Solutions Problem Set 2

1. Show that if the Hamiltonian is independent of a generalized coordinate q_0 , then the conjugate momentum p_0 is a constant of motion. Such coordinates are called **cyclic coordinates**. Give two examples of physical systems that have a cyclic coordinate.

Clearly

$$\dot{p}_0 = -\frac{\partial H}{\partial q_0}$$
 if H is not a function of q_0

- e.g. 1) An axisymmetric potential does not depend on ϕ so p_{ϕ} is a constant of motion.
- e.g. 2) In a magnetic field $\mathbf{B} = B\hat{\mathbf{k}}$, the Hamiltonian is independent of z, so $p_z = \text{constant}$
- **2**. A dynamical system has generalized co-ordinates q_i and generalized momenta p_i . Verify the following properties of the Poisson brackets:

$$[q_i, q_j] = [p_i, p_j] = 0;$$
 $[q_i, p_j] = \delta_{ij}.$

If **p** is the momentum conjugate to a position vector **r**, and **L** = **r** × **p**, evaluate the Poisson brackets $[L_x, L_y]$, $[L_y, L_x]$ and $[L_x, L_x]$. Comment on their significance.

The Lagrangian of a particle of mass m and charge e in a uniform magnetic field ${\bf B}$ and an electrostatic potential ϕ is

$$L = \frac{1}{2}m\dot{\mathbf{r}}^2 + \frac{1}{2}e\dot{\mathbf{r}}\cdot(\mathbf{B}\times\mathbf{r}) - e\phi.$$

Derive the corresponding Hamiltonian and verify that the rate of change of $m\dot{r}$ equals the Lorentz force. Show that the momentum component along B and the sum of the squares of the two other momentum components are all constants of motion. Find another constant of motion associated with time translation symmetry.

$$[q_i, q_j] = \sum_k \frac{\partial q_i}{\partial q_k} \frac{\partial q_j}{\partial p_k} - \frac{\partial q_i}{\partial p_k} \frac{\partial q_j}{\partial q_k} = 0$$

trivially, etc.

$$[q_i, p_j] = \sum_k \frac{\partial q_i}{\partial q_k} \frac{\partial p_j}{\partial p_k} - \frac{\partial q_i}{\partial p_k} \frac{\partial p_j}{\partial q_k} = 0 \text{ unless } i = j$$

The Poisson bracket is antisymmetric, so $[L_x, L_x] = 0$ trivially and $[L_y, L_x] = -[L_x, L_y]$ so we simply have to evaluate $[L_x, L_y]$

 $L_x = yp_z - zp_y$ and $L_y = zp_x - xp_z$. Thus L_x is independent of x and p_x while L_y is independent of y and p_y so we can collapse the sum over k in the definition of the Poisson bracket to just the term with k = z:

$$[L_x, L_y] = \frac{\partial}{\partial z} (yp_z - zp_y) \frac{\partial}{\partial p_z} (zp_x - xp_z) - \frac{\partial}{\partial p_z} (yp_z - zp_y) \frac{\partial}{\partial z} (zp_x - xp_z)$$
$$= (-p_y)(-x) - yp_x = L_z$$

In QM we have $[L_x, L_y] = i\hbar L_z$, so here's a close connection between clasical and quantum mechanics – which turns out to arise because both theories have to reflect the group of three-dimensional rotations.

From L we find the momenta are

$$\mathbf{p} = m\dot{\mathbf{r}} + \frac{1}{2}e(\mathbf{B} \times \mathbf{r})$$

Thus

$$H = \mathbf{p} \cdot \dot{\mathbf{r}} - L = m\dot{\mathbf{r}}^2 + \frac{1}{2}e\dot{\mathbf{r}} \cdot (\mathbf{B} \times \mathbf{r}) - \frac{1}{2}m\dot{\mathbf{r}}^2 - \frac{1}{2}e\dot{\mathbf{r}} \cdot (\mathbf{B} \times \mathbf{r}) + e\phi$$
$$= \frac{1}{2}m\dot{\mathbf{r}}^2 + e\phi = \frac{1}{2m} \left| \mathbf{p} - \frac{1}{2}e\mathbf{B} \times \mathbf{r} \right|^2 + e\phi$$

