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1 Complex Numbers

1.1 Why complex nos?

Natural numbers (positive integers) 1, 2, 3, . . .

But 20 + y = 12 ⇒ y = −8 → integers . . . ,−3,−2,−1, 0, 1, 2, . . .

But 4x = 6 ⇒ x = 3
2 → rationals

But x2 = 2 ⇒ x =
√
2 → irrationals

But x2 = −1 ⇒ x = i → complex nos

Multiples of i are called pure imaginary numbers. A general complex number is the sum
of a multiple of 1 and a multiple of i such as z = 2 + 3i. We often use the notation z = a+ ib,
where a and b are real. We define operators for extracting a, b from z: a ≡ ℜe(z), b ≡ ℑm(z).
We call a the real part and b the imaginary part of z.

These rules allow us to add and multiply complex numbers:

z1 ± z2 ≡ (a1 ± a2) + i(b1 ± b2)

z1z2 = (a1 + ib1)(a2 + ib2)

≡ (a1a2 − b1b2) + i(a1b2 + b1a2)

(1.1)

It is nice to define division also. We First define z∗ ≡ a − ib, the complex conjugate of z,
and note that |z|2 ≡ zz∗ = (a2 + b2) is real (and > 0). So we can define

z1
z2

=
z1z

∗
2

z2z
∗
2

=
z1z

∗
2

|z2|2
(1.2)

1.2 Argand diagram (complex plane)

Each z → point (a, b) in plane:

Let arg(z) ≡ θ = arctan(b/a). Then z = |z|(cos θ + i sin θ)
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1.3 Simple functions of z and de Moivre’s Theorem

Have series

ex = 1 + x+
x2

2!
+ · · ·+ xn

n!
+ · · ·

cos x = 1− x2

2!
+
x4

4!
− · · · + (−1)n

x2n

(2n)!
+ · · ·

sinx = x− x3

3!
+
x5

5!
− · · ·+ (−1)n

x2n+1

(2n + 1)!
+ · · ·

Define

ez = 1 + z +
z2

2!
+ · · · (1.3)

Special case z = iθ

eiθ =
(
1− θ2

2!
+
θ4

4!
+ · · ·

)
+ i
(
θ − θ3

3!
+ · · ·

)

= cos θ + i sin θ (de Moivre’s theorem)

(a) (b)

(1.4)

Thus
z = |z|(cos θ + i sin θ) = |z|eiθ

z∗ = |z|(cos θ − i sin θ) = |z|e−iθ

1

z
=

z∗

zz∗
=

e−iθ

|z| .
(1.5)

Adding and then subtracting the first two of equations (1.5) we find that

cos θ = 1
2
(eiθ + e−iθ)

sin θ = 1
2i
(eiθ − e−iθ)

(1.6)

Also
eln z = z = |z|eiθ = eln |z|eiθ = eln |z|+iθ

⇒ ln z = ln |z|+ i arg(z)

(a) (b)

(1.7)
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1.3.1 Trigonometric identities Have

cos(a+ b) + i sin(a+ b) = ei(a+b) = eiaeib

= (cos a+ i sin a)(cos b+ i sin b)

= (cos a cos b− sin a sin b) + i(cos a sin b+ sin a cos b)

Comparing real and imaginary parts on the two sides, we deduce that

cos(a+ b) = cos a cos b− sin a sin b

sin(a+ b) = sin a cos b+ cos a sin b
(1.8)

We use the last result to evaluate the cosine of a complex number:

cos z = cos(a+ ib) = cos a cos(ib)− sin a sin(ib). (1.9)

Now from (1.6) the cosine and the sine of an imaginary angle are

cos(ib) = 1
2 (e

−b + eb) = cosh b

sin(ib) = 1
2i (e

−b − eb) = i sinh b,
(1.10)

where we have used the definitions of the hyperbolic functions

cosh b ≡ 1
2
(eb + e−b)

sinh b ≡ 1
2 (e

b − e−b).
(1.11)

Substituting from (1.10) in (1.9) we have

cos z = cos a cosh b− i sin a sinh b. (1.12)

Analogously
sin z = sin a cosh b+ i cos a sinh b. (1.13)

Note:

Hyperbolic functions get their name from the identity cosh2 θ−sinh2 θ = 1, which is readily
proved from (1.11) and is reminiscent of the equation of a hyperbola, x2 − y2 = 1.

1.3.2 Graphical representation of multiplication & division

z1z2 = |z1||z2|ei(θ1+θ2)

z1
z2

=
|z1|
|z2|

ei(θ1−θ2)
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Example 1.1

Find the modulus |z1/z2| when
{
z1 = 1 + 2i
z2 = 1− 3i

Clumsy method:

∣∣∣∣
z1
z2

∣∣∣∣ =
∣∣∣∣
1 + 2i

1− 3i

∣∣∣∣ =
|z1z∗2 |
|z2|2

=
|(1 + 2i)(1 + 3i)|

1 + 9
=

|(1− 6) + i(2 + 3)|
10

=

√
25 + 25

10
=

√
2

2
=

1√
2

Elegant method: ∣∣∣∣
z1
z2

∣∣∣∣ =
|z1|
|z2|

=

√
1 + 4√
1 + 9

=
1√
2

1.3.3 Summing series with de Moivre

Example 1.2
Prove that for 0 < r < 1

∞∑

n=0

rn sin(2n + 1)θ =
(1 + r) sin θ

1− 2r cos 2θ + r2

Proof:
∞∑

n=0

rn sin(2n+ 1)θ =
∑

n

rnℑm(ei(2n+1)θ) = ℑm

(
eiθ
∑

n

(re2iθ)n
)

= ℑm

(
eiθ

1

1− re2iθ

)

= ℑm

(
eiθ(1− re−2iθ)

(1− re2iθ)(1− re−2iθ)

)

=
sin θ + r sin θ

1− 2r cos 2θ + r2

1.4 Curves in the complex plane



1.5 Roots of polynomials 5

Example 1.3

What is the locus in the Argand diagram that is defined by

∣∣∣∣
z − i

z + i

∣∣∣∣ = 1?

Equivalently
|z − i|
|z + i| = 1, so distance from (0, 1) same as distance from (0,−1)

Hence solution is “real axis”

Example 1.4

What is the locus in the Argand diagram that is defined by arg
( z

z + 1

)
=
π

4
?

Equivalently arg(z)− arg(z + 1) =
π

4

Solution: “portion of circle through (0, 0) and (−1, 0)”

The x-coordinate of the centre is − 1
2
by symmetry. The angle subtended by a chord at

the centre is twice that subtended at the circumference, so here it is π/2. With this fact it
easily follows that the y-coordinate of the centre is 1

2
.

The lower portion of circle is arg
( z

z + 1

)
= −3π

4

1.5 Roots of polynomials

Complex numbers enable us to find roots for any polynomial

P (z) ≡ anz
n + an−1z

n−1 + · · ·+ a0. (1.14)

That is, there is at least one, and perhaps as many as n complex numbers zi such that P (zi) = 0.
Many physical problems involve such roots.

