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Revised Syllabus

The calculus of variations & Euler-Lagrange equations; principle of least action; equations of motion
in strange coordinates; motion in an electromagnetic field; applications to normal modes; symmetries
and Noether’s theorem; constrained systems (including Lagrange multipliers). Hamiltonian dynamics:
Hamilton’s equations; applications to harmonic oscillator, rotating coordinates, motion in an e.m. field;
Hamilton’s principle and connection with quantum mechanics; Poisson brackets; canonical coordinates;
generators of canonical maps, symmetries and conserved quantities.

Books

T.W.B. Kibble, Classical Mechanics, Longman Scientific (about £18):
overall the most suitable book.

L.D. Landau & E. Lifshitz, Classical Mechanics, IoP Publishing: one of
the best books in the classic series on theoretical physics.

Tai L. Chow, Classical Mechanics, Wiley, (about £23): a useful source
of additional information but marred by too many typos.

Oliver Johns, Analytical Mechaniucs for Relativity and Quantum Me-
chanics, OUP. As well as elementary stuff this book contains much that
goes beyond the course but should be found stimulating. For your college
library?

V.I1. Arnold, Mathematical Methods of Mechanics, Springer: a uniquely
insightful book but too sophisticated for most undergraduates.



1 Lagrangian Mechanics

Mechanics as formulated by Newton suffers from two important limitations: (i) it deals with par-
ticles; (ii) it describes their motion in special Cartesian coordinate systems: if the numbers z; are the
coordinates of a particle in an inertial Cartesian coordinate system, then the position of the particle
when subjected for a force with components f;(¢) may be determined by solving the differential equa-
tions #; = f;(t). Since an extended body can be decomposed into its consituent particles, and the
chain rule can be used to transform the equations of motion from Cartesian coordinates to any reference
frame, Newton’s machinery enables us to determine the motion of any body in any reference frame
notwithstanding these limitations. But in practice it is better to determine the dynamics of complex
dynamical systems from a more powerful principle than Newton’s laws of motion. Lagrangian dynamics
provides just such a principle.

Let ¢ ¢« = 1,..., N be generalized coordinates for some system. That is, these N numbers
enable us to specify precisely the system’s configuration. For example, six numbers suffice to specify a
configuration of a rigid body such as a hard-boiled egg: we can take (q1,¢2,¢3) to be the coordinates
in some system, such as spherical polar coordinates, of the body’s centre of mass, and (g4, g5, qs) to be
the three angles that are required to define its orientation. (Box 1 defines Euler angles, the standard
angles for specifying the orientation of a rigid body.) The number of generalized coordinates N required
by a system is called the system’s number of degrees of freedom.

At each instant our system is at some point in configuration space — an imaginary N-dimensional
space for which the g; constitute Cartesian coordinates. As the system moves, its representative point
in configuration space sweeps out a path q(¢). Since Newton’s laws of motion are 2nd order in time,
we expect this path to be uniquely determined by specifying at some time ¢; both q(¢;) and g(¢;). In
Lagrangian mechanics we take rather a different point of view: we do not specify q(¢;) but instead
specify q at a second time t». That is, we ask what path does our system follow if its configuration at
time ¢; is q(t1) and at time t» is q(¢2)? For reasons that give deep insight into the connection between
classical and quantum mechanics, it turns out that the sought-after path q(t) is the path that extremizes
a certain quantity S. Our next task is to introduce the mathematical machinery required to define S
and to show that it is extremized on the Newtonian path. At the end of the course we shall investigate
the connection between the extremization of S and quantum mechanics.

1.1 Paths, functionals & the calculus of variations

Before a ’plane takes off from New York for London, its computer chooses an optimal path x(t); i.e.,
it finds that sequence of longitudes, latitudes and altitudes at each moment ¢ of the flight which, given
prevailing winds, will get it to London at the prescribed time with least expenditure of fuel. The quantity
of fuel required to get to London in a given time is a single number F' that depends on the whole path
x(t); one says that F'is a functional F'[x] of the path x(t).

The simplest functionals are integrals along the path of functions of x(¢) and its derivatives with
respect to t:
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How do we find the path that minimizes a functional

Flx] = Qﬂm&ﬂ&? (1.1)
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2 Calculus of Variations

Let X(t) be the minimizing path and let 77(¢) be a small variation, so that x(t) = X(t) + n(t) ~ x(t). We
insist on 1 vanishing at ¢t = ¢, ¢s so that X(¢) and the modified path both start and finish at the same
places at the same times. Then'

to

FX] < F[x] = t fE+n,x+mn,t)dt
I L VY )
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We now integrate by parts the second term in the integral of the last line:

Bof . of 1"® [ d  of
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Since n(t1) = n(t2) = 0, the [.] vanishes. Putting this into (1.2) we have

OgF[x]—F[i]:/:[(g—i—%g—i)-n+---]dt. (1.4)

This relation must hold for any 7, no matter how small. So the higher terms indicated by +--- can
be neglected. The remaining integrand is proportional to 7, so if it were non-zero for some particular
function 7(t), it would have the opposite sign for ' = —n. The inequality on the extreme left would
then be violated for one of  of n’. Hence the integral must vanish for all . This is possible only if the
coefficient of ) vanishes for all t; < t < to: if it did not vanish for some ¢, say t', the integral would fail
to vanish for the particular choice n = §(t — t'). So X(t) minimizes F' if and only if

all along the path Z(t).

Eq (1.5) is called the Euler-Lagrange equation (‘EL eqn’), and the theory that underlies it is
called the calculus of variations. It is one of the few results we have in the theory of functionals—one
everywhere in physics encounters problems that cry out for a fully fledged calculus of functionals that
shows how to integrate, Taylor expand, exponentiate etc functionals the way we do functions.

Legend has it that the calculus of variations was invented by Newton after dinner one evening to
solve this challenge problem (set in 1695 by Johann Bernoulli):

Example 1.1
A bead slides on a smooth wire that passes through two rings, one at the origin, the other at
(z',y',2") = (20,0, —2z0) with zg > 0. To what curve (the ‘brachystochrone’) must the wire be bent
in order to minimize the time required for the bead to slide from rest at the upper ring to the lower
ring?

Solution: The optimal curve obviously lies in the plane 3’ = 0. It is convenient to work in
coordinates (x,¥, z) such that z increases downwards. Then the time of flight is

%0 dz
7':/ -
0 Z

0 0
1 We use the convention that y - — = pc—.
Y ox zi:y’ oz,



1.2 The Principle of Least Action 3

But §(i? + 2?) = gz, so 2 = \/2gz/[(dz/dz)? + 1] and
o dz dz\2
= — — 1. 1.
T /0 V29z (dz) + (16)

We need to minimize 7[z(2)] from (1.6) with respect to the path z(z). We may use the EL-eqn
(1.5) provided we make the substitutions

t— 2, f(x,j—z,z) :\/% (%)2—#1. (1.7)

Since f does not depend on z, the optimal path satisfies

* Az
z(z)—/o ”—1—Azdz’

where A is a constant of integration. In terms of variable sin?§ = Az the answer is

which implies

T = %(0 — 1sin26). (1.8)

If we write ¢ = 26 this may be written z = (1 — cos¢)/2A, x = (¢ — sin¢)/2A, which is a cycloid
with the origin at its cusp. A may be determined by first solving x¢/z0 = ($o — sin ¢g) /(1 — cos ¢o)
for ¢o and then using this value in A = (1 — cos ¢)/ .

\=

1.2 The Principle of Least Action

As was stated above, the path q(t) taken through configuration space by a dynamical system can be
found by identifying the path that extremizes a quantity S[q(t)] between specified locations q(¢) and
q(t2) of the system at given times t1, t5. S is called the action and is usually (but not invariably)
minimized by the dynamical path. Hence the idea that the dynamical path can be determined by
extremizing S is called the principle of least action.

S takes the form of an integral over ¢ of a function L of q and q:

S = mu%@w. (1.9)

ty

Here L is just a function (rather than a functional) of its arguments. It is called the Lagrangian of
the system. Since the dynamical evolution of the system is entirely determined by L, writing down L
amounts to specifying the physical content of the system.