From Hamilton's equations

$$\dot{\mathbf{p}} = -\frac{\partial H}{\partial \mathbf{r}} = -\frac{1}{m} (\mathbf{p} - \frac{1}{2}e\mathbf{B} \times \mathbf{r}) \cdot \frac{\partial}{\partial \mathbf{r}} (-\frac{1}{2}e\mathbf{B} \times \mathbf{r}) - e\frac{\partial \phi}{\partial \mathbf{r}} \tag{\dagger}$$

Now

$$\begin{split} \frac{\partial}{\partial \mathbf{r}}(\mathbf{p} \cdot \mathbf{B} \times \mathbf{r}) &= \frac{\partial}{\partial \mathbf{r}}(\mathbf{r} \cdot \mathbf{p} \times \mathbf{B}) = \mathbf{p} \times \mathbf{B} \\ \mathbf{B} \times \mathbf{r} \cdot \frac{\partial}{\partial \mathbf{r}}(\mathbf{B} \times \mathbf{r}) &= \frac{1}{2} \frac{\partial}{\partial \mathbf{r}}(\mathbf{B} \times \mathbf{r} \cdot \mathbf{B} \times \mathbf{r}) = \frac{1}{2} \frac{\partial}{\partial \mathbf{r}}(B^2 r^2 - (\mathbf{B} \cdot \mathbf{r})^2) = B^2 \mathbf{r} - (\mathbf{B} \cdot \mathbf{r}) \mathbf{B} \end{split}$$

Substituting back into (†) we have

$$\dot{\mathbf{p}} = \frac{e}{2m}\mathbf{p} \times \mathbf{B} - \frac{e^2}{4m}(B^2\mathbf{r} - (\mathbf{B} \cdot \mathbf{r})\mathbf{B}) - e\frac{\partial \phi}{\partial \mathbf{r}}$$
 (‡)

Replacing \mathbf{p} with $\dot{\mathbf{r}}$ we find

$$m\ddot{\mathbf{r}} + \frac{1}{2}e\mathbf{B} \times \dot{\mathbf{r}} = \frac{e}{2m}(m\dot{\mathbf{r}} + \frac{1}{2}e\mathbf{B} \times \mathbf{r}) \times \mathbf{B} - \frac{e^2}{4m}(B^2\mathbf{r} - (\mathbf{B} \cdot \mathbf{r})\mathbf{B}) - -e\frac{\partial \phi}{\partial \mathbf{r}}$$

The triple vector product cancels on the term with $(B^2\mathbf{r} - (\mathbf{B} \cdot \mathbf{r})\mathbf{B})$, so we get at the end the usual equation of motion with the Lorentz force.

$$m\ddot{\mathbf{r}} = e\dot{\mathbf{r}} \times \mathbf{B} - e\frac{\partial \phi}{\partial \mathbf{r}}$$

Dotting (1) through by B, we find

$$\frac{\mathrm{d}\mathbf{B}\cdot\mathbf{p}}{\mathrm{d}t} = -e\mathbf{B}\cdot\frac{\partial\phi}{\partial\mathbf{r}}$$

Thus the next part of the question holds only if the term with the electrostatic potential vanishes, for example because $\phi = \text{constant}$.

The final proposition is false, as you can convince yourself by dotting (‡) through by \mathbf{p} : on the left you then have $\mathrm{d}p^2/\mathrm{d}t$ and on the right an expression that does not vanish even when $\phi=\mathrm{constant}$. But we already know that the component of \mathbf{p} along \mathbf{B} is constant, so the sum of the squares of the other two components can be constant only if p^2 is. What we is true is that when $\phi=\mathrm{constant}$, the sum of the squares of the components of $\dot{\mathbf{r}}$ perpendicular to \mathbf{B} is constant.

Time-translation symmetry causes H to be constant.

3. Let p and q be canonically conjugate coordinates, and let f(p,q) and g(p,q) be functions on phase space. Define the Poisson bracket [f,g]. Let H(p,q) be the Hamiltonian that governs the system's dynamics. Write down the equations of motion of p and q in terms of H and the Poisson bracket.

In a galaxy, the density of stars in phase space is $f(\mathbf{p}, \mathbf{q}, t)$, where \mathbf{p} and \mathbf{q} each have three components. When evaluated at the location $(\mathbf{p}(t), \mathbf{q}(t))$ of any given star, f is time-independent. Show that f consequently satisfies

$$\frac{\partial f}{\partial t} = [H, f],$$

where H is the Hamiltonian that governs the motion of every star.