In the case n = 2 you already know a general formula for the roots. There is a similar
formula for the case n = 3 and historically this is important because it lead to the invention of
complex numbers. About 1515, Scipione del Ferro at Balogna found a formula for the roots of

x3 + 3px = 2q, (1.15)
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but he kept his formula secret. In 1535 Tartaglia, 34 years younger than del Ferro, claimed
to have discovered a formula for the solution of x3 + rx2 = 2q.† Del Ferro didn’t believe him
and challenged him to an equation-solving match. Galvanized, Tartaglia added (1.15) to his
repertoire before the match and won hands down. But he too kept his formulae secret until
Cardano got the formula for (1.15) from either del Ferro or Tartaglia and published it in his
book Ars Magna in 1545. Here’s the derivation. We have

(a− b)3 + 3ab(a− b) = a3 − b3. (1.16)

If we can choose a and b such that

3ab = 3p and a3 − b3 = 2q, (1.17)

then (1.16) becomes the cubic (1.15) with x = (a − b), which we will know. Solving the
simultaneous equations (1.17) for a by elimination of b we get a quadratic equation in a3

a6 − 2qa3 − p3 = 0. (1.18)

Solving this and the equivalent equation (q → −q) for b we find∗

x = a− b =
[
q + (q2 + p3)1/2

]1/3 −
[
− q + (q2 + p3)1/2

]1/3
. (1.19)

By considering the existence of stationary points it is easy to show that a cubic with three real
roots has q2 + p3 < 0. The Cardano–Tartaglia formula (1.19) gives these as the differences
of complex numbers. For this reason the Ars Magna contained the elements of the theory of
complex numbers.

The Ars Magna showed how the general quartic equation can be reduced to a cubic equa-
tion, and hence gave a formula for the roots in terms of radicals of the coefficients in the original
equation. Interestingly, it can be shown that such formulae do not exist for equations of higher
order, such as quintics.

1.5.1 Special polyniomials We can, however, find the roots of specially simple polynomials.
We start with something really trivial: xn = 1 ⇒ x = 11/n

1 = e2mπi ⇒ 11/n = e2mπi/n

= cos
(2mπ

n

)
+ i sin

(2mπ
n

)

e.g.

11/5 = cos
(2mπ

5

)
+ i sin

(2mπ
5

)
(m = 0, 1, 2, 3, 4).

† By making the substitution x ≡ x′ − k we can turn the general cubic x3 + a2x
2 + a1x+ a0 = 0 into

either del Ferro’s form or Tartaglia’s form.
∗ When solving for a and b, the second of equations (1.17) requires us to choose the same sign for the

square root.
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Note:

We shall often need the coefficients of xryn−r in (x+y)n. These are conveniently obtained
from Pascal’s triangle:

(x+ y)0

(x+ y)1

(x+ y)2

(x+ y)3

(x+ y)4

(x+ y)5

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Each row is obtained from the one above by adding the numbers to right and left of the
position to be filled in.

Example 1.5
Consider the equation (z + i)7 + (z − i)7 = 0.

⇒ z7 − 21z5 + 35z3 − 7z = 0

⇒ z6 − 21z4 + 35z2 − 7 = 0

⇒ w3 − 21w2 + 35w − 7 = 0 (w ≡ z2)

We also have

(
z + i

z − i

)7

= −1 = e(2m+1)πi

⇒ z + i

z − i
= e(2m+1)πi/7 ⇒ z

(
1− e(2m+1)πi/7

)
= −i

(
1 + e(2m+1)πi/7

)

⇒ z = i
e(2m+1)πi/7 + 1

e(2m+1)πi/7 − 1
= i

e(2m+1)πi/14 + e−(2m+1)πi/14

e(2m+1)πi/14 − e−(2m+1)πi/14
= i

2 cos
(

2m+1
14 π

)

2i sin
(

2m+1
14 π

)

Thus the roots of w3 − 21w2 + 35w − 7 = 0 are w = cot2
(
2m+1
14 π

)
(m = 0, 1, 2).

Sometimes the underlying equation is not obvious.

Example 1.6
Find the roots of

z3 + 7z2 + 7z + 1 = 0.

Ninth row of Pascal’s triangle is

1 8 28 56 70 56 28 8 1,

so
1
2 [(z + 1)8 − (z − 1)8] = 8z7 + 56z5 + 56z3 + 8z

= 8z[w3 + 7w2 + 7w + 1] (w ≡ z2).

Now (z + 1)8 − (z − 1)8 = 0 when
z + 1

z − 1
= e2mπi/8, i.e. when

z =
emπi/4 + 1

emπi/4 − 1
= −i cot(mπ/8) (m = 1, 2, . . . , 7),

so the roots of the given equation are z = − cot2(mπ/8), m = 1, 2, 3.
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1.5.2 Characterizing a polynomial by its roots Knowledge of a polynomial’s roots enables us
to express the polynomial as a product of linear terms

anz
n + an−1z

n−1 + · · ·+ a0 = an(z − r1)(z − r2) · · · (z − rn)

= an

(
zn − zn−1

n∑

j=1

rj + · · ·+ (−1)n
n∏

j=1

rj

)
.

Comparing the coefficients of zn−1 and z0 on the two sides, we deduce that

an−1

an
= −

∑

j

rj ;
a0
an

= (−1)n
∏

j

rj (1.20)

Example 1.7
Show that

∑2
m=0 cot

2
(
2m+1
14 π

)
= 21

Solution: From Example 1.5 we have that these numbers are the roots of w3 − 21w2 +
35w − 7 = 0.

A polynomial may be characterized by (i) its roots and (ii) any an.

Example 1.8
Show that

z2m − a2m

z2 − a2
=
(
z2−2az cos

π

m
+a2

)(
z2−2az cos

2π

m
+a2

)
· · ·
(
z2−2az cos

(m− 1)π

m
+a2

)
.

Solution: Consider P (z) ≡ z2m−a2m, a polynomial of order 2m with leading term a2m = 1
and roots zr = aerπi/m. Define

Q(z) ≡ (z2−a2)
(
z2−2az cos

π

m
+a2

)(
z2−2az cos

2π

m
+a2

)
· · ·
(
z2−2az cos

(m− 1)π

m
+a2

)
.

This polynomial is of order 2m with leading coeff. a2m = 1 and with roots that are the
numbers

zr = a cos
rπ

m
±
√
a2 cos2

rπ

m
− a2

= a
(
cos

rπ

m
± i

√
1− cos2

rπ

m

)
= ae±irπ/m (r = 0, 1, . . . ,m).

Thus P and Q are identical.
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2 Linear Differential Equations

A differential equation is an equation in which an expression involving derivatives of an
unknown function are set equal to a known function. For example

df

dx
+ xf = sinx (2.1)

is a differential equation for f(x). To determine a unique solution of a differential equation we
require some initial data; in the case of (2.1), the value of f at some point x. These data are
often called initial conditions. Below we’ll discuss how many initial conditions one typically
needs.

Perhaps Newton’s most brilliant insight was that differential equations enable us to encap-
sulate physical laws: the equation governs events everywhere and at all times; the rich variety
of experience arises because at different places and times different initial conditions select dif-
ferent solutions. Since differential equations are of such transcending importance for physics,
let’s talk about them in some generality.

2.1 Differential operators

Every differential equation involves a differential operator.

functions: numbers → numbers (e.g. x → ex)

operators: functions → functions (e.g. f → αf ; f → 1/f ; f → f + α; . . .)

A differential operator does this mapping by differentiating the function one or more times
(and perhaps adding in a function, or multiplying by one, etc).

(
e.g. f → df

dx
; f → d2f

dx2
; f → 2

d2f

dx2
+ f

df

dx
; . . .

)

2.1.1 Order of a differential operator The order of a differential operator is the order of the
highest derivative contained in it. So

L(f) ≡ df

dx
+ 3f is first order,

L(f) ≡ d2f

dx2
+ 3f is second order,

L(f) ≡ d2f

dx2
+ 4

df

dx
is second order.

2.1.2 Linear operators L is a linear operator iff

L(αf + βg) = αL(f) + βL(g), (2.2)

where α and β are (possibly complex) numbers.
(
e.g. f → df

dx
and f → αf are linear, but f → 1

f
and f → f + α are not.

