Prof J.J. Binney Short Option 7

Classical Mechanics 11

1. Show that if the Hamiltonian is independent of a generalized coordinate ¢g, then the conjugate
momentum pg is a constant of motion. Such coordinates are called cyclic coordinates. Give two
examples of physical systems that have a cyclic coordinate.

2. A dynamical system has generalized co-ordinates ¢; and generalized momenta p;.
Verify the following properties of the Poisson brackets:

[9i, ;] = [pi, ;] = 0; [9i,pj] = dij-

If p is the momentum conjugate to a position vector r, and L = r x p, evaluate the Poisson brackets
Lz, Ly], [Ly, L) and [L,, L;]. Comment on their significance.

The Lagrangian of a particle of mass m and charge e in a uniform magnetic field B and an electro-
static potential ¢ is
L=1mi*+ Ler- (B xr)—ed.

Derive the corresponding Hamiltonian and verify that the rate of change of mr equals the Lorentz
force. Show that the momentum component along B and the sum of the squares of the two other
momentum components are all constants of motion. Find another constant of motion associated with
time translation symmetry.

3. Let p and ¢ be canonically conjugate coordinates, and let f(p,q) and g(p, q) be functions on phase
space. Define the Poisson bracket [f,g]. Let H(p,q) be the Hamiltonian that governs the system’s
dynamics. Write down the equations of motion of p and ¢ in terms of H and the Poisson bracket.

In a galaxy, the density of stars in phase space is f(p, q,t), where p and q each have three compo-
nents. When evaluated at the location (p(t), q(t)) of any given star, f is time-independent. Show that
f consequently satisfies

of
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where H is the Hamiltonian that governs the motion of every star.

Consider motion in a circular, razor-thin galaxy in which the potential energy of any star is given by
the function V(R), where R is a radical coordinate. Express H in terms of plane polar coordinates R, ¢
and their conjugate momenta, with the origin coinciding with the galaxy’s centre. Hence, or otherwise,
show that in this system f satisfies the equation
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where m is are the mass of the star.

4. Show that in spherical polar coordinates the Hamiltonian of a particle of mass m moving in a
potential V(x) is
1 P2 5
H= (i + 2 2 ) 4 Vi),
2m rt 72 + r2sin” # +V(x)
Show that ps = constant when 0V/0¢ = 0 and interpret this result physically.
2

Given that V depends only on 7, show that [H, K] = 0 where K = p} + ‘pg X By expressing K as
Sin

a function of  and ¢ interpret this result physically.

Consider circular motion with angular momentum £ in a spherical potential V (r). Evaluate pg ()
when the orbit’s plane is inclined by 1) to the equatorial plane. Show that ps = 0 when sinf = + cos®)
and iterpret this result physically.
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5. Oblate spheroidal coordinates (u, v, @) are related to regular cylindrical polars (R, z, ¢) by
R =Acoshucosv ; z=Asinhusinwv.
Show that in these coordinates momenta of a particle of mass m are
pu = mA*(cosh® u — cos® v)1,

Py = mA?(cosh® u — cos?

v)o,
Dy = mA? cosh? u cos® v.

Hence show that the Hamiltonian for motion in a potential ®(u,v) is
P+ Dy iz

— + &.
2mA2(cosh® u — cos2v)  2mA2 cosh? u cos? v

Show that [H,ps] = 0 and hence that pg is a constant of motion. Identify it physically.

6. A particle of mass m and charge () moves in the equatorial plane § = /2 of a magnetic dipole.
Given that the dipole has vector potential
psinf
A =
dnr? ©P
evaluate the Hamiltonian H (p,,pg,r, $) of the system.

The particle approaches the dipole from infinity at speed v and impact parameter b. Show that pg
and the particle’s speed are constants of motion.

Show further that for Qu > 0 the distance of closest approach to the dipole is

b— Vb2 —a2 ford>0 0 PQ
2{b+\/b2+a2 for ¢ < 0 e 4=

7. A point charge g is placed at the origin in the magnetic field generated by a spatially confined current

distribution. Given that g r

- 47eg r3
and B =V x A with V- A = 0, show that the field’s momentum

PzeO/Ede3x:qA(0).

Use this result to interpret the formula for the canonical momentum of a charged particle in an e.m.
field. [Hint: write E = —(q/47meo)Vr—! and B = V x A, expand the vector triple product and integrate
each of the resulting terms by parts so as to exploit in one V-A = 0 and in the other V2r—! = —47§3(r).
The tensor form of Gauss’s theorem states that [ d*x V,;T = § d?S; T no matter how many indices the
tensor T may carry.]

8. For each convex function f(z), i.e. for each f(z) for which f”(z) > 0, define F(xz,p) to be the
function of two variables

F(z,p) = xp— f().
Show that for each fixed p, F'(z,p) has a unique maximum with respect to  when f'(z) = p. Let this
maximum occur at z,. We define the Legendre transform of f to be

Show that the Legendre transform f(q) of f(p) is f(q) = f(¢). (In other words on applying the transform
twice you recover your original function.)
[Hint: first show that gp — f(p) achieves its maximum w.r.t. p when z, = q.]
9. Show that the generating function of the form S(P,x) which generates the Gallilean transformation
between frames in relative motion at velocity V is

S=P-x+V.(mx—tP).

10. A point transformation is specified by n functions @ ;(q) of the old coordinates q. Show that any
point transformation is canonical by evaluating [Q;, Q;], [P, P;], etc., where P = 0L/0Q, with L the
Lagrangian. [Hint: you may find it useful to prove first that Q; = (0Q;/9¢;)¢; and P; = p;(0q;/0Q);).]