Consider motion in a circular, razor-thin galaxy in which the potential energy of any star is given by the function V(R), where R is a radial coordinate. Express H in terms of plane polar coordinates R, ϕ and their conjugate momenta, with the origin coinciding with the galaxy's centre. Hence, or otherwise, show that in this system f satisfies the equation

$$\frac{\partial f}{\partial t} + \frac{p_R}{m} \frac{\partial f}{\partial R} + \frac{p_\phi}{mR^2} \frac{\partial f}{\partial \phi} - \left(\frac{\partial V}{\partial R} - \frac{p_\phi^2}{mR^3} \right) \frac{\partial f}{\partial p_R} = 0,$$

where m is are the mass of the star.

$$\dot{q} = [q, H] \qquad \dot{p} = [p, H]$$

From the constancy of f we have with the chain rule

$$0 = \frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \dot{\mathbf{q}} \cdot \frac{\partial f}{\partial \mathbf{q}} + \dot{\mathbf{p}} \cdot \frac{\partial f}{\partial \mathbf{p}}$$
$$= \frac{\partial f}{\partial t} + \frac{\partial H}{\partial \mathbf{p}} \cdot \frac{\partial f}{\partial \mathbf{q}} - \frac{\partial H}{\partial \mathbf{q}} \cdot \frac{\partial f}{\partial \mathbf{p}}$$
$$= \frac{\partial f}{\partial t} + [f, H]$$

from which the required result follows immediately.

$$L = \frac{1}{2}m(\dot{R}^2 + (R\dot{\phi})^2) - V(R)$$

so $p_R = m\dot{R}, p_\phi = mR^2\dot{\phi}$ and

$$H = p_R \dot{R} + p_\phi \dot{\phi} - \frac{1}{2} m (\dot{R}^2 + (R\dot{\phi})^2) + V(R)$$
$$= \frac{p_R^2}{2m} + \frac{p_\phi^2}{2mR^2} + V$$

Thus

$$\begin{split} [H,f] &= \frac{\partial}{\partial R} \left(\frac{p_{\phi}^2}{2mR^2} + V \right) \frac{\partial f}{\partial p_R} - \frac{\partial}{\partial p_R} \left(\frac{p_R^2}{2m} \right) \frac{\partial f}{\partial R} - \frac{\partial}{\partial p_{\phi}} \left(\frac{p_{\phi}^2}{2mR^2} \right) \frac{\partial f}{\partial \phi} \\ &= \left(-\frac{p_{\phi}^2}{mR^r} + \frac{\partial V}{\partial R} \right) \frac{\partial f}{\partial p_R} - \frac{p_R}{m} \frac{\partial f}{\partial R} - \frac{p_{\phi}}{mR^2} \frac{\partial f}{\partial \phi} \end{split}$$

from which the required result follows.

4. Show that in spherical polar coordinates the Hamiltonian of a particle of mass m moving in a potential $V(\mathbf{x})$ is

$$H = \frac{1}{2m} \left(p_r^2 + \frac{p_\theta^2}{r^2} + \frac{p_\phi^2}{r^2 \sin^2 \theta} \right) + V(\mathbf{x}).$$

Show that $p_{\phi}={\rm constant}$ when $\partial V/\partial \phi\equiv 0$ and interpret this result physically.

Given that V depends only on r, show that [H, K] = 0 where $K \equiv p_{\theta}^2 + \frac{p_{\phi}^2}{\sin^2 \theta}$. By expressing K as a function of $\dot{\theta}$ and $\dot{\phi}$ interpret this result physically.

Consider circular motion with angular momentum h in a spherical potential V(r). Evaluate $p_{\theta}(\theta)$ when the orbit's plane is inclined by ψ to the equatorial plane. Show that $p_{\theta} = 0$ when $\sin \theta = \pm \cos \psi$ and iterpret this result physically.