)

Note:

An expression of the type αf + βg that is a sum of multiples of two or more functions is
called a linear combination of the functions.

To a good approximation, many physical systems are described by linear differential equa-
tions L(f) = 0. Classical electrodynamics provides a notable example: the equations (Max-
well’s) governing electric and magnetic fields in a vacuum are linear. The related equation
governing the generation of a Newtonian gravitational field is also linear.
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Suppose f and g are two solutions of the linear equation L(y) = 0 for different initial
conditions. For example, if L symbolizes Maxwell’s equations, f and g might describe the
electric fields generated by different distributions of charges. Then since L is linear, L(f +g) =
0, so (f + g) describes the electric field generated by both charge distributions taken together.
This idea, that if the governing equations are linear, then the response to two stimuli taken
together is just the sum of the responses to the stimuli taken separately, is known as the
principle of superposition. This principle is widely used to find the required solution to
linear differential equations: we start by finding some very simple solutions that individually
don’t satisfy our initial conditions and then we look for linear combinations of them that do.

Linearity is almost always an approximation that breaks down if the stimuli are very
large. For example, in consequence of the linearity of Maxwell’s equations, the beam from one
torch will pass right through the beam of another torch without being affected by it. But the
beam from an extremely strong source of light would scatter a torch beam because the vacuum
contains ‘virtual’ electron-positron pairs which respond non-negligibly to the field of a powerful
beam, and the excited electro-positron pairs can then scatter the torch beam. In a similar way,
light propagating through a crystal (which is full of positive and negative charges) can rather
easily modify the electrical properties of a crystal in a way that affects a second light beam –
this is the idea behind non-linear optics, now an enormously important area technologically.
Gravity too is non-linear for very strong fields.

While non-linearity is the generic case, the regime of weak stimuli in which physics is to a
good approximation linear is often a large and practically important one. Moreover, when we
do understand non-linear processes quantitatively, this is often done using concepts that arise
in the linear regime. For example, any elementary particle, such as an electron or a quark, is
a weak-field, linear-response construct of quantum field theory.

2.1.3 Arbitrary constants & general solutions How many initial conditions do we need to
specify to pick out a unique solution of L(f) = 0? Arrange Lf ≡ anf

(n)+an−1f
(n−1)+· · ·+a0 =

0 as

f (n)(x) = −
(
an−1

an
f (n−1)(x) + · · ·+ a0

an
f

)
. (2.3)

If we differentiate both sides of this equation with respect to x, we obtain an expression for
f (n+1)(x) in terms of f (n)(x) and lower derivatives. With the help of (2.3) we can eliminate
f (n)(x) from this new equation, and thus obtain an expression for f (n+1)(x) in terms of f(x) and
derivatives up to f (n−1)(x). By differentiating both sides of our new equation and again using
(2.3) to eliminate f (n) from the resulting equation, we can obtain an expression for f (n+2)(x)
in terms of f(x) and derivatives up to f (n−1)(x). Repeating this procedure a sufficient number
of times we can obtain an expression for any derivative of f in terms of f(x) and derivatives
up to f (n−1). Consequently, if the values of these n functions are given at any point x0 we can
evaluate the Taylor series

f(x) = f(x0) + (x− x0)f
′(x0) +

1
2 (x− x0)

2f ′′(x0) + · · · (2.4)

for any value of x that lies near enough to x0 for the series to converge. Consequently, the
functional form of f(x) is determined by the original nth order differential equation and the n
initial conditions f(x0), . . . , f

(n−1)(x0). Said another way, to pick out a unique solution to an
nth order equation, we need n initial conditions.

The general solution of a differential equation is one that contains a sufficient supply of
arbitrary constants to allow it to become any solution of the equation if these constants are
assigned appropriate values. We have seen that once the n numbers f (r)(x0) for r = 0, . . . , n−1
have been specified, the solution to the linear nth-order equation Lf = 0 is uniquely determined.
This fact suggests that the general solution of Lf = 0 should include n arbitrary constants,
one for each derivative. This is true, although the constants don’t have to be the values of
individual derivatives; all that is required is that appropriate choices of the constants will cause
the rth derivative of the general solution to adopt any specified value.
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Given the general solution we can construct n particular solutions f1, . . . , fn as follows:
let f1 be the solution in which the first arbitrary constant, k1, is unity and the others zero, f2
be the solution in which the second constant, k2, is unity and the other zero, etc. It is easy to
see that the general solution is

f(x) =

n∑

r=1

krfr(x). (2.5)

That is, the general solution is a linear combination of n particular solutions, that is, solu-
tions with no arbitrary constant.

2.2 Inhomogeneous terms

We’ve so far imagined the stimuli to be encoded in the initial conditions. It is sometimes
convenient to formulate a physical problem so that at least some of the stimuli are encoded by
a function that we set our differential operator equal to. Thus we write

L
given

(f) =
sought

homogeneous

h(x)
given

inhomogeneous
(2.6)

Suppose f1 is the general solution of Lf = 0 and f0 is any solution of Lf = h. We call f1
the complementary function and f0 the particular integral and have that then general
solution of Lf = h is

f1 + f0.
Complementary fn Particular integral

(2.7)

2.3 First-order linear equations

Any first-order linear equation can be written in the form

df

dx
+ q(x)f = h(x). (2.8)

The general solution will have one arbitrary constant. It can be found by seeking a function
I(x) such that

I
df

dx
+ Iqf =

dIf

dx
= Ih ⇒ f(x) =

1

I(x)

∫ x

x0

I(x′)h(x′)dx′. (2.9)

x0 is the required arbitrary constant in the solution, and I is called the integrating factor.
We need Iq = dI/dx, so

ln I =

∫
q dx ⇒ I = e

∫
q dx. (2.10)

Example 2.1
Solve

2x
df

dx
− f = x2.

In standard form the equation reads

df

dx
− f

2x
= 1

2
x

so q = − 1

2x
and by (2.10) I = e−

1
2
lnx =

1√
x
.

Plugging this into (2.9) we have f = 1
2

√
x

∫ x

x0

√
x′ dx′ = 1

3 (x
2 − x

3/2
0 x1/2).



12 Chapter 2: Linear Differential Equations

2.4 Second-order linear equations∗

The general second-order linear equation can be written in the form

d2f

dx2
+ p(x)

df

dx
+ q(x)f = h(x). (2.11)

Is there an integrating factor? Suppose ∃ I(x) s.t. d2If

dx2
= Ih. Then

2
dI

dx
= Ip and

d2I

dx2
= Iq. (2.12)

These equations are unfortunately incompatible in most cases. Thus we cannot count on there
being an integrating factor.

Now suppose we have a solution u:

d2u

dx2
+ p(x)

du

dx
+ q(x)u = 0, (2.13)

Then write f = uv and u′ ≡ du

dx
etc. so that

f ′ = u′v + uv′ ; f ′′ = u′′v + 2u′v′ + uv′′. (2.14)

Substituting these results into (2.11) we obtain

h = f ′′ + pf ′ + qf

= u′′v + 2u′v′ + uv′′ + pu′v + puv′ + quv

= v(u′′ + pu′ + qu) + uv′′ + 2u′v′ + puv′

= 0 + uv′′ + 2u′v′ + puv′.

(2.15)

Now define w ≡ v′ and find

uw′ + (2u′ + pu)w = h ⇒





IF = exp

[ ∫ (
2
u′

u
+ p
)
dx

]

= u2e
∫
p dx.

(2.16)

Finally integrate

v′(x) = w(x) = u−2(x)e−
∫

x

pdx
∫ x

x0

e
∫

x
′

pdxhu2 dx′. (2.17)

Thus if we can find one solution, u, of any second-order linear equation, we can find the general
solution f(x) = αu(x) + u(x)v(x, x0). Unfortunately, there is no general method for finding
the first solution. So let’s restrict attention to second-order equations for which this can be
done.