There is no entirely general rule for writing down L — one would hardly expect one rule to be valid
for every possible dynamical system — but there is a rule that works for most simple systems: L is the
difference between the system’s kinetic energy 7' and its potential energy V;

L=T-V. (1.10)



4 Calculus of Variations

Let’s se how this works out in a simple case: a particle of mass m moving in a gravitaional potential
®(x). Now T = imx?, V = m®. So L(x,%) = 3mx? — m®(x). Setting f = L in the EL equations
(1.5) we obtain the equations of motion as

d . 0P
me+m8_x =0 (1.11)

as required.

Exercise (1):
Consider a shell that is fired at ¢; and hits its target at . Explain in general terms why its action
would be larger if it flew on either a higher or a lower trajectory than it actually does.

1.3 Equations of motion from Lagrangians

The Lagrangian provides a neat way of calculating the eqns of motion of a particle when referred to
an odd coordinate system because it is easier to transform a single function to new-fangled coordinates
that a set of eqns of motion. Consider, for example, motion in a rotating frame.
y oy
Suppose both primed and unprimed coordinates share the same origin, but
woxa z' the primed coordinates rotate with constant angular velocity w with respect
to the unprimed coordinates, which are inertial. Then
x Vinertial = I’ + w X 1,
W

So written in terms of the primed coordinates the k.e. is

T =1mv® = Im|r' + w x r’|2 (1.12)
=imlr']> + mr' - (w x ') + imjw x 1'|? .
The p.e. is just V(r',t) so
L=1im|r')> +mr' (wx1') + imjw x1')? - V. (1.13)
In writing down the EL-eqns we recall that ' - (w x r') =1’ - (r' X w). We then find
_daoL oL
) ) 9 :
= a(mr’ +mw xT') — [mr’ X W+ @(%mw x1'|? - V)]
Collecting everything together we have finally
; ) V.
mr' = 2mr’ X w — ae,ff where Veg =V — Im|w x 1'|. (1.15)
r

In a rotating frame there is a contribution to the “acceleration” r’ from the Coriolis force 2mw xr/, and
the potential needs to be augmented by a term that gives rise to the centrifugal force rw? — (w - r')w.
Forces such as these, which appear because one’s frame is non-inertial, are called pseudo-forces.

A second example illustrates that Lagrangians work even for coordinates that depend explicitly
on time. In cosmology it is handy to use ‘comoving’ coordinates such that the spatial coordinates of
particles that move apart as the Universe expands are constant. Let the primed system be inertial and
the unprimed system comoving. Then r’' = a(¢t)r, where a(t) is the cosmic scale factor. So
2 1

mi’? = tm(at + ar). (1.16)

T= 3

1
2



1.4 Lagrangian for a rigid body 5

Writing the potential energy as V = m® the EL eqns are

d L R
0= E[m(ar—}- ar)a) — m(ar+ar)a+mg.

Cleaning up we get

joolp 102 (1.17)
a

a a2 or’
A final example illustrates how to get T in a weird curvilinear coordinate system. Oblate spheroidal
coordinates (u, v, ¢) are related to regular cylindrical polars (R, z, ¢) by

R =Acoshucosv ; z=Asinhusinv. (1.18) 2

Slightly changing u, v and ¢ in turn while leaving the other
coordinates alone, generates small displacements

8. = Adu(sinhu cosvR + cosh u sin vz) _1

8, = Adv(— coshusinvR + sinh u cos vz)

8y = RéG.

z/A
)
AR R U N R T

It is easy to check that these three displacement vectors are mutually perpendicular. So the distance
one goes on changing all of (u,v, ¢) simultaneously is

ds® = |6, + 6, + 84|> =5, + 5, + 07

= A?[(du)?(sinh® u cos” v + cosh® u sin® v)

1.19
+ (0v)2(cosh? u sin® v + sinh? u cos® v) + (6¢)? cosh? u cos? v] (1.19)
= A?{(cosh® u — cos® v)[(6u)® + (0v)?] + cosh® u cos” v(5¢)? }.
Dividing through by dt? we get the kinetic energy in terms of (i, v, ¢):
o (ds\E 2 2 2 N2 4 2 2 2,392
T= §m(a) = 1mA*{(cosh® u — cos® v)[i* + ©°] + cosh® u cos® v¢” }. (1.20)

The eqns of motion are therefore

mAQ{%[((COShQ u — cos® v)i] — 5 sinh 2u (i + 9% + cos® v¢2)} + E;_V ~0
u
2 d 2 2 N 1 .- .9 .9 5 "9 av _
mA a[((cosh u — cos” v)o] — 1 sin2v(d® + ©* — cosh” ug?) +% -0

ov

mA? i(cosh2 u cos’ fuqﬁ)] + 9 0.

dt

1.4 Lagrangian for a rigid body”

Lagrangian dynamics really comes into its own for the dynamics of a rigid body — that is an object such
as a spanner that contains a vast number N of particles that are so strongly coupled to each other that
we may consider the distances between them to be fixed. In this approximation, the coordinates of every
particle are known as soon as we have determined the six generalized coordinates that are required to

*

Lies beyond the syllabus



6 Calculus of Variations

specify the position and orientation of the body. Mathematically, if r; is the position vector of the ith
particle, r;(q1,...,¢6). Newton’s law of motion states that fori =1,..., N

where F; is the force on the ith particle. There are two contributions to F;: any external force Fge) and

the internal stress f; that keeps this particle in its allotted position relative to the other particles in the
body. Now we imagine instantaneously displacing the body such that r; — r; 4+ dr;. In view of (1.21)

we have
N

0= Z(mlrz — F,) . (SI'Z'
‘ (1.22)

N
= Z(mlr, — F,Ee) — fz) . (SI'Z'.
i

The contribution ), f; - r; = 0 because the internal stresses do no work (the body is rigid). So

N

0= Z(mlrl — Fge)) . (SI‘Z'.

i

Now the dr; are not all independent — they arise from a displacement of the entire body so they are

functions of six independent coordinates dqq,...,d¢qs. Hence we may write
N 6 or, 6
0= Z Zmlr, - —Z(SQJ' - Z Qjéqj, (123&)
i=1 j=1 9q; j=1

where the generalized force Q is defined by

Q=Y F. 81',:‘ (1.23b

Since the dg; are all independent, (1.23a) implies that the coefficient of each d¢g; individually vanishes.
That is

al Or;
- T = 0.
0= Zmlr, 54, Q;. (1.24)
i=1
In Appendix I some rather intricate algebra is used to recast this equation into the form
d /0T oT
_ S (LN _ 92 . 1.25
where T = %Zz m;|E;|* is the body’s kinetic energy. When we specialize to the case in which Q; is
generated by a potential V', so Q; = —(0V/0g;), equation (1.25) is easily seen to be the EL equation
for L=T-V.
This analysis shows that we can obtain the equations of motion of any rigid body from the EL
equations as soon as we have expressions for the body’s kinetic and potential energies in terms of any

set of independent coordinates. The analysis is easily extended to the case of a body that is made up
of several rigid bodies that swivel or slide smoothly on one another.

Note:

Notice that the dimensions of the generalized force @); are energy divided by those of ¢;. The
latter is frequently dimensionless (because it is an angle, for example), so generalized forces don’t
necessarily have dimensions of force!



1.4 Lagrangian for a rigid body 7

Box 1: Euler Angles

To specify the orientation of a rigid body, we imagine start-
ing with the body axes b; aligned with the coordinate axes
and then moving to an arbitrary orientation by compound-
ing three rotations. We label the body axes by, b, and bs
according to whether they start parallel to i, j or k. Now
we rotate by ¢ about k, then we rotate by 6 about the new
position of b; and finally we rotate by 1 about the new
position of bs.

Let p(x) be the density of a rigid body that is rotating with angular velocity w about the coordinate
origin. Then the body’s angular momentum about the origin is

J:/d3xpxx(wxx)

(1.26)
= /d3xp 2w — (w - x)x].
We rewrite this formula in tensor notation as
Ji = ZIijwj where I;; = /dSXp(a:Q&j —2;%5). (1.27)

J

Here d;; is the ij element of the identity matrix: it is zero if 4 # j, and unity if ¢ = j. The matrix I
defined by (1.27) is the body’s moment of inertia tensor. Since it is a real symmetric matrix it has
real eigenvalues I; and eigenvectors b;. The b; are called body axes and the I; are called principal
moments of inertia. When the body is rotated, the body axes rotate with it so they should be thought
of as fixed within the body. According to (1.27), when the body spins such that its angular velocity
lies along a body axis, its angular momentum is parallel to its angular velocity, and the proportionality
constant between these two vectors is the appropriate principal moment of inertia.