K.E. is
$$\frac{1}{2}m[\dot{r}^2 + (r\dot{\theta})^2 + (r\sin\theta\dot{\phi})^2]$$
 and P.E. is V

$$L = \frac{1}{2}m[\dot{r}^2 + (r\dot{\theta})^2 + (r\sin\theta\dot{\phi})^2] - V$$

$$p_r = \frac{\partial L}{\partial \dot{r}} = m\dot{r}$$
 $p_\theta = mr^2\dot{\theta}$ $p_\phi = mr^2\sin^2\theta\dot{\phi}$

$$\begin{split} H &= \mathbf{p} \cdot \dot{\mathbf{q}} - L = m\dot{r}^2 + mr^2\dot{\theta}^2 + mr^2\sin^2\theta\dot{\phi}^2 - \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2 + r^2\sin^2\theta\dot{\phi}^2) + V \\ &= \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2 + r^2\sin^2\theta\dot{\phi}^2) + V \\ &= \frac{p_r^2}{2m} + \frac{p_\theta^2}{2mr^2} + \frac{p_\phi^2}{2mr^2\sin^2\theta} + V \end{split}$$

As in Q1,

$$\frac{\partial H}{\partial \phi} = \frac{\partial V}{\partial \phi} = 0 \quad \Rightarrow \quad \dot{p}_{\phi} = 0$$

i.e., angular momentum about the symmetry axis is conserved. Introducing $K \equiv p_{\theta}^2 + p_{\phi}^2 / \sin^2 \theta$

$$H=\frac{p_r^2}{2m}+\frac{K}{2mr^2}+V$$

$$[H,K]=\frac{1}{2m}[p_r^2,K]+\frac{1}{m}\left[\frac{K}{r^2},K\right]+[V,K].$$

Now [.,K] is a first-order differential operator, so if A,B are any two functions on phase space, [AB,K]=A[B,K]+[A,K]B. Applying this result with A=K and $B=r^{-2}$ we have

$$[H,K] = \frac{1}{2m}[p_r^2,K] + \frac{1}{m}K\left[\frac{1}{r^2},K\right] + [V,K]$$

In these Poisson brackets the only terms are those in which the object on the left is differentiated w.r.t θ , ϕ or p_{θ} since K is a function of p_{θ} , p_{ϕ} and θ only. But none of p_r^2 , r^{-2} and V depends on θ , ϕ or p_{θ} . So [H, K] = 0.

$$K = m^2 r^2 [(r\dot{\theta})^2 + (r\sin\theta\dot{\phi})^2] = m(rv_t)^2.$$

K is the total squared angular momentum and this is constant because the potential is spherically symmetric.

From the figure $p_{\phi} = h \cos \psi$, $K = h^2$, so

$$p_{\theta}^2 = h^2 \left(1 - \frac{\cos^2 \psi}{\sin^2 \theta} \right) \quad \to 0 \quad \text{as} \quad \sin \theta \to \pm \cos \psi$$

When the particle is at the furthest point above the plane, it is moving into the paper when we view the orbit edge-on like this:

5. Oblate spheroidal coordinates (u, v, ϕ) are related to regular cylindrical polars (R, z, ϕ) by

$$R = \Delta \cosh u \cos v$$
; $z = \Delta \sinh u \sin v$.

Show that in these coordinates momenta of a particle of mass m are

$$p_u = m\Delta^2(\cosh^2 u - \cos^2 v)\dot{u},$$

$$p_v = m\Delta^2(\cosh^2 u - \cos^2 v)\dot{v},$$

$$p_\phi = m\Delta^2\cosh^2 u\cos^2 v\dot{\phi}.$$

Hence show that the Hamiltonian for motion in a potential $\Phi(u,v)$ is

$$H = \frac{p_u^2 + p_v^2}{2m\Delta^2(\cosh^2 u - \cos^2 v)} + \frac{p_\phi^2}{2m\Delta^2\cosh^2 u \cos^2 v} + \Phi.$$

Show that $[H, p_{\phi}] = 0$ and hence that p_{ϕ} is a constant of motion. Identify it physically.

