Complex Numbers & ODEs: Set 1

Sections A: Easy Pieces

1. For z = x + iy find the real and imaginary parts of

(i)
$$2 + z$$
; (ii) z^2 ; (iii) z^* ; (iv) $1/z$; (v) $|z|$

2. Use the representation $z = |z|e^{i \arg(z)}$ to evaluate

(i)
$$|1 + i|$$
; (ii) $arg(1 + i)$; (iii) $arg(\frac{1 + i}{1 - i})$; (iv) $\left| \frac{2 + 3i}{5 + i} \right|$.

- 3. For z = x + iy sketch the curves (i) |z| = 1, (ii) $\Re(z) = \frac{1}{2}$, (iii) $z = te^{it}$ (for real values of the parameter t) in the Argand diagram for z.
- **4**. Use de Moivre's theorem and the resulting identity $i = e^{i\pi/2}$ to write the following in the form a + ib, where a and b are real:

(i)
$$e^{i}$$
; (ii) \sqrt{i} ; (iii) $\ln i$; (iv) $\cos i$; (v) $\sin i$; (vi) $\sinh(x+iy)$.

- **5**. The complex numbers a, b and c represent points in the Argand diagram. Give a geometrical interpretation of |a-b| and $\arg[(a-b)/(a-c)]$.
- **6**. Find all the solutions of the equation $z^n = 1$, where n is a positive integer.
- 7. Prove that the sum and product of the roots x_i of the polynomial $a_n x^n + \cdots + a_0$ satisfy $\sum z_i = -a_{n-1}/a_n$ and $\prod x_i = (-1)^n a_0/a_n$. Hence find the sum and the product of the roots of $P = x^3 6x^2 + 11x 6$. Show that x = 1 is a root and by writing P = (x 1)Q, where Q is a quadratic, find the other two roots. Verify that the roots have the expected sum and product.

Section B: more challenging problems

- 8. Sketch the curves C_1 and C_2 in the Argand diagram for z defined respectively by $\arg[(z-4)/(z-1)] = \pi/2$ and $\arg[(z-4)/(z-1)] = 3\pi/2$.
- **9**. By noting that $e^{i5\theta} = (\cos \theta + i \sin \theta)^5$, express $\cos 5\theta$ as a polynomial in $\cos \theta$.
- 10. Show that

$$\sum_{n=0}^{\infty} 2^{-n} \cos n\theta = \frac{1 - \frac{1}{2} \cos \theta}{\frac{5}{4} - \cos \theta}.$$

11. Show that the equation $(z+i)^n - (z-i)^n = 0$ has roots $z = \cot(r\pi/n)$, where $r = 1, 2, \ldots, n-1$ and show that $\cot^2 \frac{1}{5}\pi + \cot^2 \frac{2}{5}\pi = 2$.

12. Find the roots of the equation $(z-1)^n + (z+1)^n = 0$. Hence solve the equation $x^3 + 15x^2 + 15x + 1 = 0$.

13. Prove that

$$\sum_{r=1}^{n} \binom{n}{r} \sin 2r\theta = 2^{n} \sin n\theta \cos^{n} \theta \quad \text{where} \quad \binom{n}{r} \equiv \frac{n!}{(n-r)!r!}.$$

[Hint: express the left side as $\Im\left(e^{in\theta}\sum_{r}\binom{n}{r}e^{i(2r-n)\theta}\right)$.]

14. Show that the equation $(z+1)^n - e^{2in\theta}(z-1)^n = 0$ has root $z = -i\cot(\theta + r\pi/n)$. Show that

$$\prod_{r=1}^{n} \cot \left(\theta + \frac{r\pi}{n}\right) = \begin{cases} (-1)^{n/2} & \text{for } n \text{ even} \\ (-1)^{(n+1)/2} \cot n\theta & \text{for } n \text{ odd.} \end{cases}$$

15. Find all the roots, real and complex, of the equation $z^3 - 1 = 0$. If ω is one of the complex roots, prove that $1 + \omega + \omega^2 = 0$. Find the sums of the following series:

$$S_1 = 1 + \frac{x^3}{3!} + \frac{x^6}{6!} + \cdots; \quad S_2 = x + \frac{x^4}{4!} + \frac{x^7}{7!} + \cdots; \quad S_3 = \frac{x^2}{2!} + \frac{x^5}{5!} + \frac{x^8}{8!} + \cdots$$

[Hint: note that $S_1 + S_2 + S_3 = e^x$ and calculate $e^{\omega x}$ and $e^{\omega^2 x}$.]

16. Show that $\cos 2n\theta$ can be expressed as a ploynomial in $s \equiv \sin^2 \theta$, namely $\cos 2n\theta = 1 + a_1s + a_2s^2 + \cdots + a_ns^n$, where n is a positive integer.

Hence show that

$$\cos 2n\theta = \prod_{r=1}^{n} \left\{ 1 - \frac{\sin^2 \theta}{\sin^2 \left[\frac{1}{4} (2r - 1)\pi/n \right]} \right\}.$$