The kinetic energy of our spinning body is

T = %/dgxp|w x x|?

— 3 [ @xpw- xx (@ x x) (1.28)
= %w I w.
This expression is especially simple in the body-axis frame:
3
T=1 Z Lw?, (body-axis frame). (1.29)
i=1

If all three moments of inertia are different, evaluating T from (1.29) in terms of the derivatives of
Euler angles (Box 1) is tedious. So consider the case I; = I of an axisymmetric body, such as a saucer.
Since the Euler angle 1) is a rotation about the final position of bg, it is clear that 1/) contributes 1/}b3
to w. Since I} = I, we can adopt any two mutually orthogonal vectors in the body’s equatorial plane



8 Calculus of Variations

as by and bs. So let’s choose by to be the axis about which we rotated through Euler angle . Then 6
contributes b, to w. An increment in ¢ rotates the system about k. This lies in the plane of by and
b; and is inclined at angle 6 to bs. Hence ¢ contributes ¢(cosfbs — sinfbs) to w. Adding all three
contributions together to form w and substituting the result into (1.29) we find that the kinetic energy
of an axisymmetric body is

T = L1, (4% sin” 0 + 6°) + LI3(¢ cos b + 1)>. (1.30)

The potential energy of an axisymmetric body can depend only on 6 and is usually easy to write
down for any particular physical situation. Hence with (1.30) in hand the Lagrangian follows easily —
see the problems.

1.5 Lagrangian for motion in an e.m. field

The simple rule L = T'— V does not work for a charged particle that moves in a magnetic field B.
To see this, recall that B does no work on the particle, so it contributes to neither 7" nor V. Hence
it cannot appear in equations of motion that are derived from only 7' and V. We now show that the
correct equations of motion follow from

L=1imx*+Q(x-A-9¢), (1.31)

where @) is the particle’s charge, A(x,t) is the magnetic vector potential and ¢(x,t) is the electrostatic
potential. Equation (1.31) gives the action as

S= / [l + Q- A — ¢)] dt, (1.32)
so the EL eqn is
d
a(m>'<+QA) +QV(p—x%-A)=0. (1.33)
Here the derivative w.r.t. ¢ is along the path, so
dA 0A
—_— = = x - V)A. 1.34
7 - TEVY (1.34)

The partial derivative here can be combined with the V¢ term in (1.33) to produce the electric field
E = —V¢ — 0A/0t. Putting all these things back into the EL eqn (1.33) yields

m% = Q[E + V(x-A) — (x- V)A]. (1.35)

It’s now straightforward to show that the last two terms on the right of (1.35) equal x x B as one would
hope: bearing in mind that Vx = 0 we have

xxB=x%x(VxA)
= V(% A)— (- V)A

Thus the EL eqn applied to the action (1.32) gives
mxX = Q(E +x x B) (1.36)
as required.

Note:

The action (1.32) looks rather arbitrary at this stage but is revealed to be beautifully natural when
one looks at the problem in a relativistically covariant way, as one should.
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1.6 Normal modes from Lagrangians

Obviously, when a system is in equilibrium all its time derivatives vanish. From the EL eqns we infer
that equilibrium configurations correspond to 9V/dq; = 0, where ¢; is any coordinate. When disturbed
from equilibrium, the system will zoom off if the equilibrium is unstable, or oscillate if the equilibrium is
stable. Small amplitude oscillations can be represented as a superposition of normal modes. Lagrangians
provide a relatively painless route to the frequencies and forms of these normal modes. The trick is to
expand L(q,q) in a Taylor series around the equilibrium configuration q = qs, q = 0, discarding terms
of higher than second order in dq = q — q5 and its derivatives. Thus we write

L~ % Z (M“(Sqléq] + CZ](S(]Z(S(]] + Fijéqiéqj) + ZAz(Sql + Lo, (137)
ij i
where M, C, F and A are constant matrices or vectors. Since F;; = 0°L/dq;0q;, F is a symmetric
matrix, and the same applies to M.

Since the EL eqns involve only derivatives of L, we can discard the constant Lg. It is also easy to
check that the term involving A makes no net contribution to the equations of motion. Bearing in mind
the symmety of M and F, the EL equation of motion for ¢, is easily found to be

d . .
0=2 5 (Mirdi + 5Ciai) = 3 (3Ckid; + Fijs)
! ' (1.38)
= Z [Mpidi + 5 (Cir, — Cri)di — Friai] -

These equations are easily solved by writing q(t) = Qe'“f, whence the eigenfrequencies w are the roots
of

det(F + w’M + iwC) = 0, (1.39)
where C’ij = %(CZ — Cj;) is the antisymmetric part of C. When the dynamics is time-reversible, as is

usually the case when we are neither using a rotating frame nor working with a magnetic field, C=o.
The equilibrium is stable iff all allowed values of w? are positive, i.e., all eigenfrequencies are real.

For simplicity we now consider the case in which c=o0.

By expanding V (q) around the stationary point qs corresponding to an equilibrium configuration
and plugging the expansion into the EL eqns, one sees that the equilibrium is stable if q5 is a local
minimum of V', and unstable otherwise.

1.6.1 Normal coordinates Let Q, be a vector that satisfies the eigenvalue equation
(F 4+ w’M)Q, = 0.
When we dot this equation through by another eigenvector, Qg, we find
QsF Qo = ~w2QsMQ.. (1.40)

The equation holds if the labels a and 8 are interchanged. Moreover, by the symmetry of F and M,
QsFQ, = Q,FQp and similarly for M. So when we subtract from (1.40) the equation with « and j
interchanged we obtain

0= (wﬁ - wa)QaMQ,ﬁ- (141)
It now follows that Q,MQg = 0 for wg # w,, so if the eigenvectors are appropriately normalized
QaMQg = dag. (1.42)

The general solution of the EL eqns (1.38) with C = 0 can now be written

N
q(t) = Z a0 Qq cos(wat + ¢a), (1.43)
a=1
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where the a, and ¢, are 2N arbitrary constants. Premultiplying by QsM we find with (1.42) that
QsMq(t) = ag cos(wst + ¢3). (1.44)

For each possible value of 8 the left side of this equation is a particular linear combination of the original
coordinates, and the right side shows that this combination oscillates sinusoidally at angular frequency
wg regardless how the system is set into motion. A combination of the coordinates that inevitably
oscillates sinusoidally is called a normal coordinate.

Example 1.2
Three identical pendulums (bobs of mass m on strings of length s) are coupled by two light springs of
spring constant & such that the middle pendulum (2) is coupled to each of the outlying pendulums.
The springs are relaxed when the pendulums are hanging vertically. Find the normal frequencies.

Solution: Let 61, 85 and 03 be the angles that the strings make with the vertical. Then the
gravitational potential energy is

Vg = —mygs(cos by + cos b + cosbs) (1.45)
If we neglect the vertical displacements of the bobs, the energy stored in the springs is
Vi ~ Lks® [(sinfy — sin6) + (sinf — sins)?] (1.46)
Since the kinetic energy of the ith bob is %m(sél)Q, the Lagrangian is
L= %msQ(éf + 62 +62) + mgs(cos 6, + cos By + cos f) — 1ks® [(sinf — sinf,)* + (sinf, — sin63)*],
(1.47)

Expanding the trig functions and discarding (a) the constant terms, and (b) terms cubic and higher
in the 6;, we have

~ 1
L=3

8 [m07 + 63+ 63) — L6 + 63 +63) — k(61 — 02)" — k(0 —6)?]  (1.48)
The equations of motion now follow as

0 =mb, + %01 + k() — )

0= mﬁg + ?02 - k‘(01 - 02) + k‘(02 - 03) (149)
0 = mbs + %93 — k(6 — 63)

Writing 0;(t) = ©;e/“! we find that the amplitudes (01,05, ©3) must satisfy

—w?+g/s+k/m —k/m 0 6,
—k/m —w? +g/s+2k/m —k/m 0y | =0. (1.50)
0 —k/m —w?+g/s+k/m O3

The normal frequencies w are the ones that set the determinant of the matrix to zero. To simplify
this determinant, we add the middle and right columns to the left column. Then each entry in the
left column becomes —w? + g/s and we can extract this factor and have

1 —k/m 0
det = (—w? +g/s) |1 —w?+g/s+2k/m —k/m
1 —k/m —w?+g/s+k/m

Next we take the top row from both the bottom row and the middle to find

1 —k/m 0
det = (—w? +g/s) |0 —w?+g/s+3k/m —k/m
0 0 —w?+g/s+k/m
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Now we can trivially expand the determinant along the left column
det = (—w? + g/s)(—w? + g/s + 3k/m)(—w? + g/s + k/m).