From the lecture notes

$$L = \frac{1}{2}m\Delta^2 \left[(\cosh^2 u - \cos^2 v)(\dot{u}^2 + \dot{v}^2) + \cosh^2 u \cos^2 v \dot{\phi}^2 \right] - \Phi$$

Hence

$$p_u = \frac{\partial L}{\partial \dot{u}} = m\Delta^2(\cosh^2 u - \cos^2 v)\dot{u}$$
$$p_v = m\Delta^2(\cosh^2 u - \cos^2 v)\dot{v}$$
$$p_\phi = m\Delta^2 \cosh^2 u \cos^2 v \,\dot{\phi}$$

Now

$$\begin{split} H &= \frac{p_u^2}{m\Delta^2(\cosh^2 u - \cos^2 v)} + \frac{p_v^2}{m\Delta^2(\cosh^2 u - \cos^2 v)} + \frac{p_\phi^2}{m\Delta^2\cosh^2 u \cos^2 v} \\ &\quad - \frac{1}{2}m\Delta^2 \left[\frac{p_u^2 + p_v^2}{(m\Delta^2)^2(\cosh^2 u - \cos^2 v)} + \left(\frac{p_\phi}{m\Delta^2\cosh u \cos v} \right)^2 \right] + \Phi \\ &= \frac{p_u^2 + p_v^2}{2m\Delta^2(\cosh^2 u - \cos^2 v)} + \frac{p_\phi^2}{2m\Delta^2\cosh^2 u \cos^2 v} + \Phi \end{split}$$

If $\Phi(u,v)$ only, $\partial H/\partial \phi=0$ so $\dot{p}_{\phi}=0$ and p_{ϕ} (angular momentum about the symmetry axis) is constant.

6. A particle of mass m and charge Q moves in the equatorial plane $\theta = \pi/2$ of a magnetic dipole. Given that the dipole has vector potential

$$\mathbf{A} = \frac{\mu \sin \theta}{4\pi r^2} \,\mathbf{e}_{\phi},$$

evaluate the Hamiltonian $H(p_r, p_{\phi}, r, \phi)$ of the system.

The particle approaches the dipole from infinity at speed v and impact parameter b. Show that p_{ϕ} and the particle's speed are constants of motion.

Show further that for $Q\mu > 0$ the distance of closest approach to the dipole is

$$D = \frac{1}{2} \begin{cases} b - \sqrt{b^2 - a^2} & \text{for } \dot{\phi} > 0 \\ b + \sqrt{b^2 + a^2} & \text{for } \dot{\phi} < 0 \end{cases} \text{ where } a^2 \equiv \frac{\mu Q}{\pi m v}.$$

Motion is in the equatorial plane, so we can set $\sin \theta = 1$ and $\dot{\theta} = 0$. Then

$$L = \frac{1}{2}m(\dot{r}^2 + (r\dot{\phi})^2) + Qr\dot{\phi}\frac{\mu}{4\pi r^2}$$

$$p_r = m\dot{r}$$

$$p_{\phi} = mr^2\dot{\phi} + \frac{Q\mu}{4\pi r} \quad \Rightarrow \quad \dot{\phi} = \left(p_{\phi} - \frac{Q\mu}{4\pi r}\right) / mr^2$$

Hence

$$H = p_r \dot{r} + p_\phi \dot{\phi} - \frac{1}{2} m (\dot{r}^2 + (r\dot{\phi})^2) - Q r \dot{\phi} \frac{\mu}{4\pi r^2}$$

$$= \frac{1}{2} m (\dot{r}^2 + r^2 \dot{\phi}^2)$$

$$= \frac{1}{2m} \left[p_r^2 + \frac{1}{r^2} \left(p_\phi - \frac{Q\mu}{4\pi r} \right)^2 \right]$$

Since $\partial H/\partial \phi = 0$, $p_{\phi} = \text{constant}$. Also constant $= H = \frac{1}{2}m(\dot{r}^2 + (r\dot{\phi})^2) = \frac{1}{2}mv^2$, so the speed is constant.

There are 2 cases to consider: initially either $\dot{\phi} > 0$ or $\dot{\phi} < 0$. In the figure $\dot{\phi} > 0$ and

$$v = -\frac{\mathrm{d}}{\mathrm{d}t}(b\cot(\phi - \pi)) = -b\frac{\mathrm{d}}{\mathrm{d}t}\frac{1}{\tan(\phi - \pi)} = b\frac{\sec^2(\phi - \pi)}{\tan^2(\phi - \pi)}\dot{\phi}$$
$$= b\dot{\phi}\frac{1}{\sin^2(\phi - \pi)} = \frac{r^2\dot{\phi}}{b}$$

or similarly, $v=-r^2\dot{\phi}/b$ if $\dot{\phi}<0$. At $\propto p_\phi=mr^2\dot{\phi}=\pm mb\dot{r}$. At closest approach $r\dot{\phi}=\pm v$, so

$$\pm mbv = p_{\phi} = mr^2\dot{\phi} + \frac{Q\mu}{4\pi r} = \pm mrv + \frac{Q\mu}{4\pi r}$$

