Prof J.J. Binney Short Option 7

Classical Mechanics II

- 1. Show that if the Hamiltonian is independent of a generalized coordinate q_0 , then the conjugate momentum p_0 is a constant of motion. Such coordinates are called **cyclic coordinates**. Give two examples of physical systems that have a cyclic coordinate.
- 2. A dynamical system has generalized co-ordinates q_i and generalized momenta p_i .

Verify the following properties of the Poisson brackets:

$$[q_i, q_j] = [p_i, p_j] = 0;$$
 $[q_i, p_j] = \delta_{ij}.$

If **p** is the momentum conjugate to a position vector **r**, and **L** = $\mathbf{r} \times \mathbf{p}$, evaluate the Poisson brackets $[L_x, L_y]$, $[L_y, L_x]$ and $[L_x, L_x]$. Comment on their significance.

The Lagrangian of a particle of mass m and charge e in a uniform magnetic field ${\bf B}$ and an electrostatic potential ϕ is

$$L = \frac{1}{2}m\dot{\mathbf{r}}^2 + \frac{1}{2}e\dot{\mathbf{r}}\cdot(\mathbf{B}\times\mathbf{r}) - e\phi.$$

Derive the corresponding Hamiltonian and verify that the rate of change of $m\dot{\mathbf{r}}$ equals the Lorentz force. Show that the momentum component along \mathbf{B} and the sum of the squares of the two other momentum components are all constants of motion. Find another constant of motion associated with time translation symmetry.

3. Let p and q be canonically conjugate coordinates, and let f(p,q) and g(p,q) be functions on phase space. Define the Poisson bracket [f,g]. Let H(p,q) be the Hamiltonian that governs the system's dynamics. Write down the equations of motion of p and q in terms of H and the Poisson bracket.

In a galaxy, the density of stars in phase space is $f(\mathbf{p}, \mathbf{q}, t)$, where \mathbf{p} and \mathbf{q} each have three components. When evaluated at the location $(\mathbf{p}(t), \mathbf{q}(t))$ of any given star, f is time-independent. Show that f consequently satisfies

$$\frac{\partial f}{\partial t} = [H, f],$$

where H is the Hamiltonian that governs the motion of every star.

Consider motion in a circular, razor-thin galaxy in which the potential energy of any star is given by the function V(R), where R is a radical coordinate. Express H in terms of plane polar coordinates R, ϕ and their conjugate momenta, with the origin coinciding with the galaxy's centre. Hence, or otherwise, show that in this system f satisfies the equation

$$\frac{\partial f}{\partial t} + \frac{p_R}{m} \frac{\partial f}{\partial R} + \frac{p_{\phi}}{mR^2} \frac{\partial f}{\partial \phi} - \left(\frac{\partial V}{\partial R} - \frac{p_{\phi}^2}{mR^3} \right) \frac{\partial f}{\partial p_R} = 0,$$

where m is are the mass of the star.

4. Show that in spherical polar coordinates the Hamiltonian of a particle of mass m moving in a potential $V(\mathbf{x})$ is

$$H = \frac{1}{2m} \left(p_r^2 + \frac{p_\theta^2}{r^2} + \frac{p_\phi^2}{r^2 \sin^2 \theta} \right) + V(\mathbf{x}).$$

Show that $p_{\phi} = \text{constant}$ when $\partial V/\partial \phi \equiv 0$ and interpret this result physically.

Given that V depends only on r, show that [H,K]=0 where $K\equiv p_{\theta}^2+\frac{p_{\phi}^2}{\sin^2\theta}$. By expressing K as a function of $\dot{\theta}$ and $\dot{\phi}$ interpret this result physically.

Consider circular motion with angular momentum h in a spherical potential V(r). Evaluate $p_{\theta}(\theta)$ when the orbit's plane is inclined by ψ to the equatorial plane. Show that $p_{\theta} = 0$ when $\sin \theta = \pm \cos \psi$ and iterpret this result physically.

5. Oblate spheroidal coordinates (u, v, ϕ) are related to regular cylindrical polars (R, z, ϕ) by

$$R = \Delta \cosh u \cos v$$
; $z = \Delta \sinh u \sin v$.