Hence the normal frequencies are \/g/s, \/g/s + k/m and \/g/s+ 3k/m. It’s easy to check that
these frequencies have the eigenvectors Q; = (1,1,1), Q2 = (1,0,—1) and Q3 = (1,—2,1) as can
be guessed on physical grounds.
Since in this case the mass matrix is M = ms2I, a multiple of the identiy matrix, the normal
coordinates are

X1 =ms’Qq - (61,02,63) = ms® (61 + 02 + 63)

X2 = ms2(91 - 02)

X3 = ms2(91 — 202 + 03)

Example 1.3

The governor of a steam engine contains two balls of mass m that are
mounted on light rods, and these are in turn attached to a vertical
axis. The plane of the rods rotates at constant angular velocity 2
about the vertical axis. A spring connects the two rods in such a
way that the potential energy stored in the spring is %k times the
square of the distance between the centres of the balls. Find a point
of equlibrium and determine the frequencies of the normal modes.

Solution: Application of the cosine law to the triangle formed by the balls and their point of
suspension shows that the potential energy is

V = —mga(cos ¢ + cosf) + 2ka*[2 — 2 cos(¢ + 6)]
Subtracting this from the kinetic energy, we find that
L = Ima*(¢* + 6%) + 1ma®Q*(sin® ¢ + sin® @) + mga(cos ¢ + cos§) — ka*[1 — cos(¢ + 6)].

By the system’s symmetry, there is a point of equilibrium with ¢ = 6 = . Setting to zero OL/06
evaluated at this point, we find the equlibrium point to satisfy
sinfy = 0 or
0 = ma®Q?sinfy cos g — mgasinfy — ka’sin26, = wz

cosby = —L—
02 — 202’

where w? = g/a, wi = k/m. At (6o, 60) the second derivatives of L are

0*L

55 = (mQ? — k)a® cos 26y — mga cos by 921 )

oL 808¢:_ka cos 26,

957 = (mQ? — k)a® cos 26, — mga cos by

d /0L ’L ’L

Hence the equations T (2—0) = (3?69 + (;?98¢6¢ etc. that govern the normal modes are

7] x = (0% — w?) cos 20y — w? cos b

(‘SQ) = (m y) (‘59> where ( , ) 0T Fe T (1.51)
d¢ y z o y = —wyj cos 26y

The normal frequencies w are given by the eigenvalues of the matrix: w? = —z £+ y The lowest

squared frequency, wz cosfy — 02 cos 20y, is negative for Q2 > wz cos 0/ cos 26y, which indicates
that the system is unstable for large Q.



12 Calculus of Variations

Example 1.4
A cylinder of mass m and radius a rolls on a rough horizontal table. A second cylinder, mass m and
radius %a rolls inside the first. Find the normal frequencies for small disturbances from equilibrium.

Solution: Let 6 be the angle through which the first cylinder has turned from equilibrium, and ¢
be the angle through which the second cylinder has rolled relative to the first (see figure). Then
the line between the two centres makes an angle

Yp=60-1 (1.52)
with the vertical. The kinetic energy of the first cylinder (translational plus rotational) is
T = %m(aé)2 + %mazéz = m(ab)>. (1.53)

The motion of the centre of the second cylinder is a compound of the leftward motion ab of the
centre of the first cylinder, plus %m/) perpendicular to the line joining the centres. The second

cylinder rotates with respect to inertial space at angular velocity ¢) + 1/1 The total kinetic energy
is therefore

T = m(af)? + %m[(%a@[} costp — ab)? + (%a@[} siny)?] + %m(a/2)2(q5 + )2, (1.54)

The potential energy is simply
V = —mgiacosy. (1.55)

In T', which is quadratic in the velocities, we set ¢ = 0. We expand V to second order in 1, to find

T= lTnaQ(%éQ + %9¢ + §¢2),

2 1.56
V = constant + tmga(6 — 1¢)>. (1.56)
Defining wg = 1/g/a the equations of motion become
50 + L+ wi(@—L1o) =0,
e 29 ) g( fd)) (1.57)
20+Z _2 0(0_§¢):0.

The eigenfrequencies are now straightforwardly found to be w = 0 and w = v/2wp.

1.7 Noether’s theorem

A constant of motion is any function C(q, q) that satisfies dC/dt = 0, where q(t) is a solution of the
eqns of motion. For example, in a ‘conservative’ system, energy is conserved, so F(q,q) is a constant of
motion. Finding a constant of motion is a big step towards obtaining a general solution of the equations
of motion.

In general, a system with IV degrees of freedom ¢y, ...,qy admits 2N — 1 independent constants
of motion. We show this by arguing that given (q,q) at any time ¢, the equations of motion allow us

to give the position and velocity (q(®,4®) at any reference time to. Thus qz(o) = fi(q,q,t), where f;
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is some function. Similarly, q'z(o) = gi(q,q,t), where g; is another function. On eliminating ¢ between
these 2N functions, we have 2N — 1 constants of motion.

It seldom happens that we can find 2N — 1 constants of motion—a rare exception is the case of
motion in a Kepler potential V' o 1/r. In fact it turns out that essentially complete information about
solutions of the equations of motion can be extracted from N constants of motion. A system for which
N constants of motion can be found is said to be integrable.

A theorem proved by Emmy Noether (1882-1935) provides a powerful way of extracting constants
of motion from Lagrangians. Noether’s theorem involves identifying a flow in configuration space that
leaves L invariant. A ‘flow’ is an infinitesimal transformation

dq(q)

For example, the transformation x — x + idJ, is a flow.

A flow changes the path q(¢) into the path q'(¢) and thus changes the value of the Lagrangian at
time ¢ by

oL oL
oL=—"-6 — - 4q. 1.
9q 4t 9g %4 (1.59)
Notice that dq is well defined: dq = a;—q -q
q

Invariance of L just means that L takes the same value at all points that are joined by the flow.
Noether’s theorem states that if L vanishes along the dynamically determined path, then

dq OL

.= 1.60

d\ 9q (1.60)
is a constant of motion. Thus from the invariance of L under translation x — x + id\ along the z-axis,
Noether’s theorem deduces the constancy of

oL 0L

R e (1.61)

For a particle moving in a velocity-independent potential this is just the z-momentum mz.

The proof of Noether’s theorem is simple. Equating to zero equation (1.59) for L we have

oL oL
=6L=—_. — . 4q. 1.62
0=2¢ q oq+ a4 0q (1.62)
Using the EL eqns to eliminate L/0q this becomes
d /0L oL
=—\5=)" + = - dc¢
dt(aq) a 0q 4 (1.63)
_ i(a_L » ) '
~at\ag Y

and the result follows on writing dq = (dg/d\)dA.

Consider the proof of conservation of angular momentum by Noether’s theorem. A rotation by 66
about the unit vector n changes x by §fn x x. So if L is invariant under this rotation, the following is
a constant of motion:

oL

9%
1.64
oL (1.64)
=N-XX —.
ox
For a particle moving in a velocity-independent potential this is just the component of mx x x parallel
to n.

J=nxx-
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Example 1.5
A certain system with coordinates z, ¢, and z has Lagrangian

L= %(mljzz +my? + m222) + A(t)z — %k[(m - y)2 + (y— 2)2 +(z— x)Q],

where my, mo and k are constants and A(t) is a given function of time. Obtain an expression for
A(t) — A(0) in terms of the values of &, § and 2 at time ¢ and at time zero.

