z);

Y9(Z,X)=9(DyZ,X)+ g(Z,DyX). (4.31)

Now we assume that XY, Z are coordinate fields so that they commute (with the consequence that
DxY = Dy X etc.) and subtract the 2nd of equations (4.30) from the sum of equations (4.31). In view
of the symmetry of g various terms cancel and we have

X9V, 2)+Yyg(X,2)— Zg(X,Y) =29(DxY, Z) (commuting fields). (4.32)

Equation (4.32) clearly defines the action of D since it enables us to find an arbitrary component of
DxY for any two coordinate fields X,Y. In terms of Christoffel symbols [eq. (3.9)] we have

9gjk |, 9gik _ Ogij o 0
%(aqzi t o _a¢g):g(2l:réja_w’w) W)

= nglréja
1
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which clearly implies that

Ogjr | Ogik _ 0gij
_1 1k (99; _ 99
22];9 (8¢’ D aqsk)' (4.34)
Exercise (23):

Since {(C) > 0 there will be a shortest curve between two points. Show that this curve is a

geodesic, i.e., D(d/dc)% =0.

Suppose we have a bundle of nearby geodesics: in general relativity (GR) they could be the world-
lines of a mass of balls that Gallileo has just dropped from the Leaning Tower of Pisa. Let V and v be
the tangent vector and affine parameter for a typical geodesic.

Now imagine a curve that joins points associated with a given value of v. Let the local tangent
vector to this curve be U, with u the corresponding affine parameter, so U = 9/0u. By filling the whole
region with curves joining events of equal v, we can extend U into a vector field and use v and v as 2
of the coordinates of M. Hence [U,V] = 0 and (4.30) yields DyV = Dy U.

In the Gallileo example, the magnitude of U tells us how rapidly we move from ball to ball as
we vary u, and thus is proportional to the distance between balls. If the directon of U changes, it’s
because the balls are moving around one another as they fall, so to get between two given balls, the
direction you have to head off in is evolving in time (v). So there’s interesting physical information in
the “acceleration” 92U /dv?, and we calculate it.

02U
el DyDyU = DyDyV = DyDyV + R(V,U)V
= R(V,U)V.

(4.35)

This is the equation of geodesic deviation.

When we change from the {¢?} chart to the {¢'®} chart, the natural basis vectors for Ty, suffer a
linear transformation

0 _ g0 b _ 09
5o _Baa¢b where B“_a¢'a‘

We use the shorthand D, = Dy gg« and D; = Dy, 54« and calculate

(4.36)

[y = 9(D,0/0¢",8/04") = g (BID(Bjd/04?), BLD]0")

= g (B]{D;(B{)2/0¢°, B!0/0¢") + g (B Bj D;0/0¢°, B9/0¢")

= BLDS(B})B9(0/00%,0/04") + BLBLBl4(010/04".9/09")
1= ¢; Bl'9(9/9¢°,0/9¢") + BLB{BIT 1.1

(4.37)

This expression shows that in addition to the usual tensor transformation rule, I' requires an additive
term
0By
8¢/a

oB ¢
270 b h h
B B (8/8¢g 8/8¢ ) 8¢'“8¢’b

5o Blig(0/04%,0/04") =

————B"¢(0/0¢?,0/¢™") (4.38)

We can make I = 0 if we can make this term cancel Bl{BngI‘fg,h for any given I'. To see that this is
possible, define
a¢la
ot
and multiply (4.37) through by ¢'* A¢ | where ¢'9 is the inverse of the metric tensor [¢9g(0/0¢9,0/0¢") =
'] and find that T’ will vanish if

= AB =6 and A{B¢ =, (4.39)

32 ¢l

8(]5’“8(]5”’ = _Bz{nglkagJﬁ = _Bz{Bgrlfg (440)
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From the Taylor series expansion of ¢!(¢') we see that at any given point the double derivative matrix
on the left can be set equal to any symmetric matrix we please, so we can set it equal to the rhs. Thus
for any given point of M there are charts in which T" = 0. In GR such a chart is said to provide local
inertial coordinates. The existence of these coordinates encapsulates the “principle of equivalence”
that is the starting point for GR.

Since 0 = Dl g;. = . g;. — 2I"4 g, if I = 0 all partial derivatives of g’ also vanish.



