Solutions Problem Set 1

1. In polar coords, radial speed is 7, tangential speed is r¢, so T = m(i? + r2¢2) and
L=3m@*+ r2¢?) — V.
Hence L /97 = ms- and L /dr = mr¢?® — AV/dr, so EL equation for r is

dr i OV
ma—mrqﬁ +W_O

Similarly, dL/d¢ = mr2¢, so the EL equation for ¢ is
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If the potential is axisymmetric, V/3¢ = 0, so last equation states that the angular momentum mr2¢ is
constant. If the motion is circular, 7 = 0 = 7 and the radial equation becomes

where v = rq5 is the speed. Thus the force —9V/Or is equal to m times the centripetal acceleration —v?/r.

2. The equation of motion is

mi=-VV(r) = —%f'.

Crossing through with r we get mr x ¥ = 0. But

d

a(rxf):(i‘xf)—k(rxi‘):(rxi‘)

so the equation of motion states that the vector r x r is constant. This result implies that the motion is

confined to the plane containing the initial values of r and . )

With (r, ) polar coords in this plane, the Lagrangian is L = $m[i? + (r¢)?] — V. Now
1 . ]
r=- = r=-—

U U

and L becomes

u u?
Given V = —au the EL eqn for u becomes
d " e ¢?
X (mﬂ> +2m$+mﬁ —a=0,

while the EL eqn for ¢ is

dt \ u2 u?

d . .
<£> =0 = i = h, a constant
This results yields d¢ = hu? dt, which we can use to eliminate ¢ from the u equation:

d m du 2mh2u4 du 2
2~ (7 247 s m = 2, _
hu ( 1 hu ) + 5 < > + mh-u a=0
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When we expand the derivative on the left we get a term

2mh? (du?
U do¢

that cancels the second term, and the equation cleans up to
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The GS of this is o
=A — —
u cos(¢ — ¢o) + "y

The orbit is bound if u cannot reach zero, i.e., if a/mh?> > A. Defining x = 7cos(¢ — ¢) and y =

rsin(¢ — ¢g), we have
ra ra
1:rAcos(¢—¢0)+W = 1:3:A+W
S0
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1— 24z + A%2? =

m2h

«
m2h4($2+y2) & 2 < 4 _A2> +24z+y* =1,

which is the equation of an ellipse or hyperbola depending on the sign of the coeff of z2.
3. In spherical polars the kinetic energy is

T=1im|r*+ (rf)? + (rsin 0@2.5)2] = L=1im [1'“2 + (r8)? + (rsin6¢)?| — m®

SO
d . - .9 ,5p 0P
o rf° — rsin” 6¢ +_81“ =0
d /., 5 . i 00
i (r 0) r< sin 6 cos 8¢ +_89 =0
d/y . 5, 0e
i (r sin 0¢)+8¢—0

Now we calculate the derivative of the squared angular momentum, which is the sum of contributions 26
perpendicular to the meridional plane and r2 sin §¢ parallel to the z axis:

d

ga, oa  (r2sin®0¢)>
4 [(r b)) LS 007

5 ] = 2r20r%sin 6 cos 0 — 2

sin“ 6

(r2 sin? f¢)?
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3 0 COS

Sin

= 2r*0sin 6 cos B> — 2r* sin 0> cos B = 0

From the figure

T = 1mi(16)* + ma(16 + 1)*
V = —myglcosf —mag(lcosf + 1 cos @)

~ gl(my %92 + mQ%OQ + m2%¢2)




The linearised equations of motion are therefore

d . .
T m1l?0 + mol? (6 + ¢)] + (m1 +ma)gld =0

% [m212(9 + ¢)] + msagle = 0.

Let § = Oel“t, ¢ = ®el“?, then

<—w2l2(m1 +ms2) + (m1 + ma)gl —w??my ) <®> ~0

—w??may —w??my + magl il
The vanishing of the determinant implies that

(m1 +ma) (gl — W?1*)ma(gl — W?1?) = (W Pmy)?

= /ma(my 4+ ma) (gl — w??) = £maw?l?

<‘/1+—i1> S+ gl
ma

= w2 g gl¢1/w1+m1/m2
l 1i1/«/1+m1/m2 11-1/(14mq/ms)
_g 1:|:1/\/1+m1/m2

lml/mg/(l+m1/m2

=1 () (e )

If my > ma, w? ~ (g/1)(1F \/ma2/m1) so both frequencies ~ 1/g/l because the first mass swings without

disturbance from the second.
w? g m2 [1 F < — %ﬂﬂ
l mi mo

If mo > my,
One frequency is now very high (the light mass m; on the taught string) and the other is = /g/2l (mass
on a string length 21).




From the figure

T %m(aé)2 + %maQQQ + %m(aé +ad)? = ma?6® + %ma2(9 + ¢)?
V = —mgacosf — mg(acosf + acos ¢p) = —2mga cos — mga cos ¢
~ mga(6” + 3¢°)
The linearized equations of motion are therefore
d . i B
i 2ma°8 + ma*(6 + ¢)| + 2mgad =0

% [ma2(é + qﬁ)} +mgag =0

Putting in harmonic time dependence gives
—w?(30 + ®) + 2%@ =0
—w(O + B) + gcb =0
which implies that

0= (2%—3&) (g—aﬂ)—w“ = 2w4—5w2g+2(§)2:0

Factorizing the quadratic in w? we find that w = \/g/2a or w = \/2g/a.