Solution: L depends only on the difference between coordinates, so it is invariant under (z,y, z) —
(z + ¢,y + € 2+ ¢€). The associated invariant is
oL 0L OL
—+ =+ == t+ 9 :+ A(t 1.65
aﬁc+ay+az my (& +9) +maz + A(t) (1.65)
so
A(t) — A(0) = —my (& — To + § — Po) — m2(Z — 20). (1.66)

Here’s an application to motion in a uniform magnetic field B = Bk. Let’s choose A = (— By, 0,0).
Then by (1.31) L = $mi? — QByd is invariant under two flows: (i) x — x +id\ and (ii) x = x + kéA.
Hence we have two invariants

OL OL
r = [n = . — QB ; 2 = [T = z- L.
p % mv; — QBy p % muv (1.67a)

Choosing A = (0, Bz, 0) we find a third invariant for the same physical problem:
oL
Py = o = mv, + QBz. (1.67b

The physical meaning of p. is obvious, but what do p, and p, mean physically? Add them up:

P =p, +ipy, = m(vy +ivy) + QB(iz — y)

— mé +i1QBE where ¢ =z + iy. (1.68)

This is a linear first-order d.e. for ¢; it has integrating factor e“!, where w = QB/m is the Larmor
frequency. Multiplying through by e'“? /m, integrating w.r.t. ¢ and then multiplying through by ei“!/m
we obtain

P .
t) = — + Ke ¥t 1.69
€)= (1.69)
where K is a constant of integration. We now see that the real and imaginary parts of P encode the
y and z coordinates of the guiding centre around which the particle gyrates, while | K| is the radius of

gyration, which depends on the particle’s energy.

1.8 Constraints

Sometimes it is convenient to work with more coordinates than a system has degrees of freedom. Sup-
pose, for example, that the system consists of a dumbell of length s that is free to slide on a smooth
table. This system has three degrees of freedom, namely the position of the centre of mass and the
orientation of the dumbell. But we might prefer to describe the system in terms of the z and y coords
of the dumbell’s particles. These are not independent, but satisfy the constraint

(z1 —22)> + (Y1 —52)° = 5. (1.70)

The dynamics of the system are obtained by extremizing the action subject to this constraint equation.
Lagrange multipliers (Box 2) enable us to do this simply. We write the constraint equation as C(q) =0
and evaluate

O:(SS—/dt/\éC

ts b d /o oc
:/tl dtzéqi[a—;—a(a;)Jr)‘aqi]'

i

(1.71)
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Box 2: Lagrange Multipliers

Suppose we are given the profit G(z,y,2) when we sell some food with amounts z, y and z
of additives that are constrained by the health and safety regulations such that we must have
F(z,y,z) = 0, where F is a specified function. The regulations oblige us to manufacture a product
whose representative point in (x,4, z) space lies on the two-dimensional surface F' = 0, and we
maximize our profit by finding the point on this surface at which G is biggest.

If we make small changes in the inputs, our profit changes by
oG oG oG

dG = —d —d —dz. B2.1
or Tt oy y+ 0z ? ( )
Unfortunately, we are obliged to remain on the surface F' = 0, so our changes have to satisfy
OF OF OF
=dF = —d —d —dz. B2.2
0 oz " + y v+ 92~ ( )

We multiply this equation by an arbitrary function A(z,y, z) and subtract the result from equation
(B2.1). We then have

_ (% _ ,\g—i)dx + (% - Ag—j)dy + (% - /\g—f)dz. (B2.3)

We now choose the function A to make the coefficient of dz vanish — that is we set A =
(0G/0z)/(0F/dz). So we now have

F F
0= (‘Z—f —)\g—x)dw+ (‘Z—j —A(z—y)dy. (B2.4)
The changes dz and dy can be chosen independently because whatever values we adopt for these
variables, the constraint (B2.2) will be satisfied for an appropriate value of dz. One allowed choice
is dz # 0 with dy = 0, and for this choice equation (B2.4) holds only if the coefficient of dz
vanishes. Similarly, choosing to set dxz = 0 with dy # 0 we infer that the coefficient of dy also
vanishes. We now have four equations that must hold at the point that maximizes GG, namely

oG OF oG OF oG OF
F=0=——-A—;0=———-A+—;0=——-A4.
Ox Oz’ Oy Oy’ 0z 0z
In principle we can solve these four equations for the four unknowns: the values of z, y and z at
the stationary point, and the numerical value of the function A at that point. This procedure was

invented by the Lagrange, so A is called a Lagrange multiplier.

(B2.5)

Here A(q,t) is an arbitrary function. As in Lagrange’s standard argument, we choose A to ensure that
the coefficient of one of the d¢g; vanishes, and then conclude from the independence of the remaining ¢;
that their coefficients must vanish too. Hence we have for every ¢ that

d sOL oL oC
— = - A . 1.72
dt (8q, ) Jq; dq; ( )
Specifically for our dumbell example, L = 2m(v} + v3), so the equations of motion are
mi; = =2\ \(z; — 2 mi; = —2A(y1 —
1 (z1 2) Y1 (Y1 — 92) (1.73)

m.’fg = 2)\(271 — .’I?Q) m:ijg = 2)\(y1 — yg)

Adding the lower to the upper equations we obtain the equations of motion of the centre of mass:
R = 0, where R = 1(r; + r2). Dividing the top left equation by the bottom right equation and the
bottom left equation by the top right equation and then subtracting the resulting equations, we obtain

Fy — x = 0, where £ = 21 — x5 etc, which expresses conservation of the system’s angular momentum:

d(iy —2y) = 0.
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We shall see below that p; = 0L/9¢; is the momentum ‘conjugate’ to ¢;. Equation (1.72) expresses
the rate of change of p; as a sum of two generalized forces. The term 0L/0q; is simply minus the
gradient of the potential that would be associated with the coordinates in the absence of the constraint.
This vanishes in our dumbell example. The term —A(OC/dq;) describes the force associated with
maintenance of the constraint. In the case of the dumbell, for example, we have that the tension 7" in
its bar is given by

—TE =F, =mi1 = -2\ = T=2\s. (1.74)

Example 1.6

cylinder

A moped engine contains a vertically mounted piston of mass m that is cou-
pled to a fly-wheel of moment of inertia I by a light connecting rod of length
l. The system has only one degree of freedom but two natural coordinates, ¢

fly wheel and z. The constraint equation is

The Lagrangian is
L= %Iq52 + imi® — mgz. (1.76)

From (1.72) the equations of motion are

dg(mx) = —mg — A2z — 2r cos @)
fi (1.77)
a([gzﬁ) = —A2rz sin ¢.
Eliminating A we find that x and ¢ satisfy the d.e.
m + (M—M)Ié+mg:0. (1.78)
x T

This should be solved inconjunction with the constraint (1.75).

Sometimes it is in principle possible to write the Lagrangian in terms of as many coordinates as
the system has degrees of freedom. In such a case the constraint is called holonomic. Clearly, the
constraint (1.70) of the dumbell is of this class, although in practice holonomic constraints will be more
complex than (1.70) and correspondingly algebraically hard to eliminate.

Sometimes a constraint cannot be eliminated, even in principle. Such unavoidable constraints are
called non-holonomic. The classic example of a non-holonomic constraint occurs in the problem of
a rough ball moving on a rough plane. Five natural coordinates for the problem comprise the (z,y)
coordinmates of the ball’s centre together with three Fuler angles to specify the ball’s orientation. Two
constraints couple the velocities of these coordinates since if the ball is moving parallel to either axis,
it must be rolling and therefore the Euler angles must be incrementing in a definite way. On the other
hand, it is not possible to eliminate any of these coordinates because it turns out that by rolling the ball
to a chosen position, spinning it there about its point of contact with the plane and then rolling it back,
one can arrange for any given values of the Euler angles to be associated with given values of (z,y).
We can obtain equations of motion for the ball’s five coordinates by a straightforward generalization
of the formalism described above: we express the ball’s Lagrangian (its kinetic energy) as a function
of q = (z,y, ¢,0,v) and their derivatives and then extremize the action subject to the two constraints
Cu(q,q) (a =1,2) on the positions and velocities.