∗ Lies beyond the syllabus
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2.5 Equations with constant coefficients

Suppose the coefficients of the unknown function f and its derivatives are mere constants:

Lf = a2
d2f

dx2
+ a1

df

dx
+ a0f = h(x). (2.18)

We look for a complementary function y(x) that satisfies Ly = 0. We try y = eαx. Substituting
this into a2y

′′ + a1y
′ + a0y = 0 we find that the equation is satisfied ∀x provided

a2α
2 + a1α+ a0 = 0. (2.19)

This condition for the exponent α is called the auxilliary equation. It has two roots

α± ≡ −a1 ±
√
a21 − 4a2a0
2a2

, (2.20)

so the CF is
y = A+e

α+x +A−e
α−x. (2.21)

Example 2.2
Solve

d2y

dx2
+ 4

dy

dx
+ 3y = 0.

The auxilliary equation is (α+ 3)(α+ 1) = 0, so the CF is y = Ae−3x +Be−x.

Example 2.3
Solve

Ly =
d2y

dx2
− 2

dy

dx
+ 5y = 0.

The auxilliary equation is α = 1
2 (2±

√
4− 20) = 1± 2i, so y = Ae(1+2i)x +Be(1−2i)x. But

this is complex!

However, L is real operator. So 0 = ℜe(Ly) = L[ℜe(y)] and ℜe(y) is also a solution. Ditto
ℑm(y). Consequently the solution can be written

y = ex
[
A′ cos(2x) +B′ sin(2x)

]
.

Example 2.4
Find the solutions to the equation of Exercise 2.3 for which y(0) = 1 and (dy/dx)0 = 0.

Solution: We obtain simultaneous equations for A′ and B′ by evaluating the general
solution and its derivative at x = 0:

1 = A′

0 = A′ + 2B′ ⇒ B′ = − 1
2 ⇒ y = ex

[
cos(2x) − 1

2 sin(2x)
]
.

2.5.1 Factorization of operators & repeated roots The auxilliary equation (2.19) is just the
differential equation Lf = 0 with d/dx replaced by α. So just as the roots of a polyno-
mial enables us to express the polynomial as a product of terms linear in the variable, so the
knowledge of the roots of the auxilliary equation allows us to express L as a product of two
first-order differential operators:

( d

dx
− α−

)( d

dx
− α+

)
f =

d2f

dx2
− (α− + α+)

df

dx
+ α−α+f

=
d2f

dx2
+
a1
a2

df

dx
+
a0
a2

≡ Lf

a2
,

(2.22)
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where have used our formulae (1.20) for the sum and product of the roots of a plynomial. The
CF is made up of exponentials because

( d

dx
− α−

)
eα−x = 0 ;

( d

dx
− α+

)
eα+x = 0.

What happens if a21 − 4a2a0 = 0? Then α− = α+ = α and

Lf =
( d

dx
− α

)( d

dx
− α

)
f. (2.23)

It follows that

L
(
xeαx

)
=
( d

dx
− α

)( d

dx
− α

)
xeαx

=
( d

dx
− α

)
eαx = 0,

and the CF is y = Aeαx +Bxeαx.

Example 2.5
Solve

d2y

dx2
− 2

dy

dx
+ y = 0.

The auxilliary equation is (α− 1)2 = 0, so y = Aex +Bxex.

2.5.2 Equations of higher order These results we have just derived generalize easily to linear
equations with constant coeffs of any order.

Example 2.6
Solve

d4y

dx4
− 2

d3y

dx3
+ 2

d2y

dx2
− 2

dy

dx
+ y = 0.

The auxilliary equation is (α− 1)2(α− i)(α + i) = 0, so

y = ex(A+Bx) + C cos x+D sinx.

2.6 Particular integrals

Recall the general solution of Lf = h is CF+ f0 where the particular integal f0 is any function
for which Lf0 = h. There is a general technique for finding PIs. This technique, which centres
onGreen’s functions, lies beyond the syllabus although it is outlined in Chapter 6. For simple
inhomogeneous part h we can get by with the use of trial functions. The type of function to
be tried depends on the nature of h.

2.6.1 Polynomial h Suppose h is a sum of some powers of x,

h(x) = b0 + b1x+ b2x
2 + · · · (2.24)

Then we try
f(x) = c0 + c1x+ c2x

2 + · · ·
⇒ f ′ = c1 + 2c2x+ · · ·

f ′′ = 2c2 + · · ·
(2.25)

so
h(x) = a2f

′′ + a1f
′ + a0f =(a0c0 + a1c1 + a22c2 + · · ·)

+ (a0c1 + a12c2 + · · ·)x
+ (a0c2 + · · ·)x2

+ · · ·

(2.26)
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Comparing powers of x0, x1, . . . on the two sides of this equation, we obtained coupled linear
equations for the cr in terms of the br. We solve these equations from the bottom up; e.g. for
quadratic h

c2 =
b2
a0
,

c1 =
b1 − 2a1c2

a0
,

c0 =
b0 − a1c1 − 2a2c2

a0
.

(2.27)

Notice that the procedure doesn’t work if a0 = 0; the orders of the polynomials on left and
right then inevitably disagree. This difficulty may be resolved by recognizing that the equation
is then a first-order one for g ≡ f ′ and using a trial solution for g that contains a term in x2.

Example 2.7
Find the PI for

f ′′ + 2f ′ + f = 1 + 2x+ 3x2.

Try f = c0 + c1x+ c2x
2; have

x2 :

x1 :

x0 :

c2 = 3

4c2 + c1 = 2

2c2 + 2c1 + c0 = 1





⇒
c1 = 2(1 − 2c2) = −10

c0 = 1− 2(c2 + c1) = 1− 2(3 − 10) = 15

Check
f = 15− 10x+ 3x2,

2f ′ = (−10 + 6x)× 2,

f ′′ = 6,

L(f) = 1 + 2x+ 3x2.

2.6.2 Exponential f When h = Heγx, we try f = P eγx. Substituting this into the general
second-order equation with constant coefficients we obtain

P (a2γ
2 + a1γ + a0)e

γx = Heγx. (2.28)

Cancelling the exponentials, solving for P , and substituting the result into f = P eγx, we have
finally

f =
Heγx

a2γ2 + a1γ + a0

=
Heγx

a2(γ − α−)(γ − α+)
where CF = A±e

α±x.

(2.29)

Example 2.8
Find the PI for

f ′′ + 3f ′ + 2f = e2x.

So the PI is f =
e2x

4 + 6 + 2
= 1

12e
2x.

If h contains two or more exponentials, we find separate PIs for each of them, and then
add our results to get the overall PI.
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Example 2.9
Find the PI for

f ′′ + 3f ′ + 2f = e2x + 2ex.

Reasoning as above we conclude that f1 ≡ 1
12e

2x satisfies f ′′
1 + 3f ′

1 + 2f1 = e2x.

and f2 ≡ 2ex

1 + 3 + 2
= 1

3e
x satisfies f ′′

2 + 3f ′
2 + 2f2 = ex,

so 1
12e

2x + 1
3e
x satisfies the given equation.

From equation (2.29) it is clear that we have problem when part of h is in the CF because
then one of the denominators of our PI vanishes. The problem we have to address is the
solution of

Lf = a2

( d

dx
− α1

)( d

dx
− α2

)
f = Heα2x. (2.30)

P eα2x is not a useful trial function for the PI because Leα2x = 0. Instead we try Pxeα2x. We
have ( d

dx
− α2

)
Pxeα2x = P eα2x, (2.31)

and

L
(
Pxeα2x

)
= a2

( d

dx
− α1

)
P eα2x = a2P (α2 − α1)e

α2x. (2.32)

Hence, we can solve for P so long as α2 6= α1: P =
H

a2(α2 − α1)
.