Hence

$$r^2 - br \mp \frac{Q\mu}{4\pi mv} = 0$$
 ; $r = b \pm \sqrt{b^2 \pm a_0^2}$

We require r > 0, so if we take the plus sign in the root, we must take the plus sign before the root. That is

$$r = \begin{cases} b + \sqrt{b^2 + a_0^2} & \text{if } \dot{\phi} < 0 \\ b - \sqrt{b^2 - a_0^2} & \text{if } \dot{\phi} > 0 \end{cases}$$

7. A point charge q is placed at the origin in the magnetic field generated by a spatially confined current distribution. Given that

$$\mathbf{E} = \frac{q}{4\pi\epsilon_0} \frac{\mathbf{r}}{r^3}$$

and $\mathbf{B} = \nabla \times \mathbf{A}$ with $\nabla \cdot \mathbf{A} = 0$, show that the field's momentum

$$\mathbf{P} \equiv \epsilon_0 \int \mathbf{E} \times \mathbf{B} \, \mathrm{d}^3 \mathbf{x} = q \mathbf{A}(0).$$

Use this result to interpret the formula for the canonical momentum of a charged particle in an e.m. field.

$$P = \epsilon_0 \int d^3 \mathbf{x} \, \frac{q}{4\pi\epsilon_0} \frac{\mathbf{r}}{r^3} \times (\nabla \times \mathbf{A})$$
$$= -\frac{q}{4\pi} \int d^3 \mathbf{x} \left(\nabla \frac{1}{r}\right) \times (\nabla \times \mathbf{A})$$

In tensor notation

$$\begin{split} P_i &= -\frac{q}{4\pi} \int \mathrm{d}^3\mathbf{x} \, \epsilon_{ijk} \left(\nabla_j \frac{1}{r} \right) \epsilon_{klm} \nabla_l A_m \\ &= -\frac{q}{4\pi} \int \mathrm{d}^3\mathbf{x} \, (\delta_{il} \delta_{jm} - \delta_{jl} \delta_{im}) \left(\nabla_j \frac{1}{r} \right) \nabla_l A_m \\ &= -\frac{q}{4\pi} \int \mathrm{d}^3\mathbf{x} \, \left[\left(\nabla_j \frac{1}{r} \right) \nabla_i A_j - \left(\nabla_j \frac{1}{r} \right) \nabla_j A_i \right]. \end{split}$$

Now

$$\int d^3 \mathbf{x} \left(\nabla_j \frac{1}{r} \right) \nabla_i A_j = \oint d^2 S_j \left(\frac{1}{r} \nabla_i A_j \right) - \int d^3 \mathbf{r} \frac{1}{r} \nabla_i \nabla_j A_j = 0$$

$$\int d^3 \mathbf{x} \left(\nabla_j \frac{1}{r} \right) \nabla_j A_i = \oint d^2 S_j \left(\nabla_j \frac{1}{r} \right) A_i - \int d^3 \mathbf{r} \left(\nabla^2 \frac{1}{r} \right) A_i$$

We can discard the surface terms, which vanish provided $\mathbf{A} \to 0$ at ∞ , no matter how slowly. Also $\nabla^2 r^{-1} = -4\pi\delta^3(\mathbf{r})$, so

$$P_i = q \int d^3 \mathbf{r} \, \delta^3(\mathbf{r}) A_i = A_i(0).$$

8. For each convex function f(x), i.e. for each f(x) for which f''(x) > 0, define F(x,p) to be the function of two variables

$$F(x,p) \equiv xp - f(x)$$
.