I = 2% + 7% — 2rz cos ¢. (1.75)
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2 Hamiltonian Dynamics

The Lagrangian of a dynamical system depends on 2N variables, the system’s N coordinates and N
velocities. The 2N-dimensional space of initial conditions (q,q) is called phase space. The eqns of
motion allow one to determine uniquely the system’s future and past from its present position in phase
space. Geometrically, through every point of phase space there runs a curve along which the system
evolves. These curves never intersect one another.

It turns out that (q,q) are not the ideal coordinates for phase space. The natural coordinates are
(p,q), where

P= — (2.1)

is the momentum ‘conjugate to q’. Changing coordinates from q to p is analogous in thermodynamics
to replacing the volume V' by the pressure P since P = —(0U/0V)s just as p = (OL/0q)q. We are
replacing a variable by the gradient of some function of that variable. Transformations of this type are
called Legendre transforms — see Box 3. When in thermodynamics we eliminate V' in favour of P, it
is expedient to introduce a new function H(S, P) = U + PV. So here we introduce the Hamiltonian

H(pp,a)=p-q-L, (2.2)
where it is understood that ¢ is to be eliminated in favour of q, p, and ¢ using equation (2.1).
Example 2.1

When the single degree of freedom of the moped of Example 1.5 is taken to be ¢ (that is, z is
considered to be a function of ¢), the momentum conjugate to ¢ is

oL . 0
Py = (£)¢ = I¢+mm£ (23)

Differentiating the constraint eq first w.r.t. ¢ and then w.r.t. ¢) we have

0= 2i(z — rcos @) + 2rasin ¢ ¢

_ 0k, . (2.4)
0_8q3($ 7 COS @) + rasin ¢
Hence . 9
po= [T m(2m0 ') (2.5

The total derivative of the Hamiltonian is

oL oL oL
dH =p-dq+4-d —(—) d —(—.) -d'—(—) dt
P-rdqr+q-dp 9q w q a4 w q ot wa

oL oL
=q-dp- (=) -dq- (=) 4t
a-qap <8q>q,t 4 <8t>q,¢,

where the first and fourth terms cancel by (2.1). But we may also write

an=(52) ap+ (50) da+ (G) w 27
2] Ty 9 ) 54 0t ) qp

Since equations (2.6) and (2.7) must be the same, we have

_(a_H> . (6_H> __<8_L> . (8_H> __<8_L> (2.8)
T\ ), \od/,, da)., \ot ), a9t ) o :
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Box 3: Legendre transforms

Let g(z) be a convex function, that is, a function such that ¢g”’(z) > 0. Then the Legendre
transform g(p) of g is defined by

where z(p) is implicitly defined _ 99

9(p) = ap — g(x) as the root for given p of P= 5 (B3.1)

The convexity of g guarantees that the equation defining z(p) can be solved for any p that lies
between the maximum and minimum gradients of g. Thus g(p) is well defined. Tt is straightforward
to show that Legendre transforms are invertible. In fact a Legendre transform is its own inverse:
9(z) = g(z).

It is often helpful to consider the function G(z,p) = xzp — g(x) of two independent variables
(z,p). Graphically, G(z,p) is the vertical displacement at ordinate x between the straight line
y = pz and the upward curving graph of g(x):

y=px

y=g(x)

The Legendre transform g(p) is the value of G at the point z(p) at which the curve runs parallel
to the line. Since
oG Jg

o b 9z’ (B3.2)

z(p) is the value of x which extremizes G for given p, as is already evident from the figure.

Using the EL eqns and simplifying the notation, the first two of these equations lead us to Hamilton’s
equations

O0H OH
. oL OH 9.
Along a trajectory (q(t), p(t)), the Hamiltonian H(q(t), p(t), t) changes at a rate
dH OH OH OH OH
o g+ S o = 2.10
dt dq a+t Jp P+ ot ot ( )

Hence, if 0L /0t = 0, it follows from equation (2.8) that the Hamiltonian is conserved along all dynamical
trajectories. We can think of this as an extension of Noether’s theorem: the integral H arises from the
time-translation invariance of L.

For example, consider motion in the time-independent potential V(x). If we work in Cartesian
coordinates, the Lagrangian L = fmx® — V(x) depends only on x and x, so dL/0t = 0. Hence the
Hamiltonian H is conserved. The physical quantity to which H corresponds is easily found. We have
p = 90L/0% = mx and

H(x,p)=p-x—L
2 (2.11)
p
=—+V
2 v,
which is simply the total energy E = k.e. + p.e.. Thus for motion in a fixed potential the Hamiltonian
is equal to the total energy.
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Consider an harmonic oscillator: a particle of mass m that oscillates at frequency w. The energy
of this system is $ma? + I mw?2?, so

H= 2p_m + Imw’z? (2.12)
and Hamilton’s equations are
OH 9 OH p
)= —— = — o= —— = = 2.13
P o mw'r ; T o —m (2.13)

We could solve these equations by differentiating the second equation w.r.t. ¢t and use the first equation to
eliminate p, but let’s have a little quantum-mechanics inspired fun. Consider the variable A = p+imwz,
where the mw factor ensures that both terms have the same dimensions (notice that AA* = 2mH). A’s
equation of motion is

A = p+imwi = —mw?z + iwp = iwA. (2.14)
Solving this trivial equation of motion yields

Ay = pp + imwzy = et (po + imwmo)
Af = py — imway = e @(py — imwmzo).
Adding and subtracting these equations, we obtain the complete solution:

pt = po cos(wt) —wmazg sin(wt) ; @ = wp_fn sin(wt) 4+ xg cos(wt). (2.15)

What are p and H in a rotating frame? From (2.1) and (1.13) we have
p=m(f+wxr) (2.16)

which shows that p isn’t always the same as mq. In fact, here p is identical with mass times velocity
in the underlying inertial frame.

Using (2.16) to eliminate f from (2.2) and (1.13) we find that the Hamiltonian for a rotating frame
is
2
m 2m

2 (2.17)

p
=—+4+V-w-(rxp).
5 T+ (rxp)
The first two terms sum to the energy in an underlying inertial frame, and the last term is w - J, where
J is the angular momentum. Unless V' is axisymmetric [V = V (Jw X r|)], the energy in an inertial frame

changes as V' does work on the potential, but H is nonetheless constant.

Exercise (2):
Show that in a rotating frame we may write H = tm|t|* — m|w x r|> + V. What is the physical
interpretation of the second term on the r.h.s?

From the Lagrangian (1.31) for non-relativistic motion in an e.m. field we find
p = mX + QA. (2.18)

Thus in an e.m. field p is not just mx. In Problem 6 of Set 2 you can explain this result by demonstrating
that the e.m. field contributes QA to p. In quantum mechanics the distinction between p and mx is
of the utmost importance because it turns out that when one quantizes, it is p rather than mx that
should be replaced by —iAV.

Using (2.18) in (2.2) we find H for motion in an e.m. field is
H = (mx + QA) - % — [smlx|* + Q(x- A - ¢)
= Im[%* + Q¢ (2.19)
= 5Ip— QAP +Qo.

Although H is just what one would naively think of as the energy, when expressed in terms of p it looks
odd.
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2.1 Liouville’s theorem*

If we imagine releasing a bunch of dynamically identical systems from neighbouring initial conditions,
then the ‘phase points’ describing these systems flow through phase space like a fluid. This flow is
governed by Hamilton’s equations (2.9). It is an incompressible flow: the ‘velocity’ of the fluid is (p, q)
and the divergence of this velocity is

div(p ) = (52 + 52)
O’H O’H
= (- 5p0q * daop) =°

The divergence-freeness of the phase flow is known as Liouville’s theorem.

Let f be the probability density of systems in phase-space. Then conservation of probability requires
that f obey the continuity equation

0
0=+ aviea)

. Of .

Dt 5o (2.20)
Lo _os on of o

gt dp dq dq Ip

where Liouville’s theorem has been used. The continuity equation of f in either of the last two forms is
known as Liouville’s equation.