Example 2.10
Find the PI for

f ′′ + 3f ′ + 2f = e−x.

The CF is Ae−2x +Be−x, so we try f = Pxe−x. We require

e−x =
( d

dx
+ 2
)( d

dx
+ 1
)
Pxe−x =

( d

dx
+ 2
)
P e−x

= P e−x.

Thus P = 1 and f = xe−x.

What if α1 = α2 = α and h = Heαx? Then we try f = Px2eαx:

Heαx = a2

( d

dx
− α

)2
Px2eαx = a2

( d

dx
− α

)
2Pxeαx

= 2a2P e
αx ⇒ P =

H

2a2

2.6.3 Sinusoidal h

Suppose h = H cos x, so Lf ≡ a2f
′′ + a1f

′ + a0f = H cos x.

Clumsy method:
f = A cos x+B sinx

. . . . . .

Elegant method: Find solultions z(x) of the complex equation

Lz = Heix. (2.33)

Since L is real

ℜe(Lz) = L[ℜe(z)] = ℜe(Heix) = Hℜe(eix) = H cos x, (2.34)
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so the real part of our solution z will answer the given problem.

Set z = P eix (P complex)

Lz = (−a2 + ia1 + a0)P e
ix ⇒ P =

H

−a2 + ia1 + a0
. (2.35)

Finally,

f = Hℜe

( eix

(a0 − a2) + ia1

)

= H
(a0 − a2) cos x+ a1 sinx

(a0 − a2)2 + a21
.

(2.36)

Note:

We shall see below that in many physical problems explicit extraction of the real part is
unhelpful; more physical insight can be obtained from the first than the second of equations
(2.36). But don’t forget that ℜe operator! It’s especially important to include it when
evaluating the arbitrary constants in the CF by imposing initial conditions.

Example 2.11
Find the PI for

f ′′ + 3f ′ + 2f = cosx.

We actually solve
z′′ + 3z′ + 2z = eix.

Hence

z = P eix where P =
1

−1 + 3i + 2
.

Extracting the real part we have finally

f = ℜe

( eix

1 + 3i

)
= 1

10 (cos x+ 3 sinx).

What do we do if h = H sinx? We solve Lz = Heix and take imaginary parts of both
sides.

Example 2.12
Find the PI for

f ′′ + 3f ′ + 2f = sinx.

Solving z′′ + 3z′ + 2z = eix with z = P eix we have

P =
1

1 + 3i
⇒ f = ℑm

( eix

1 + 3i

)
= 1

10 (sinx− 3 cos x).

Note:

It is often useful to express A cos θ + B sin θ as Ã cos(θ + φ). We do this by noting that
cos(θ + φ) = cosφ cos θ − sinφ sin θ, so

A cos θ +B sin θ =
√
A2 +B2

( A√
A2 +B2

cos θ +
B√

A2 +B2
sin θ

)

=
√
A2 +B2 cos(θ + φ),

where cosφ = A/
√
A2 +B2 and sinφ = −B/

√
A2 +B2.
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Example 2.13
Find the PI for

f ′′ + 3f ′ + 2f = 3cos x+ 4 sinx.

The right-hand side can be rewritten 5 cos(x+φ) = 5ℜe(ei(x+φ)), where φ = arctan(−4/3).
So our trial solution of the underlying complex equation is z = P ei(x+φ). Plugging this
into the equation, we find

P =
5

−1 + 3i + 2
=

5

1 + 3i
,

so the required PI is

f0 = 5ℜe

(ei(x+φ)
1 + 3i

)
= 1

2

[
cos(x+ φ) + 3 sin(x+ φ)

]
.

The last three examples are rather easy because eix does not occur in the CF (which is
Ae−x +Be−2x). What if eix is in the CF? Then we try z = Pxeix.

Example 2.14
Find the PI for

f ′′ + f = cos x ⇒ z′′ + z = eix

From the auxilliary equation we find that the equation can be written

( d

dx
+ i
)( d

dx
− i
)
z = eix.

For the PI Pxeix we require

eix =
( d

dx
+ i
)( d

dx
− i
)
Pxeix =

( d

dx
+ i
)
P eix = 2iP eix

⇒ P =
1

2i
⇒ f = ℜe

(xeix
2i

)
= 1

2x sinx

2.6.4 Exponentially decaying sinusoidal h Since we are handling sinusoids by expressing them
in terms of exponentials, essentially nothing changes if we are confronted by a combination of
an exponential and sinusoids:

Example 2.15
Find the PI for

f ′′ + f = e−x
(
3 cos x+ 4 sin x

)
.

The right-hand side can be rewritten 5e−x cos(x + φ) = 5ℜe(e(i−1)x+iφ), where φ =
arctan(−4/3). So our trial solution of the underlying complex equation is z = P e(i−1)x+iφ.
Plugging this into the equation, we find

P =
5

(i− 1)2 + 1
=

5

1− 2i
.

Finally the required PI is

f0 = 5ℜe

(e(i−1)x+iφ

1− 2i

)
= e−x

[
cos(x+ φ)− 2 sin(x+ φ)

]
.
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3 Application to Oscillators

Second-order differential equations with constant coefficients arise from all sorts of physical
systems in which something undergoes small oscillations about a point of equilibrium. It is
hard to exaggerate the importance for physics of such systems. Obvious examples include the
escapement spring of a watch, the horn of a loudspeaker and an irritating bit of trim that makes
a noise at certain speeds in the car. Less familiar examples include the various fields that the
vacuum sports, which include the electromagnetic field and the fields whose excitations we call
electrons and quarks.

The equation of motion of a mass that oscillates in response to a periodic driving force
mF cosωt is

mẍ = − mω2
0x − mγẋ + mF cosωt.

spring friction forcing
(3.1)

Gathering the homogeneous and inhomogeneous terms onto the left- and right-hand sides,
respectively, we see that the associated complex equation is

z̈ + γż + ω2
0z = F eiωt. (3.2)

3.1 Transients

The auxilliary equation of (3.2) is

α2 + γα+ ω2
0 = 0 ⇒ α = − 1

2γ ± i
√
ω2
0 − 1

4γ
2

= − 1
2γ ± iωγ where ωγ ≡ ω0

√
1− 1

4γ
2/ω2

0 .

Hence the CF is

x = e−γt/2
[
A cos(ωγt) +B sin(ωγt)

]
= e−γt/2Ã cos(ωγt+ ψ), (3.3)

where ψ, the phase angle, is an arbitrary constant. Since γ > 0, we have that the CF → 0 as
t → ∞. Consequently, the part of motion that is decsribed by the CF is called the transient
response.

3.2 Steady-state solutions

The PI of equation (3.2) is

x = ℜe

( F eiωt

ω2
0 − ω2 + iωγ

)
. (3.4)

The PI describes the steady-state response that remains after the transient has died away.

In (3.4) the bottom =
√

(ω2
0 − ω2)2 + ω2γ2 eiφ, where φ ≡ arctan

( ωγ

ω2
0 − ω2

)
, so the PI

may also be written

x =
Fℜe

(
ei(ωt−φ)

)
√

(ω2
0 − ω2)2 + ω2γ2

=
F cos(ωt− φ)√

(ω2
0 − ω2)2 + ω2γ2

. (3.5)

For φ > 0, x achieves the same phase as F at t greater by φ/ω, so φ is called the phase lag
of the response.

