Prof J.J. Binney Short Option 7

Classical Mechanics: Additional off-syllabus problems

1. A chain of length | is hung from two points that are at the same level but are distance s < [
apart. The chain adopts that curve z(x) (a catenary) which minimizes it potential energy W{z(z)].
By minimizing the chain’s potential energy subject to its length being l, show that z satisfies

- (g) -1=o

where )\ is a Lagrange multiplier.
Solve for z(x). [Hint: define u = dz/dz and show that

udu dz ]
1+u2 z=X 1

2. The bottom spike of an axisymmetric top of mass m lies distance a below the top’s centre of gravity.
Show that when the top is spinning with its spike in contact with a rough floor, the system’s Lagrangian
is

L= %I1(<i>2 sin® 0 + 92) + %Ig((i) cosf + 1/))2 — mgacos#,

where (0, ¢,1) are Euler angles relative to a vertical k axis and I3 is the principal moment of inertia
about the top’s symmetry axis. Show that the top can precess steadily at fixed inclination to the vertical
only if 8 satisfies

0 =mga + (I — I3)¢? cos§ — I3y

The top precesses steadily iff 6 = 0. The 6 equation of motion is

%(1161) — I,¢?sinf cos @ + I3(¢cosf + 1) sinf — mgasinf = 0,

s0 6 = 0 at all times requires either sinf = 0 or

0 =mga+ (I — I3)¢” cos§ — ¢npIs.

3. The bottom spike of an axisymmetric top of mass m lies distance a below the top’s centre of gravity.
Show that when the top is spinning with its spike in contact with a rough floor, the system’s Hamiltonian

is
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where (0, ¢,1) are Euler angles relative to a vertical k axis and I3 is the principal moment of inertia

about the top’s symmetry axis. Identify two constants of the motion in addition to H.

Show that the top will precess steadily at fixed inclination to the vertical provided 6 satisfies

(P — py cos0)(pg cos @ — py)

0 =mga +
g I sin* @
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The Lagrangian for this system is

L=1L(¢*sin® 0+ 62) + SI3(¢cosd +1))> — mgacosd
po = 16, py = I sin’ 8¢ + I3(¢cosb + 1) cosb, Dy = Ii(dcos+1)) = I sin’0d = Py — cosOpy,
H = 1,6% 4 I, sin® 0¢” + I3[(¢ cos 8 + 1)) cos B¢
+ (¢pcosf + )] — LI ($*sin®  + 6°) — LI3(¢cosf + 1) + mga cos b
11 (¢* sin® 0 + 6%) + L I5(dcos + 4)? + mga cos§
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H doesn’t depend on either ¢ or 1), so ps and py are constants of the motion.

For steady precession we require

- 0OH

O = 0 = —
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We also require

OH _ (py — pycost)’
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0=pg =
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4. Show that for a harmonic oscillator of frequency w the Hamilton-Jacobi equation reads
(dS
dx

Identify a new momentum P which allows S to be written

S(P,z) = (8 + $sin20)P where 6(P,z) = arcsin (, / %x)

Hence show that the action-angle coordinates of this system may be taken to be

2
) + m2w?2? = 2mE.

1
p= 2 2, 2 2

@ = arctan(mwz /p).

(Notice that according to quantum mechanics P/h = (n + 3) takes half-integral values. The ‘old
quantum theory’ was founded on assigning such special values to action variables divided by #.)

5. Show that when the potential of Problem 5 on problem set II is of the form
Uu) = V(v)

P(u,v) =
(1, 0) cosh?u — cos2v’

(1)

the Hamilton-Jacobi equation separates. Hence show that in the case ps = 0 the other momenta are
related to the coordinates by

Dy = ﬂ:A\/2m[E cosh® u — I — U(u)]
py = £AV/2m[—Ecos>v + I + V (v)],

where I is a constant of separation. Express I as a function of position in phase space. [Potentials of the
form (}) are called Stackel potentials after P. Stdckel, who demonstrated that ellipsoidal coordinates
provide the most general coordinate system in which one can separate the Hamilton-Jacobi equation of
a particle moving in ®(x).]