Show that for each fixed p, F(x,p) has a unique maximum with respect to x when f'(x) = p. Let this maximum occur at x_p . We define the Legendre transform of f to be

$$\overline{f}(p) \equiv F(x_p, p).$$

Show that the Legendre transform $\overline{\overline{f}}(q)$ of $\overline{f}(p)$ is $\overline{\overline{f}}(q) = f(q)$. (In other words on applying the transform twice you recover your original function.)

$$0 = \partial F/\partial x = p - f'(x)$$
 so x_p is the root of $p = f'(x_p)$.

$$\overline{f}(p) \equiv F(x_p, p) = x_p p - f(x_p)$$

Now introduce $G(p,q) \equiv pq - \overline{f}(p)$. p_q is the root of

$$q = \overline{f}'(p_q) = \frac{\partial x_p}{\partial p} p + x_p - \frac{\partial f}{\partial x_p} \frac{\partial x_p}{\partial p} = x_p \equiv x_{p_q}.$$

$$\overline{\overline{f}}(q) = G(p_q, q) = p_q q - \overline{f}(p_q)
= p_q q - [x_{p_q} p_q - f(x_{p_q})]
= f(x_{p_q}) - p_q (q - x_{p_q}).$$

But we have shown that $x_{p_q} = q$, so $\overline{\overline{f}}(q) = f(q)$ as required.

9. Show that the generating function of the form $S(\mathbf{P}, \mathbf{x})$ which generates the Gallilean transformation between frames in relative motion at velocity \mathbf{V} is

$$S = \mathbf{P} \cdot \mathbf{x} + \mathbf{V} \cdot (m\mathbf{x} - t\mathbf{P}).$$

Given S(P, x) = Px + V(mx - tP)

$$X = \frac{\partial S}{\partial P} = x - Vt$$
 ; $p = \frac{\partial S}{\partial x} = P + mV$

Thus P = p - mV.

10. A point transformation is specified by n functions $Q_j(\mathbf{q})$ of the old coordinates \mathbf{q} . Show that any point transformation is canonical by evaluating $[Q_i, Q_j]$, $[P_i, P_j]$, etc., where $\mathbf{P} \equiv \partial L/\partial \dot{\mathbf{Q}}$, with L the Lagrangian.

By the chain rule

$$\dot{q}_i = \sum_j \frac{\partial q_i}{\partial Q_j} \dot{Q}_j \quad \Rightarrow \quad \frac{\partial \dot{q}_i}{\partial \dot{Q}_j} = \frac{\partial q_i}{\partial Q_j}.$$

Hence

$$P_{i} = \frac{\partial L}{\partial \dot{Q}_{i}} = \sum_{j} \frac{\partial L}{\partial \dot{q}_{j}} \frac{\partial \dot{q}_{j}}{\dot{Q}_{i}} = \sum_{j} p_{j} \frac{\partial q_{j}}{\partial Q_{i}}.$$

Now

$$[Q_i, Q_j] = \sum_{k} \frac{\partial Q_i}{\partial q_k} \frac{\partial Q_j}{\partial p_k} - \frac{\partial Q_i}{\partial p_k} \frac{\partial Q_j}{\partial q_k} = 0$$

because when all the q_l are held constant, all the Q_l have to be constant also. Also

$$[Q_i, P_j] = \sum_k \frac{\partial Q_i}{\partial q_k} \frac{\partial P_j}{\partial p_k} - \frac{\partial Q_i}{\partial p_k} \frac{\partial P_j}{\partial q_k}$$
$$= \sum_{kl} \frac{\partial Q_i}{\partial q_k} \frac{\partial}{\partial p_k} \left(p_l \frac{\partial q_l}{\partial Q_j} \right)$$
$$= \sum_k \frac{\partial Q_i}{\partial q_k} \frac{\partial q_k}{\partial Q_j} = \frac{\partial Q_i}{\partial Q_j} = \delta_{ij}.$$

Finally,

$$\begin{split} [P_i,P_j] &= \sum_k \frac{\partial P_i}{\partial q_k} \frac{\partial P_j}{\partial p_k} - \frac{\partial P_i}{\partial p_k} \frac{\partial P_j}{\partial q_k} \\ &= \sum_{kl} p_l \frac{\partial^2 q_l}{\partial q_k \partial Q_i} \frac{\partial q_k}{\partial Q_j} - \frac{\partial q_k}{\partial Q_i} p_l \frac{\partial^2 q_l}{\partial q_k \partial Q_j} \\ &= \sum_{kl} p_l \left(\frac{\partial^2 q_l}{\partial Q_j \partial Q_i} - \frac{\partial^2 q_l}{\partial Q_i \partial Q_j} \right) = 0. \end{split}$$