The amplitude of the response is

A =
F√

(ω2
0 − ω2)2 + ω2γ2

, (3.6)
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Amplitude and phase of a
driven oscillator. Full lines are
for γ = 0.1ω0, dashed lines for
γ = 0.5ω0.

which peaks when

0 =
dA−2

dω
∝ −4(ω2

0 − ω2)ω + 2ωγ2 ⇒ ω2 = ω2
0 − 1

2
γ2. (3.7)

ωR ≡
√
ω2
0 − γ2/2 is called the resonant frequency. Note that the frictional coefficient γ

causes ωR to be smaller than the natural frequency ω0 of the undamped oscillator.

The figure shows that the amplitude of the steady-state response becomes very large at
ω = ωR if γ/ω0 is small. The figure also shows that the phase lag of the response increases from
small values at ω < ωR to π at high frequencies. Many important physical processes, including
dispersion of light in glass, depend on this often rapid change in phase with frequency.

3.2.1 Power input Power in is W = F ẋ, where F = mF cosωt. Since ℜe(z1) × ℜe(z2) 6=
ℜe(z1z2), we have to extract real bits before multiplying them together

W = F ẋ = ℜe(mF eiωt)× ℜe
(
iωF ei(ωt−φ)

)
√

(ω2
0 − ω2)2 + ω2γ2

=
ωmF 2

√
(ω2

0 − ω2)2 + ω2γ2
[− cos(ωt) sin(ωt− φ)]

= −
1
2ωmF

2

√
(ω2

0 − ω2)2 + ω2γ2
[sin(2ωt− φ) + sin(−φ)].

(3.8)

Averaging over an integral number of periods, the mean power is

W =
1
2ωmF

2 sinφ√
(ω2

0 − ω2)2 + ω2γ2
. (3.9)
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3.2.2 Energy dissipated Let’s check that the mean power input is equal to the rate of dissipa-
tion of energy by friction. The dissipation rate is

D = mγẋẋ =
mγω2F 2 1

2

(ω2
0 − ω2)2 + ω2γ2

. (3.10)

It is equal to work done because sinφ = γω/
√

(ω2
0 − ω2)2 + ω2γ2.

3.2.3 Quality factor Now consider the energy content of the transient motion that the CF
describes. By (3.3) its energy is

E = 1
2
(mẋ2 +mω2

0x
2)

= 1
2mA

2e−γt
[
1
4γ

2 cos2 η + ωγγ cos η sin η + ω2
γ sin

2 η + ω2
0 cos

2 η
]

(η ≡ ωγt+ ψ)
(3.11)

For small γ/ω0 this becomes
E ≃ 1

2
m(ω0A)

2e−γt. (3.12)

We define the quality factor Q to be

Q ≡ E(t)

E(t− π/ω0)− E(t+ π/ω0)
≃ 1

eπγ/ω0 − e−πγ/ω0
= 1

2 csch(πγ/ω0)

≃ ω0

2πγ
(for small γ/ω0).

(3.13)

Q is the inverse of the fraction of the oscillator’s energy that is dissipated in one period. It
is approximately equal to the number of oscillations conducted before the energy decays by a
factor of e.

4 Systems of Linear DE’s with Constant
Coefficients

Many physical systems require more than one variable to quantify their configuration: for
example a circuit might have two connected current loops, so one needs to know what current
is flowing in each loop at each moment. A set of differential equations – one for each variable –
will determine the dynamics of such a system. If these equations are linear and have constant
coefficients, the procedure for solving them is a minor extension of the procedure for solving a
single linear differential equation with constant coefficients.

The steps are:

1. Arrange the equations so that terms on the left are all proportional to an unknown variable,
and already known terms are on the right.

2. Find the general solution of the equations that are obtained by setting the right sides to
zero. The result of this operation is the CF. It is usually found by replacing the unknown
variables by multiples of eαt (if t is the independent variable) and solving the resulting
alegraic equations.

3. Find a particular integral by putting in a trial solution for each term – polynomial, expo-
nential, etc. – on the right hand side.

This recipe is best illustrated by some examples.

Example 4.1
Solve

dx

dt
+

dy

dt
+ y = t,

−dy

dt
+ 3x+ 7y = e2t − 1.
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It is helpful to introduce the shorthand

L

(
x
y

)
=




dx

dt
+
dy

dt
+ y

3x −dy

dt
+ 7y


 .

To find CF

Set

(
x
y

)
=

(
Xeαt

Y eαt

)
α,X, Y complex nos to be determined

Plug into L

(
x
y

)
= 0 and cancel the factor eαt

αX + (α+ 1)Y = 0,

3X + (7− α)Y = 0.
(4.1)

The theory of equations, to be discussed early next term, shows that these equations allow
X,Y to be non-zero only if the determinant

∣∣∣∣
α α+ 1
3 7− α

∣∣∣∣ = 0,

which in turn implies that α(7 − α) − 3(α + 1) = 0 ⇒ α = 3, α = 1. We can arrive
at the same conclusion less quickly by using the second equation to eliminate Y from the
first equation. So the bottom line is that α = 3, 1 are the only two viable values of α. For
each value of α either of equations (4.1) imposes a ratio∗ X/Y

α = 3 ⇒ 3X + 4Y = 0 ⇒ Y = − 3
4X,

α = 1 ⇒ X + 2Y = 0 ⇒ Y = − 1
2X.

Hence the CF made up of

(
x
y

)
= Xa

(
1
− 3

4

)
e3t and

(
x
y

)
= Xb

(
1
− 1

2

)
et.

The two arbitrary constants in this CF reflect the fact that the original equations were
first-order in two variables.

To find PI

(i) Polynomial part

Try

(
x
y

)
=

(
X0 +X1t
Y0 + Y1t

)

Plug into L

(
x
y

)
=

(
t
−1

)

X1 + Y1 + Y1t+ Y0 = t 3(X0 +X1t)− Y1 + 7(Y0 + Y1t) = −1
⇓ ⇓

Y1 = 1; X1 + Y1 + Y0 = 0 3X0 + 7Y0 = 0; 3X1 + 7Y1 = 0
⇓ ⇓

X1 + Y0 = −1 X1 = − 7
3

∗ The allowed values of α are precisely those for which you get the same value of X/Y from both of

equations (4.1).
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Consequently, Y0 = −1 + 7
3 = 4

3 and X0 = − 7
3Y0 = − 28

9

Thus (
x
y

)
=

(
− 28

9 − 7
3 t

4
3 + t

)

(ii) Exponential part

Try

(
x
y

)
=

(
X
Y

)
e2t

Plug into L

(
x
y

)
=

(
0
e2t

)
and find

2X + (2 + 1)Y = 0 ⇒ X = − 3
2Y

3X + (−2 + 7)Y = 1 ⇒ (− 9
2 + 5)Y = 1

Hence Y = 2, X = −3.

Putting everything together the general solution is
(
x
y

)
= Xa

(
1
− 3

4

)
e3t +Xb

(
1
− 1

2

)
et +

(
−3
2

)
e2t +

(
− 28

9 − 7
3 t

4
3 + t

)
(4.2)

We can use the arbitrary constants in the above solution to obtain a solution in which x
and y or ẋ and ẏ take on any prescribed values at t = 0:

Example 4.2
For the differential equations of Example 4.1, find the solution in which

ẋ(0) = − 19
3

ẏ(0) = 3

Solution: Evaluate the time derivative of the GS at t = 0 and set the result equal to the
given data:

(
− 19

3
3

)
= 3Xa

(
1
− 3

4

)
+Xb

(
1
− 1

2

)
+ 2

(
−3
2

)
+

(
− 7

3
1

)

Hence

3Xa +Xb = 2

− 9
4Xa − 1

2Xb = −2
⇒

Xa =
−2

−3/2
= 4

3

Xb = 2− 3Xa = −2

Here’s another, more complicated example.

