Solutions Problem Set 2

1. Show that if the Hamiltonian is independent of a generalized coordinate qq, then the conjugate momentum
po Is a constant of motion. Such coordinates are called cyclic coordinates. Give two examples of physical
systems that have a cyclic coordinate.
Clearly
OH

po = —=— if H is not a function of ¢
dqo

e.g. 1) An axisymmetric potential does not depend on ¢ so py is a constant of motion.
e.g. 2) In a magnetic field B = Bk, the Hamiltonian is independent of z, so p, = constant

2. A dynamical system has generalized co-ordinates q; and generalized momenta p;.
Verify the following properties of the Poisson brackets:

[9i,q5) = [pi,pj] = 0; [9i, pj] = 0ij-

If p is the momentum conjugate to a position vector r, and L = r x p, evaluate the Poisson brackets
[Lg, Ly], [Ly, Ly] and [Ly, Ly]. Comment on their significance.
The Lagrangian of a particle of mass m and charge e in a uniform magnetic field B and an electrostatic
potential ¢ is
L =4mi’ + lei - (B xr)— eg.

Derive the corresponding Hamiltonian and verify that the rate of change of mr equals the Lorentz force.
Show that the momentum component along B and the sum of the squares of the two other momentum
components are all constants of motion. Find another constant of motion associated with time translation
symmetry.

o 0q; 0q;  Oq; 0q;
lai- ;] = Ek: Oqr Opr, Opk Oqr 0

trivially, etc.

8qi 8pj 8qi (9pj . .
qi,pj| = = - —= =0 unless i =
l9i,5] zk: 9qi Opr  Opr. Oqi, J
The Poisson bracket is antisymmetric, so [L, L;] = 0 trivially and [L,, L;] = —[Lg, Ly] so we simply
have to evaluate [Lg, Ly]
L, =yp. — zp, and L, = zp, — zp,. Thus L, is independent of z and p, while L, is independent of y
and p, so we can collapse the sum over k in the definition of the Poisson bracket to just the term with £ = z:

0 0 0 0
Lm:L = 5 z — a r — z) T z — a_ r — z
[ n P (yp= — zpy) 9. (zps — zp-) 9. (yp- — zpy) P (2ps — zp-)
= (—py)(—2) —yp. = L.

In QM we have [L,,L,] = iiL., so here’s a close connection between clasical and quantum mechanics —
which turns out to arise because both theories have to reflect the group of three-dimensional rotations.
From L we find the momenta are
p=mi+ se(Bxr)

Thus
H=p-t—L=mi*+lei - (B xr)—imi® — lei (B xr)+es

1
:%mi'2+e¢:—|p—%eer|2+e¢
2m
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From Hamilton’s equations

_ 0H 1 1 o, 0¢
p=—"5-= (p—5eB xr) ar( seB xr) € (1)
Now
g( er)—g(r- xB)=pxB
ar P “ort P -P
9 _19 _ 19 pgre 2 _ g2
Bxr 8r(er)_28r(er er)_Qar(B (B-r))=Br—(B-r)B
Substituting back into () we have
2
5= pxB- (B —(B-1)B) -2
p=opxB- o (Br—(B-)B) o ®)
Replacing p with r we find
2
Pl i = % (mi+ L _ % (Br—(B. _ o0
mr+26B><r_2m(mr+26B><r)xB 4m(Br (B-r)B) es

The triple vector product cancels on the term with (B?r — (B -r)B), so we get at the end the usual equation
of motion with the Lorentz force.

. 0¢
= B—-e—.
mr er X e ar
Dotting (1) through by B, we find
dB-p _ —eB 8—¢
dt Or

Thus the next part of the question holds only if the term with the electrostatic potential vanishes, for example
because ¢ = constant.

The final proposition is false, as you can convince yourself by dotting (1) through by p: on the left
you then have dp?/dt and on the right an expression that does not vanish even when ¢ = constant. But
we already know that the component of p along B is constant, so the sum of the squares of the other two
components can be constant only if p? is. What we is true is that when ¢ = constant, the sum of the squares
of the components of r perpendicular to B is constant.

Time-translation symmetry causes H to be constant.

3. Let p and q be canonically conjugate coordinates, and let f(p,q) and g(p, q) be functions on phase space.
Define the Poisson bracket [f,g]. Let H(p,q) be the Hamiltonian that governs the system’s dynamics. Write
down the equations of motion of p and q in terms of H and the Poisson bracket.

In a galaxy, the density of stars in phase space is f(p,q,t), where p and q each have three compo-
nents. When evaluated at the location (p(t),q(t)) of any given star, f is time-independent. Show that f
consequently satisfies

of

ot
where H is the Hamiltonian that governs the motion of every star.