2.2 The Hamiltonian principle of least action

The principle of least action
to
0=65=9¢ dt L(q,q) (2.21)

t1

is concerned with paths q(t) through coordinate space. We can derive classical mechanics from another,
closely related, variational principle which involves paths (p(t), q(t)) through phase space rather than
coordinate space. This principle is that the path actually followed between (%, q;) and (t¢,qr) is that
for which

0S5 =0 where S= /p -dq — H(p,q) dt. (2.22)

Here the path of integration runs between (¢;,q;) and (t¢, qr) — neither p(¢;) nor p(#¢) is constrained.
Showing that this principle yields Hamilton’s equations (2.9) is easy:

. . OH OH
(552/(5p-q+p-5q—%-5p—a—q-(5q)dt
OH

- o= 5) o= ) s -l

Since dq vanishes at ¢; and ¢ by hypothesis, the final term in (2.23) vanishes. Then, with ép and dq
subject to arbitrary variation, it is clear that 45 = 0 only if the contents of the pairs of large round
brackets in (2.23) vanish. But the vanishing of brackets is precisely the content of Hamilton’s equations.

(2.23)

Notice that a very remarkable thing is being done with the variational principle (2.22): we are
treating p as quite independent of the value of q along the path. This makes perfectly good sense from

*

Lies beyond the syllabus
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the point of view of phase-space geometry, but it makes a mockery of our original definition (2.1) of p.
This definition is recovered for the true path as a consequence of the variational principle (2.22):

. 8H 8, .
Q=5 = 5-(p-a-1)
PP . (2.24)
d 9q) " op’

Recall that we introduced H as p-q— L, with q eliminated in favour of p. Now that we are treating
p as independent of q, p - q — H becomes a quantity different from L; indeed, L depends only on the
projection of a phase-space path (p(t), q(t)) onto configuration space, while p -q — H depends on p(t)
as well as q(¢). Thus the action principle (2.22) is entirely different from (2.21), although the extremal
values of the two integrals are the same because along the extremal path p = dL/0q.

In Appendix IIT (2.22) is derived from the Schrodinger equation. The basic idea is simple: from the
Schrodinger equation we calculate the quantum amplitude to get from (¢, q;) to (¢¢, qr) and show that
it can be expressed as a sum over all possible paths between these events of amplitudes proportional to
S/ where S is defined by (2.22). Then we argue that the only paths which make a net contribution
to the overall amplitude are those whose values of S lie within ~ % of a stationary value, since the
contributions of other paths are cancelled by oppositely signed contributions from neighbouring paths.
Thus the overall amplitude is dominated by contributions from paths that lie within ~ # of the classical,
extremizing, path, and from a macroscopic point of view these paths are identical with the classical path.

2.3 DPoisson brackets and canonical coordinates

Let A(q,p) and B(q,p) be any two functions of the phase-space coordinates. Then the Poisson

bracket [A, B] is defined by
0A 0B 0A OB

ABl=—- - ——— - —. 2.25
A BI= 50 3 5 B (2.25)
It is straightforward to verify the following properties of Poisson brackets:
(1) [AvB] = _[BaA] and [A +B,C] = [A,C] + [B,C],
(ii) [[A,B],C]+[[B,C], Al +[[C, A],B] =0 (Jacobi identity),
(iii) The coordinates (q, p) satisfy the canonical commutation relations
(iv) Hamilton’s equations may be written
¢ =lai, H] 5 pi=[pi, H]. (2.27)
If we write (w; = ¢;, wny; =p; 1= 1,...,N), and define the symplectic matrix c by
_ |+l forf=a+N,1<a,5<2N;
Ca = [Wasws] = {O otherwise, (2.282)
we have -
0A OB
A,B] = o 2.28b
[ ’ ] Zcﬁawaawg ( 8)
a,B=1
Any set of 2N phase-space coordinates {W,} (a = 1,...,2N) is called a set of canonical coordinates

if Wy, W3s] = cap. Let {W,} be such a set; then with equation (28b) and the chain rule we have

0A OB oW, 0W,\ 0A JB
A,B] = WS = a
[A, B] Z ¢ 5awaawﬁ Z(%ﬁ:c 5 Dwe 3w5>3WK oW

KA
04 0B s~ 0A OB
T4 "W, OWy

(2.29)
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Box 4: Lorentz invariance & Symplectic structure

inertial coordinates canonical coordinates

Lorentz transformations canonical transformations

Um7 Caf

—
—
—
“ / / dp - dq (Poincaré invariant)

Lorentz invariant |x|?

Thus the derivatives involved in the definition (2.25) of the Poisson bracket can be taken with respect
to any set of canonical coordinates, just as the vector formula V -a = },(0a;/0z;) is valid in any
Cartesian coordinate system.
The rate of change of an arbitrary canonical coordinate W, along an orbit is
2N

W, = ZW“ g, (2.30)
=1 98
where, as usual, w = (q, ) With Hamilton’s equations (2.27) and equation (2.29) this becomes
OJwg OH oW, 0H
Wa = Z Z awg vd Ow., dws Z vd Ow. dws (2.31)

= [Wa,H ]
Choosing to use the W; as independent coordinates when evaluating the Poisson bracket, we find that
Q; = OH/OP;, P, = —0H/JQ;, so Hamilton’s equations (2.9) are valid in any canonical coordinate
system.
Poisson brackets allow us to associate a one-parameter family of maps B, of phase space onto itself
with any function B(q, p) on phase space: from each point (qg, po) of some (2N — 1)-dimensional surface
in phase space we integrate the coupled ordinary differential equations

dq 8B dp 0B

from the initial conditions q(0) = qo, p(0) = po. If the initial (2N — 1)-surface is large enough, the
integral curves {q(b),p(b)} of B reach every point of phase space. Then the map By is defined by

By(q(t"), p(0)) = (a(b +b'),p(b +b')). (2.33)
The generator of the transformation, B(q, p), is indistinguishable from a Hamiltonian, since it satisfies
Hamilton’s equations (2.32), with b playing the role of the time t.

In Lagrangian mechanics, invariance of the Lagrangian under a flow in configuration space gives
rise to a conserved quantity (Noether’s thm). In Hamiltonian mechanics the analogue of a flow that
doesn’t change the Lagrangian is a map B, that doesn’t change the value of H. For B, to have this
property, we must have
dH  OH dq OH cdp _ 8H 0B OH 8B
db 8q db 8p dab 8q 8p 8p 8q
That is, the generator of a phase-space flow that leaves H invariant, has vanishing Poisson bracket with
H (“commutes with H”).

The rate of change of B along our system’s trajectory is

dB 0B .+8B . OB 8H OB 8H
dt_aqq 8pp doq op Op Oq
Thus B = 0 if and only if H is invariant under the flow that B generates. This Hamiltonian formulation

of the connection between constants of motion and invariance under flows goes further than Noether’s
theorem because it shows the every constant of motion is associated with a flow that leaves H invariant.

0= = [H, B). (2.34)

= [B, H] (2.35)
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2.4 Canonical transformations*

Suppose you have a function S(P, q) of some new variables P;, i = 1, N and the regular coordinates g;
such that the equation
08

= 3¢ (2.36a)

P
can be interpreted as defining P(p,q). Then it turns out that the coordinates (P, Q) are canonical,

where
oS

=5p
That is, one may show (see Appendix II) that with these definitions, [Q;, Q;] = 0, [Q:, Pj] = b,

[P;, Pj] = 0. The transformation (p,q) = (P, Q) is called a canonical transformation and S the
generating function of the transformation.

(2.36b

The function that generates a canonical transformation need not be of the form S(P, q); other forms
are S(P,p), S(Q,q) and S(Q,p). The generating function is always a function of one old coordinate
and one new one. An entertaining transformation is generated by S = Q - q:

Q ; P—E—q

(2.37)

Canonical transformations are closely connected to the one-parameter maps introduced above. To
see this consider functions S of the form

S=P-q+ s(P,q)du, (2.38)

where du < 1. For S of this form we have

Q:q+—56u ; p—P+%6u =
oP oq
Y (2.39)
P=p——9§
Thus S = P - q generates the identity transformation P = p, Q = q. Moreover,
Q-q O0s
ou 0P
P_p Os (2.40)
ou _%
In the limit du — 0 we can identify P with p on the right, and these equations become
dq dp
—_ P 241
dU [q’ S] I dU [p’ S]’ ( )

which is identical with (2.32). Thus canonical transformations generated by functions of the form (2.38)
may be thought of as infinitesimal canonical maps.

There is no fundamental difference between a map and a coordinate transformation: every map
generates a coordinate transformation and every transformation a map since one can treat changed
coordinates as new numbers describing an old point (a coordinate change), or as old numbers describing
a new point (a mapping).