Example 4.3
Solve

d2x

dt2
+

dy

dt
+ 2x = 2 sin t+ 3cos t+ 5e−t

dx

dt
+

d2y

dt2
− y = 3cos t− 5 sin t− e−t

given
x(0) = 2; y(0) = −3

ẋ(0) = 0; ẏ(0) = 4

To find CF

Set x = Xeαt, y = Y eαt

⇒ (α2 + 2)X + αY
αX + (α2 − 1)Y

= 0 ⇒ α4 = 2

⇒ α2 = ±
√
2 ⇒ α = ±β, ±iβ (β ≡ 21/4)
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and Y/X = −(α2 + 2)/α so the CF is
(
x
y

)
= Xa

(
β

2 +
√
2

)
e−βt +Xb

(
−β

2 +
√
2

)
eβt

+Xc

(
iβ

2−
√
2

)
e−iβt +Xd

(
−iβ

2−
√
2

)
eiβt

Notice that the functions multiplying Xc and Xd are complex conjugates of one another.
So if the solution is to be real Xd has to be the complex conjugate of Xc and these two
complex coefficients contain only two real arbitrary constants between them. There are
four arbitrary constants in the CF because we are solving second-order equations in two
dependent variables.

To Find PI

Set (x, y) = (X,Y )e−t ⇒
X − Y + 2X = 5

−X + Y − Y =− 1
⇒ X = 1

Y = −2
⇒

(
x
y

)
=

(
1
−2

)
e−t

Have 2 sin t+ 3cos t = ℜe(
√
13ei(t+φ)), where cosφ = 3/

√
13, sinφ = −2/

√
13.

Similarly 3 cos t− 5 sin t = ℜe(
√
34ei(t+ψ)), where cosψ = 3/

√
34, sinψ = 5/

√
34

Set (x, y) = ℜe[(X,Y )eit] and require

−X + iY + 2X = X + iY =
√
13eiφ

iX − Y − Y = iX − 2Y =
√
34eiψ

⇒
−iY =

√
13eiφ + i

√
34eiψ

iX = 2i
√
13eiφ −

√
34eiψ

so
x = ℜe(2

√
13ei(t+φ) + i

√
34ei(t+ψ))

= 2
√
13(cosφ cos t− sinφ sin t)−

√
34(sinψ cos t+ cosψ sin t)

= 2[3 cos t+ 2 sin t]− 5 cos t− 3 sin t

= cos t+ sin t

Similarly

y = ℜe(
√
13iei(t+φ) −

√
34ei(t+ψ))

=
√
13(− sinφ cos t− cosφ sin t)−

√
34(cosψ cos t− sinψ sin t)

= 2 cos t− 3 sin t− 3 cos t+ 5 sin t

= − cos t+ 2 sin t.

Thus the complete PI is
(
x
y

)
=

(
cos t+ sin t

− cos t+ 2 sin t

)
+

(
1
−2

)
e−t.

For the initial-value problem

PI(0) =

(
1
−2

)
+

(
1
−1

)
=

(
2
−3

)
; ṖI(0) =

(
−1
2

)
+

(
1
2

)
=

(
0
4

)

CF(0) =

(
2
−3

)
−
(

2
−3

)
=

(
0
0

)
; ĊF(0) =

(
0
4

)
−
(
0
4

)
=

(
0
0

)

So the PI satisfies the initial data and Xa = Xb = Xc = Xd = 0.

In general the number of arbitrary constants in the general solution should be the sum
of the orders of the highest derivative in each variable. There are exceptions to this rule,
however, as the following example shows. This example also illustrates another general point:
that before solving the given equations, one should always try to simplify them by adding a
multiple of one equation or its derivative to the other.
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Example 4.4
Solve

dx

dt
+

dy

dt
+ y = t,

d2x

dt2
+

d2y

dt2
+ 3x+ 7y = e2t.

(4.3)

We differentiate the first equation and substract the result from the seond. Then the
system becomes first-order – in fact the system solved in Example 4.1. From (4.2) we
see that the general solution contains only two arbitrary constants rather than the four
we might have expected from a cursory glance at (4.3). To understand this phenomenon
better, rewrite the equations in terms of z ≡ x+ y as ż + z − x = t and z̈ +7z − 4x = e2t.
The first equation can be used to make x a function x(z, ż, t). Using this to eliminate x
from the second equation we obtain an expression for z̈(z, ż, t). From this expression and
its derivatives w.r.t. t we can construct a Taylor series for z once we are told z(t0) and
ż(t0). Hence the general solution should have just two arbitrary constants.

4.1 LCR circuits

The dynamics of a linear electrical circuit is governed by a system of linear equations with
constant coefficients. These may be solved by the general technique described at the start of
Chapter 4. In many cases they may be more easily solved by judicious addition and subtraction
along the lines illustrated in Example 4.4.

Using Kirchhoff’s laws

RI1 +
Q

C
+ L

dI1
dt

= E1

L
dI2
dt

+RI2 −
Q

C
= 0.

(4.4)

We first differentiate to eliminate Q

d2I1
dt2

+
R

L

dI1
dt

+
1

LC
(I1 − I2) = 0

d2I2
dt2

+
R

L

dI2
dt

− 1

LC
(I1 − I2) = 0.

(4.5)

We now add the equations to obtain

d2S

dt2
+
R

L

dS

dt
= 0 where S ≡ I1 + I2. (4.6)

Subtracting the equations we find

d2D

dt2
+
R

L

dD

dt
+

2

LC
D = 0 where D ≡ I1 − I2. (4.7)

We now have two uncoupled equations, one for S and one for D. We solve each in the standard
way (Section 2.5).
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4.1.1 Time evolution of the LCR circuits The auxilliary equation for (4.6) is α2+Rα/L = 0,
and its roots are

α = 0 ⇒ S = constant and α = −R/L ⇒ S ∝ e−Rt/L. (4.8)

Since the right side of (4.6) is zero, no PI is required.

The auxilliary equation for (4.7) is

α2 +
R

L
α+

2

LC
= 0 ⇒ α = − 1

2

R

L
± i√

LC

√
2− 1

4CR
2/L = − 1

2

R

L
± iωR. (4.9)

Again no PI is required.

Adding the results of (4.8) and (4.9), the general solutions to (4.6) and (4.7) are

I1 + I2 = S = S0 + S1e
−Rt/L ; I1 − I2 = D = D0e

−Rt/2L sin(ωRt+ φ).

From the original equations (4.5) it is easy to see that the steady-state currents are I1 = I2 =
1
2S0 = 1

2E1/R. Hence, the final general solution is

I1 + I2 = S(t) = Ke−Rt/L +
E1

R

I1 − I2 = D(t) = D0e
−Rt/2L sin(ωRt+ φ).

(4.10)

Example 4.5
The battery is first connected up at t = 0. Determine I1, I2 for t > 0.

Solution: We have I1(0) = I2(0) = 0 and from the diagram we see that İ1(0) = E1/L and
İ2 = 0. Looking at equations (4.10) we set K = −E1/R to ensure that I1(0) + I2(0) =

0, and φ = 0 to ensure that I1(0) = I2(0). Finally we set D0 =
E1

LωR
to ensure that

Ḋ(0) =
E1

L

5 Non-Linear Equations

Non-linear equations are generally not soluble analytically – in large measure because their so-
lutions display richer structure than analytic functions can describe. There are some interesting
special cases, however, in which analytic solutions can be derived.