Consider motion in a circular, razor-thin galaxy in which the potential energy of any star is given by
the function V(R), where R is a radial coordinate. Express H in terms of plane polar coordinates R, ¢ and
their conjugate momenta, with the origin coinciding with the galaxy’s centre. Hence, or otherwise, show
that in this system f satisfies the equation

[H, f],

Y
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where m is are the mass of the star.
¢=I[q,H]  p=Ip,H]

From the constancy of f we have with the chain rule

_df _of . Of of
0= ot 4 dq op
of OH of OH Of

ot ' 9p o0q Oq Op

of
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from which the required result follows immediately.

L =1m(R? + (R$)*) — V(R)

1
2
so pr = mR, ps = mR2$ and

H = prR+ py¢ — m(R* + (R)?) + V(R)

2
_Pr P
2m  2mR2

2 2 2
g 2 (PN of o (m\or_ o (i \or
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Thus

" mR" ' OR

Opr  m OR mR?0¢

from which the required result follows.

4. Show that in spherical polar coordinates the Hamiltonian of a particle of mass m moving in a potential
V(x) is

H—i(2+p—3+ s ) +V(x)
Tom\Pr T2 T g7 ’
Show that py = constant when 0V /0¢ = 0 and interpret this result physically.

Py

sin?

Given that V depends only on r, show that [H,K] = 0 where K = p3 + R By expressing K as a

function of § and ¢ interpret this result physically.

Consider circular motion with angular momentum h in a spherical potential V (r). Evaluate ps(6) when
the orbit’s plane is inclined by v to the equatorial plane. Show that pg = 0 when sinf = =+ cos and iterpret
this result physically.

K.E.is im[i? + (r8)? + (rsin#¢)?] and P.E. is V

L =im[f?+ (r0)2 + (rsin )] — V

oL . .
Pr=50 = mi pg =mr?0  py = mr’sin® ¢
B

H=p-q—L=mi*>+mr*6> + mr?sin® 4> — %m(i"2 + 1262 + r? sin? 9(132) +V

= %m(i"2 + 7262 + r? sin? 0&2) +V
2 2 2
pfr pG p¢
=T+ + +V
2m  2mr?  2mr2sin® @




As in Q1,

oH _ov_ .,
96 ~ 96 Po =
i.e., angular momentum about the symmetry axis is conserved. Introducing K = pj + pj,/ sin? §
2 K
=2 +V

2m  2mr?

1 1 [K
HK =—pK+—|=. K V. K].
(1, K] = o K]+ o |5 K| 4 K]

Now [., K] is a first-order differential operator, so if A, B are any two functions on phase space, [AB, K] =
A[B, K] + [A, K]|B. Applying this result with A = K and B = r=2 we have

1 1 1
H,K]|= —[p},K|+ —K |=,K| +[V,K].
(H.K] = D2 K]+ K [ K| + V]
In these Poisson brackets the only terms are those in which the object on the left is differentiated w.r.t 6,
¢ or py since K is a function of py, ps and 6 only. But none of p?, 7=2 and V depends on 6, ¢ or py. So
[H,K]=0.

K =m?r?[(rf)? + (rsin6¢)?] = m(rv,)?.

K is the total squared angular momentum and this is constant because the potential is spherically symmetric.

Ne | F

From the figure py = hcost, K = h?, so

2
p3:h2<1_c?52¢> —0 as sinf — *cosv
sin” 6

When the particle is at the furthest point above the plane, it is moving into the paper when we view the
orbit edge-on like this:

&
Ll

/

5. Oblate spheroidal coordinates (u,v, ¢) are related to regular cylindrical polars (R, z,$) by
R = Acoshucosv ; z= Asinhusinwv.
Show that in these coordinates momenta of a particle of mass m are
pu = mA?(cosh? u — cos® v)u,

2

Py = mA?(cosh? u — cos® v)1,

ps = mA? cosh? u cos® ve.
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Hence show that the Hamiltonian for motion in a potential ®(u,v) is

2
p% + p% Py

H =
2mA2(cosh® u — cos2v)  2mA2 cosh? u cos? v

+ .

Show that [H,ps] = 0 and hence that pg is a constant of motion. Identify it physically.
From the lecture notes

L = imA? (cosh? u — cos? v) (i? + ©2) + cosh® u cos? vp? | — @

Hence oL
pu = =— = mA*(cosh® u — cos® v)u
ou
py = mA%(cosh? u — cos® v)o
pe = mA? cosh? u cos® v §
Now ,
mA2(cosh? u — cos2v)  mA2(cosh’u — cos2v)  mA2cosh? ucos? v
2 2 9
1 2 Du + Dy ( Do )
— smA + + @
2 (mA2)2(cosh? u — cos? v) mA? cosh u cosv
2 4 2 2
p

2mA2(cosh® u — cos?v)  2mA2 cosh® u cos? v

If ®(u,v) only, 0H/0¢ = 0 so py = 0 and p, (angular momentum about the symmetry axis) is constant.

