# Complex Numbers & ODEs: Set 3

# Sections A: Easy Pieces

1. Find the solution of

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} + y = 3\mathrm{e}^x$$

for which y = 3 and  $\frac{dy}{dx} = 0$  at x = 0.

2. Deduce that the o.d.e.

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{2x}{y} = 3$$

is satisfied when  $A(y-x)=(2x-y)^2$ , where A is an arbitrary constant.

3. Deduce that the o.d.e.

$$2\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} + \frac{y^3}{x^3}$$

is solved when  $x = A(1 - x^2/y^2)$ , where A is an arbitrary constant.

4. Deduce that the o.d.e.

$$xy\frac{\mathrm{d}y}{\mathrm{d}x} - y^2 = (x+y)^2 \mathrm{e}^{-y/x}$$

is solved when  $\ln x = e^{y/x}/(1+y/x) + A$ , where A is an arbitrary constant.

**5**. Show that the general solution of the o.d.e.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x-y}{x-y+1}$$

is  $y = x + 1 - \sqrt{2(x+A)}$ , where A is an arbitrary constant.

**6**. By introducing a new variable Y = (4y - x), or otherwise, show that the solution of the o.d.e.

$$\frac{\mathrm{d}y}{\mathrm{d}x} - 16y^2 + 8xy = x^2$$

satisfies  $4y - x - \frac{1}{2} = A(4y - x + \frac{1}{2})e^{4x}$ , where A is an arbitrary constant.

7. Solve the o.d.e.

$$\frac{dy}{dx} = \frac{(3x^2 + 2xy + y^2)\sin x - (6x + 2y)\cos x}{(2x + 2y)\cos x}.$$

[Hint: look for a function f(x, y) whose differential df gives the o.d.e.]

8. By using the substitution  $y=z^2$ , or otherwise, find the general solution of

$$\frac{\mathrm{d}y}{\mathrm{d}x} + 2xy = x^3 y^{1/2}.$$

**9**. The currents  $i_1$  and  $i_2$  in two coupled LC circuits satisfy the equations

$$L\frac{\mathrm{d}^{2}i_{1}}{\mathrm{d}t^{2}} + \frac{i_{1}}{C} - M\frac{\mathrm{d}^{2}i_{2}}{\mathrm{d}t^{2}} = 0$$

$$L\frac{\mathrm{d}^2 i_2}{\mathrm{d}t^2} + \frac{i_2}{C} - M\frac{\mathrm{d}^2 i_1}{\mathrm{d}t^2} = 0 ,$$

where 0 < M < L. Find formulae for the two possible frequencies at which the coupled system may oscillate sinusoidally. [Hint: obtained uncoupled equations by taking the sum and difference of the given equations.]

### Section B: more challenging problems

#### **10**. The equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + ky = y^n \sin x,$$

where k and n are constants, is linear and homogeneous for n = 1. State a property of the solutions to this equation for n = 1 that is **not** true for  $n \neq 1$ .

Solve the equation for  $n \neq 1$  by making the substitution  $z = y^{1-n}$ .

# 11. An alternating voltage $V = V_0 \sin \omega t$ is applied to the circuit below.



The following equations may be derived from Kirchoff's laws:

$$I_2R + \frac{Q}{C} = V,$$

$$L\frac{\mathrm{d}I_1}{\mathrm{d}t} = I_2R,$$

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = I_1 + I_2,$$

where Q is the charge on the capacitor.

Derive a second-order differential equation for  $I_1$ , and hence obtain the steady state solution for  $I_1$  after transients have decayed away.

Determine the angular frequency  $\omega$  at which  $I_1$  is in phase with V, and obtain expressions for the amplitudes of  $I_1$  and  $I_2$  at this frequency.

Suppose now that the switch S is closed and the voltage supply removed when  $I_1$  is at its maximum value. Obtain the solution for the subsequent variation of  $I_1$  with time for the case  $L = 4CR^2$ , and sketch the form of your solution.