5.1 Homogenoeous equations

Consider equations of the form
dy

dx
= f(y/x). (5.1)

Such equations are called homogeneous because they are invariant under a rescaling of both
variables: that is, if X = sx, Y = sy are rescaled variables, the equation for Y (X) is identical
to that for y(x). These equations are readily solved by the substitution

y = vx ⇒ y′ = v′x+ v. (5.2)

We find ∫
dv

f(v)− v
=

∫
dx

x
= lnx+ constant. (5.3)

Example 5.1
Solve

xy
dy

dx
− y2 = (x+ y)2e−y/x.
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Solution: Dividing through by xy and setting y = vx have

(v′x+ v)− v =
(1 + v)2

v
e−v ⇒ lnx =

∫
evvdv

(1 + v)2
.

The substitution u ≡ 1 + v transforms integral to

e−1

∫ ( 1
u
− 1

u2

)
eudu = e−1

[eu
u

]
.

5.2 Exact equations

Suppose x, y are related by φ(x, y) = 0. Then 0 = dφ = φxdx + φydy (φx ≡ ∂φ/∂x etc).
Hence

dy

dx
= −φx

φy
(5.4)

Conversely, given y′ = f(x, y) we can ask if there exists a function φ(x, y) such that f = φx/φy.

Example 5.2
Solve

dy

dx
=

(3x2 + 2xy + y2) tan x− (6x+ 2y)

(2x+ 2y)
.

Solution: Notice that

top× cos x = − ∂

∂x

[
(3x2 + 2xy + y2) cos x

]

and

bottom × cos x =
∂

∂y

[
(3x2 + 2xy + y2) cos x

]

so the solution is (3x2 + 2xy + y2) cos x = constant.

5.3 Equations solved by interchange of variables

Consider

y2
dy

dx
+ x

dy

dx
− 2y = 0.

As it stands the equation is non-linear, so apparently insoluble. But when we interchange
the rôles of the dependent and independent variables, it becomes linear: on multiplication by
(dx/dy) get

y2 + x− 2y
dx

dy
= 0.

5.4 Equations solved by linear transformation

Consider
dy

dx
= (x− y)2.

In terms of u ≡ y − x the equation reads du/dx = u2 − 1, which is trivially soluble.

Similarly, given
dy

dx
=

x− y

x− y + 1

we define

u ≡ x− y + 1 and have 1− du

dx
=
u− 1

u
⇒ u

du

dx
= 1,

which is trivially soluble.
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6 Green’s Functions∗

In this section we describe a powerful technique for generating particular integrals. We illustrate
it by considering the general second-order linear equation

Lx(y) ≡ a2(x)
d2y

dx2
+ a1(x)

dy

dx
+ a0(x)y = h(x). (6.1)

On dividing through by a2 one sees that without loss of generality we can set a2 = 1.

6.1 The Dirac δ-function

Consider series of ever bumpier functions such that
∫∞

−∞
f(x) dx = 1, e.g.

Define δ(x) as limit of such functions. (δ(x) itself isn’t a function really.) Then

δ(x) = 0 for x 6= 0 and

∫ ∞

−∞

δ(x) dx = 1

δ’s really important property is that
∫ b

a

f(x)δ(x− x0) dx = f(x0) ∀
{
a < x0 < b
f(x)

Exercises (1):

(i) Prove that δ(ax) = δ(x)/|a|. If x has units of length, what dimensions has δ?

(ii) Prove that δ(f(x)) =
∑
xk
δ(x−xk)/|f ′(xk)|, where the xk are all points satisfying f(xk) =

0.

6.2 Defining the Green’s function

Now suppose for each fixed x0 we had the function Gx0
(x) such that

LxGx0
= δ(x− x0). (6.2)

Then we could easily obtain the desired PI:

y(x) ≡
∫ ∞

−∞

Gx0
(x)h(x0) dx0. (6.3)

y is the PI because

Lx(y) =

∫ ∞

−∞

LxGx0
(x)h(x0) dx0

=

∫
δ(x− x0)h(x0) dx0

= h(x).

Hence, once you have the Green’s function Gx0
you can easily find solutions for various h.

∗ Lies beyond the syllabus
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6.3 Finding Gx0

Let y = v1(x) and y = v2(x) be two linearly independent solutions of Lxy = 0 – i.e. let the
CF of our equation be y = Av1(x) + Bv2(x). At x 6= x0, LxGx0

= 0, so Gx0
= A(x0)v1(x) +

B(x0)v2(x). But in general we will have different expressions for Gx0
in terms of the vi for

x < x0 and x > x0:

Gx0
=

{
A−(x0)v1(x) +B−(x0)v2(x) x < x0
A+(x0)v1(x) +B+(x0)v2(x) x > x0.

(6.4)

We need to choose the four functions A±(x0) and B±(x0). We do this by:

(i) obliging Gx0
to satisfy boundary conditions at x = xmin < x0 and x = xmax > x0

(e.g. lim
x→±∞

Gx0
= 0);

(ii) ensuring LxGx0
= δ(x− x0).

We deal with (i) by defining u± ≡ P±v1 + Q±v2 with P±, Q± chosen s.t. u− satisfies given
boundary condition at x = xmin and u+ satisfies condition at xmax. Then

Gx0
(x) =

{
C−(x0)u−(x) x < x0,
C+(x0)u+(x) x > x0.

(6.5)

We get C± by integrating the differential equation from x0 − ǫ to x0 + ǫ:

1 =

∫ x0+ǫ

x0−ǫ

δ(x − x0) dx =

∫ x0+ǫ

x0−ǫ

LxGx0
dx

=

∫ x0+ǫ

x0−ǫ

(
d2Gx0

dx2
+ a1(x)

dGx0

dx
+ a0(x)Gx0

(x)

)
dx

=

[
dGx0

dx
+ a1(x0)Gx0

(x)

]x0+ǫ

x0−ǫ

+

∫ x0+ǫ

x0−ǫ

(
a0 −

da1
dx

)
Gx0

(x) dx.

(6.6)

We assume that Gx0
(x) is finite and continuous at x0, so the second term in [. . .] vanishes and

the remaining integral vanishes as ǫ→ 0. Then we have two equations for C±:

1 = C+(x0)
du+
dx

∣∣∣∣
x0

− C−(x0)
du−
dx

∣∣∣∣
x0

0 = C+(x0)u+(x0)− C−(x0)u−(x0).

(6.7)

Solving for C± we obtain

C±(x0) =
u∓
∆

∣∣∣∣
x0

where ∆(x0) ≡
(
du+
dx

u− − u+
du−
dx

)

x0

. (6.8)

Substing these solutions back into (6.5) we have finally

Gx0
(x) =





u+(x0)u−(x)

∆(x0)
x < x0

u−(x0)u+(x)

∆(x0)
x > x0.

(6.9)

Example 6.1
Solve

Lx =
d2y

dx2
− k2y = h(x) subject to lim

x→±∞
y = 0.
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The required complementary functions are u− = ekx, u+ = e−kx, so

∆(x0) = −ke−kxekx − e−kxkekx = −2k.

Hence

Gx0
(x) = − 1

2k

{
e−k(x0−x) x < x0
ek(x0−x) x > x0

= − 1

2k
e−k|x0−x|

and

y(x) = − 1

2k

[
e−kx

∫ x

−∞

ekx0h(x0) dx0 + ekx
∫ ∞

x

e−kx0h(x0)

]
dx0.

Suppose h(x) = cos x = ℜe(eix). Then

−2ky(x) = ℜe

(
e−kx

[
ex0(i+k)

i+ k

]x

−∞

+ ekx
[
ex0(i−k)

i− k

]∞

x

)

So
y = − cosx

1 + k2

as expected.