6. A particle of mass m and charge (Q moves in the equatorial plane 8 = 7/2 of a magnetic dipole. Given
that the dipole has vector potential
_ psing
= dmr2 O
evaluate the Hamiltonian H (p,, pg,r, ¢) of the system.
The particle approaches the dipole from infinity at speed v and impact parameter b. Show that py and
the particle’s speed are constants of motion.
Show further that for Qu > 0 the distance of closest approach to the dipole is

b—Vi2—a? for¢p>0 s PQ
2 {b+\/62+a2 for p <0 where 4=

Motion is in the equatorial plane, so we can set sinf = 1 and 6 = 0. Then

_1 .2 N2 M
L= tm(* + (1)) + Qrotes
DPr = mr
Hence ) ) -
H = pyi + pod — 3m(® + (70)?) - Qré—

=im(* + 2 ¢?)

1,1 Qn\’
- 2m lpr+r2 <p 47rr>



Since 0H/0¢ = 0, py = constant. Also constant = H = % (7% + (M)) va, so the speed is constant.

bolig-s)eren ( ¢3 7) /\¢

There are 2 cases to consider: initially either ¢ > 0 or ¢ < 0. In the figure ¢ >0 and

d 1 _bsec2(¢—7r) .

v —i(bcot(qb ™) = _bEtanw —m)  tan®(¢ — 7r)¢

dit

LT
_b¢sin2(¢—7r)_ b

or similarly, v = —r2¢/b if ¢ < 0.
At 0o pg = mr?p = +mbr. At closest approach ré = +v, so

Embv = pg = mrzd) + % =+mrv + %
4rr 4rr

r? —br F —— _@n =0 ; r=bx /b?+xa
4mmu

We require r > 0, so if we take the plus sign in the root, we must take the plus sign before the root. That is

:{b+«/b2+a% if ¢ <0
b— /b2 —a2 ifd>0

Hence

7. A point charge q is placed at the origin in the magnetic field generated by a spatially confined current

distribution. Given that g T

- 4meq 13
and B =V x A with V- A = 0, show that the field’s momentum

PzeO/EchPx:qA(O).

Use this result to interpret the formula for the canonical momentum of a charged particle in an e.m. field.

P:eo/d3 T 2 % (VxA)

47eq 7“3

iz ] @ ( ) (VA
P = —i/dSXGZ“k V'l €kim Vidm
47 / Tr
——i/d3x(5'l5' —6u6; ) vl ViA
4 wrme TR T "
_q 3 1 A — 1 P
o (e2) e~ (e )]
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In tensor notation



1 1 1
/dSX (V];> VZAJ = %dQSj (;VZA]> — /d3I' ;VZVJA] =0
3 1 2 1 3 2]-
d°x V]; Vin: dS] V]; Ai— d’r (V ; Az

We can discard the surface terms, which vanish provided A — 0 at co, no matter how slowly. Also V2r~! =

—4763(r), so
Pi - q/d3r63(r)Ai - AZ(O)

8. For each convex function f(x), i.e. for each f(x) for which f"(z) > 0, define F(x,p) to be the function
of two variables

F(z,p) =xp— f(z).

Show that for each fixed p, F(x,p) has a unique maximum with respect to x when f'(z) = p. Let this
maximum occur at x,. We define the Legendre transform of f to be

f(p) = F(zp,p).

Show that the Legendre transform ?(q) of f(p) is ?(q) = f(q). (In other words on applying the transform
twice you recover your original function.)
0=0F/0x = p— f'(z) so x, is the root of p = f'(z}).

7(1’) = F(xp,p) = mpp — f(xp)

(q) = G(pg;9) = peq — f(py)
=DPgq — [qupq - f(wpq)]
= f(mpq) - pq(q - -qu)-

~ll

But we have shown that z, = ¢, so ?(q) = f(q) as required.



9. Show that the generating function of the form S(P,x) which generates the Gallilean transformation
between frames in relative motion at velocity V is

S=P-x+V.(mx—tP).

Given S(P,z) = Pz + V(mz — tP)

X:ﬁzm—Vt ; p:ﬁzP—FmV
ox

Thus P =p—mV.

10. A point transformation is specified by n functions @);(q) of the old coordinates q. Show that any point
transformation is canonical by evaluating [Q;, Q,], [P, Pj], etc., where P = 8L /8Q, with L the Lagrangian.
By the chain rule

Z an ‘ ) 3‘12 — 3%‘
8Q]~ 8@]
Hence 5L 9 5
_ 9L 4q; 945
Z aq] Qz 2]: ]
Now

t Opr  Opr Ogy

0.0, = Y 50 5050

because when all the ¢; are held constant, all the ); have to be constant also. Also

0Q; 0P; 0Q; 0P;
(@i By Z qr. Wi - 8_m8_q1:

0Q; 0 Oq

B ; dai. Ipk ( '9Q; )

= Z 0Qi 9qr _ 9Q; = 5is.
g 0Q;  0Q;

Finally,
P, P Z 0P; 0P; OP; OP;

dqr Opx  Opr, Oqx

P 90:0Q; 0Q;  9Q:" 04:0Q;

< %q ?q )
v 0Q;0Q; 0Q;0Q;
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