6.
T=1im@E+wkxr)?=1[(@—wy)’+ (y+wz)’+ 2]

Hence

L=1im[(@—-wy)’+ @y +wz)’+ 2] — imwiz® + wjy® + wiz?)

and the eqns of motion are
am(a’c —wy) —m(y + wr)w + mwiz =0
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d
m(y +wz) + m(t — wy)w + mw,y =0

dt

; 2
TR +mw;z =0

The z motion decouples, so one normal frequency is w,
Letting © = Xe'%, y = Vel the eqns of motion yield

—02X —iQwY —iQwY —w?X +w2X =0
—0%Y 4+i0wX +i0wX —w?Y +w)Y =0

02 -2+ w2 —2iQw
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Thus
0= (-0 —w? +w) (-0 —w? + wZ) —40%0% = O + 02 (20? — W2 — ‘*’Z —4w?) + (W? — W2)(W? — W?)

From the usual formula for quadratics

02 = % (2w2 + w2 + WZ + \/(2w2 +w? +w?)? - 4(w? - wi)(w? - wg))
When w, > w > wy, we have (w? —w2)(w® —w?) < 0 so the radical is bigger than 2w® + w? + w?, so for one
choice of sign Q22 < 0, which implies that the motion is unstable.

7. L=1im[i* + (wr)?] — £(mk/a)(r — a)?, so the eqn of motion is

The GS of this linear inhomogeneous equation of motion is

k k
r:Acos(Qt+¢)+@ Q= a—wz

We evaluate the arb consts A and ¢ from the given conditions at t = 0, and have

k k
r= a—@ coth+@

With f the reaction of the tube
d
fr = torque = a(mr%}) =2mrirw = f = 2mwr
7 is maximum when Qt = 7/2 with value 7pax = Q(a — k/9Q2) so

fmax = 2maw?® /).

8. In L the terms 5(¢7 + ¢3 + ¢3) and 3(¢} + ¢3 + ¢3) are manifestly invariant under rotations, so it
remains only to show that L' = ¢ugs + ¢3q1 + ¢1¢2 is invariant under rotations about (1,1,1). We have
6q=460(1,1,1,) x = 060(q3 — g2, ¢1 — g3, 92 — q1). SO
OL' = 0qaq3 + 2043 + 0q3q1 + q30q1 + 6q1G2 + q10¢2
=0q1(g3 + ¢2) +9g2(g3 + q1) +9g3(q1 + q2)
=600[(g3 — q2)(g3 + q2) + (@1 — a3)(3 + @1) + (@2 — 1) (@1 + @2)]
=060(q3 — g5 +4ai — g3 +a5 —qi) =0

By Noether’s theorem the constant of motion is

1) OL .. . . .
= % : % = (Q3 — 42,491 — 43,42 —fh) : (Q1;Q2;QS) = lh(Qs - Q2) +Q2(ql - Q3) +Q3(Q2 —ql)

Explicitly calculating the derivative of C' we find

C=qi(gs —q2) +G2(q1 —q3) +Gs(g2 — q1) + 1 (g3 — G2) + G2(d1 — G3) + G3(G2 — d1)

But }
G+q+algs+q)=0
G2+ g2 +a(p+q3) =0
Gz +qs+al@+q)=0
)

—C =g +algz + @)z — q2) + (g2 + a(qr + @3)](q1 — q3) + [g3 + a(g2 + q1)](¢2 — q1) = 0.



9. In a spherical potential the angular momentum per unit mass, r X r, is conserved, so taking the derivative
of K we find

O:K:i‘x(rxf)—}—a'ur—kai',
r

where we’ve used 7 = r - 1/r and ¢ = da/dr. Using ¥ = —VV = —V't we have
! a/
0=——rXx(rxt)+ —(r-f)r+ar
T T
VI 9 al

:—7[(r-1")r—r i‘]+7(r'i')r+04f'

We now use tensor notation to extract a factor of the velocity:

' /
. (0%
0=ry TVI(SZ'J' — —rir; + —rir; + aéij
T T

As initial conditions we get to choose T, so if this equation is to hold along any orbit, the tensor multiplying
r must vanish. We also get to choose r, so if the tensor is to vanish for any orbit, the coefficients of §;; and
r;r; must separately vanish. It follows that

rV'=—a and V'=d = %:—% = a=A/r = V=-A/r (Aaconst.)

Similarly, taking the derivative of @;; we find

’
0= Qij = ’I“Z’I“J +’I‘Z’I“] + 71‘ . i"l‘{l‘j +,8(’f“i’l“j +’I‘i’ll“j)
’ ’
= —7(riﬁj + 1."2'7‘]‘) + 71‘ . I"TZ'TJ' + 5(’f‘iTj + Ti’f‘j)
The argumentation used in the first part now implies that

!

O:ﬂ—VT and 0=p

from which it follows that V = %673, where 3 is a constant.