Show that in these coordinates momenta of a particle of mass m are

$$p_u = m\Delta^2(\cosh^2 u - \cos^2 v)\dot{u},$$

$$p_v = m\Delta^2(\cosh^2 u - \cos^2 v)\dot{v},$$

$$p_\phi = m\Delta^2\cosh^2 u\cos^2 v\dot{\phi}.$$

Hence show that the Hamiltonian for motion in a potential $\Phi(u,v)$ is

$$H = \frac{p_u^2 + p_v^2}{2m\Delta^2(\cosh^2 u - \cos^2 v)} + \frac{p_\phi^2}{2m\Delta^2\cosh^2 u \cos^2 v} + \Phi.$$

Show that $[H, p_{\phi}] = 0$ and hence that p_{ϕ} is a constant of motion. Identify it physically.

6. A particle of mass m and charge Q moves in the equatorial plane $\theta = \pi/2$ of a magnetic dipole. Given that the dipole has vector potential

$$\mathbf{A} = \frac{\mu \sin \theta}{4\pi r^2} \mathbf{e}_{\phi},$$

evaluate the Hamiltonian $H(p_r, p_{\phi}, r, \phi)$ of the system

The particle approaches the dipole from infinity at speed v and impact parameter b. Show that p_{ϕ} and the particle's speed are constants of motion.

Show further that for $Q\mu > 0$ the distance of closest approach to the dipole is

$$D = \frac{1}{2} \begin{cases} b - \sqrt{b^2 - a^2} & \text{for } \dot{\phi} > 0 \\ b + \sqrt{b^2 + a^2} & \text{for } \dot{\phi} < 0 \end{cases} \text{ where } a^2 \equiv \frac{\mu Q}{\pi m v}.$$

7. A point charge q is placed at the origin in the magnetic field generated by a spatially confined current distribution. Given that

$$\mathbf{E} = \frac{q}{4\pi\epsilon_0} \frac{\mathbf{r}}{r^3}$$

and $\mathbf{B} = \nabla \times \mathbf{A}$ with $\nabla \cdot \mathbf{A} = 0$, show that the field's momentum

$$\mathbf{P} \equiv \epsilon_0 \int \mathbf{E} \times \mathbf{B} \, \mathrm{d}^3 \mathbf{x} = q \mathbf{A}(0).$$

Use this result to interpret the formula for the canonical momentum of a charged particle in an e.m. field. [Hint: write $\mathbf{E} = -(q/4\pi\epsilon_0)\nabla r^{-1}$ and $\mathbf{B} = \nabla \times \mathbf{A}$, expand the vector triple product and integrate each of the resulting terms by parts so as to exploit in one $\nabla \cdot \mathbf{A} = 0$ and in the other $\nabla^2 r^{-1} = -4\pi \delta^3(\mathbf{r})$. The tensor form of Gauss's theorem states that $\int d^3 \mathbf{x} \nabla_i \mathbf{T} = \oint d^2 S_i \mathbf{T}$ no matter how many indices the tensor T may carry.]

8. For each convex function f(x), i.e. for each f(x) for which f''(x) > 0, define F(x,p) to be the function of two variables

$$F(x, p) \equiv xp - f(x)$$
.

Show that for each fixed p, F(x,p) has a unique maximum with respect to x when f'(x) = p. Let this maximum occur at x_p . We define the Legendre transform of f to be

$$\overline{f}(p) \equiv F(x_p, p).$$

Show that the Legendre transform $\overline{\overline{f}}(q)$ of $\overline{f}(p)$ is $\overline{\overline{f}}(q) = f(q)$. (In other words on applying the transform twice you recover your original function.)

[Hint: first show that $qp - \overline{f}(p)$ achieves its maximum w.r.t. p when $x_p = q$.]

9. Show that the generating function of the form $S(\mathbf{P}, \mathbf{x})$ which generates the Gallilean transformation between frames in relative motion at velocity V is

$$S = \mathbf{P} \cdot \mathbf{x} + \mathbf{V} \cdot (m\mathbf{x} - t\mathbf{P}).$$

10. A point transformation is specified by n functions $Q_j(\mathbf{q})$ of the old coordinates \mathbf{q} . Show that any point transformation is canonical by evaluating $[Q_i, Q_j]$, $[P_i, P_j]$, etc., where $\mathbf{P} \equiv \partial L/\partial \hat{\mathbf{Q}}$, with L the Lagrangian. [Hint: you may find it useful to prove first that $\dot{Q}_i = (\partial Q_i/\partial q_j)\dot{q}_j$ and $P_i = p_j(\partial q_j/\partial Q_i)$.]