*

Lies beyond the syllabus
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2.5 Point transformations*

If (Qi(q), i = 1,...,N) are any N independent functions of the generalized coordinates q, then by
equation (2.1) we obtain the new momenta P; = (9L/dQ;) by expressing the Lagrangian as a function
L(Q, Q) of the Q; and their time derivatives. The coordinate change (q,p) — (Q,P) is called a point
transformation, because the new coordinates are functions only of the old. It is straightforward to
show that the new coordinates are canonical, by evaluating their Poisson brackets.

The importance of these results is that it is often convenient to work in curvilinear coordinates Q
and derive the corresponding momenta P = (9L/8Q). Since the coordinates (Q, P) are canonical, the
Poisson bracket (2.25) can be equally well evaluated by taking derivatives with respect to Q and P as
with respect to q and p. Hence all curvilinear coordinates have equal status in Hamiltonian mechanics.

Example 2.2
A particle of mass m and charge ()1 moves in a bound orbit around a fixed charge ()2 in the
plane perpendicular to a constant magnetic field B. Determine the system’s Hamiltonian in polar
coordinates (r,6) on the orbital plane. Hence show that mr26 + %Q1T2B is constant on the orbit.

Solution: The vector potential can be written A = 1rBey. From (1.31) the Lagrangian is

L:%mw+ﬁ@%qu%M%4Q2) (242)
TEQT
so the momenta are .

pr=mi py=mr’f+ 3Q1r°B (2.43)

Finally, the Hamiltonian is

2 1 212

p (Po — 5@137“ ) Q1Q2

H 0) = —— .
(pr,po, ,0) 2m + 2mr? 4degr

The constancy of py follows because H is independent of . Notice that (2.43) is not simply the
translation into polar coordinates of equation (2.19), which gives H in Cartsesian coordinates: when
translating H from one coordinate system to another one must pass through the Lagrangian.

2.6 Hamilton-Jacobi Equation*

Suppose we could find N constants of motion Iy, ..., Iny. And suppose it were possible to find a system
of canonical coordinates (P, Q) such that P; = I; etc. Then the equations of motion for the P’s would
be trivial,

0=PF, =[P, H]
 om (2.44)
—0Qi
and would demonstrate that H(P) would be independent of the @)’s. This last observation would allow
us to solve the equations of motion for the @)’s: we would have

_0H

5p = Wi @ constant = Qi(t) = Qi(0) + wit. (2.45)

Qi

So everything would lie at our feet if we could find N constants of the motion and could embed these
as the ‘momenta’ of a system of canonical coordinates.? The magic coordinates P = I and Q are called
action-angle coordinates, the I’s being the actions and the @’s the angles.

*

Lies beyond the syllabus
* Lies beyond the syllabus
2 Notice that to be able to embed the I'’s as a set of momenta, we require [Z;, Ij} = 0; functions satisfying this condition

are said to be ‘in involution’.
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Let S(I,q) be the generating function of the transformation between regular coordinates (p,q) and
action-angle coordinates. Then we can use this to eliminate p = 05/9q from H, expressing H as a
function of (I, q):

H(,q) = H(%,q). (2.46)

By moving on an orbit we can vary the ¢; pretty much at will while holding constant the I;. As we vary
the ¢; in this way H must remain constant at the energy E of the orbit in question. This suggests that
we investigate the non-linear partial differential equation

H(g—i, q) =FE, (Hamilton-Jacobi equation). (2.47)

If we can solve this equation, we identify the arbitrary constants on which the solution S(q) depends
with functions of the constants of motion I;. For example, the H-J eqn for a free particle moving in two
dimensions is

[VS?
—=F 2.4
m (2.48)
We write S(x) = S(z) + Sy(y) and solve (2.48) by separation of variables:
_ . (05\2 d5\2
constant = I, = (a_a:) = 9mE — (a_y) =1, (2.49)

This example is very tame, but the technique works also for more complicated Hamiltonians that cannot
be solved by other means.

The similarity between the H-J eqn and the time-independent Schrodinger eqn is obvious. We can
derive the H-J eqn from QM as follows. For simplicity we consider the special case of a particle that
moves in a potential V(x). If the particle has well-defined energy, its wavefunction (x) must satisfy
the time-independent Schrodinger eqn Evp = Hvp = (p*/2m + V)1). Without loss of generality, we can
write ¢ = eS/" where S(x) is a possibly complex function of x. Then

P2 = —h2V - <eiS/h$> — iS/h (IVS[]?> —inv2s) . (2.50)

Since we are dealing with classical mechanics, we are interested in the limit 7 — 0. Then the second
term in the bracket vanishes and the TISE becomes
2 . v.S 2
O:p—w+V¢—E¢:e‘S/h<u+V—E>, (2.51)
2m 2m

which is just €'5/% times the H-J eqn. This derivation reveals that the generating function of the trans-
formation from ordinary to action-angle coordinates is & times the phase of the particle’s wavefunction.
When one passes from wave optics to geometrical optics, you neglect a term equivalent to that dropped
from (2.50). Dropping this term is called making the eikonal approximation. The approximation
is good when many wavelegths are contained within the smallest length within which V.S changes
appreciably.

2.7 Phase-space volumes*

Often, for example when doing statistical mechanics, one needs a credible definition of ‘phase-space
volume’. If one is using Cartesian coordinates to describe a system of n particles of mass m;, it is
natural to take the volume element to be dr = [} (m3d*x;d?v;). But it isn’t immediately obvious what
to use for d7 in a more complex case. In particular, if one decided to describe the system of particles

*

Lies beyond the syllabus
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by some curvilinear coordinates q(x) and their conjugate momenta p, one would expect d7 to be of the

form
n

_ 8(mivi,xi) 3. 13
dT_iHl< o) d*p;d’q; ). (2.52)

One of the most beautiful and useful results in the subject is that the Jacobian here is just one. In
fact, the Jacobian between any pair of canonical coordinates is always one. That is, the volume of an

arbitrary region is
V= // dVpdVq = // dVPdNQ, (2.53)
% %
where (p,q) and (P, Q) are any canonical coordinates.

Appendix I Derivation of equation (1.25)

Since the particle coordinates r; are functions of the six generalized coordinates g, we have that

6
. 81',' .
v k=1 Oa “ k;1 dq 8(1 @+ Z Oqk i a1
o (1.24) can be written
0=y (3 qlqk+za ) G- Qs (12
i=1 K= UOk 04
By the chain rule the body’s k.e. is
N 6 81-
T= ; Zml Z . ) (13)
i=1
S0
oT or; . 8rl
— = 1.4
94; XZ: (Z 9g! ) (L4
and
ST =S| (30 i+ 3 2 ) - o
t\dq;/ I, 3q 9 dq; (15)

(S i) (3 ai;;.qvﬂ-

This expression for (d/dt)(07/9¢;) contains two of the terms that appear in equation (I.2). Its last
term is unwanted. We can obtain an alternative expression for this unwanted term by calculating

N

2o ) (T50)

i=1

Substituting (1.6) into (I.5) and then using the result to simplify (I.2) we obtain (1.25).
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Appendix IT Proof that generating functions generate canonical transformations

We prove that given S(q,P), P and Q = 9S5/0P satisfy the canonical commutation relations. From

the chain rule we have that
i) _ <3_P> .i)
op q Jp q oP q

111
2) 0y L (®) D) )
9q), 0aq/)p da), OP)
Applying these formulae to p; and using 9p; /0P = §%S5/9q;0P = 0Q/dq; yields
= (5), (&)
o=\ ), \aa
PiJa A/ q (IL.2)
(), (), (&)
04; ) p 04; ), \04i)
Multiplying these equations together and summing over j we find
0 0 Opi Opir
> (50),Ga) o= (50 ()
Kt ' toF P (11.3)
_ S N 928 _0
- 0qivdqi - 0qidqi
Since the matrix 0Q/0q; has an inverse by (I1.2), this shows that [P, P;] = 0.
Working again from equations (II.1) we have
sa), (o), (&), (%)
Pl = '} N il
(@ 75 (8(1 » \0p dp 0q ),
-1050),+ (), (a) - (%)
0q /p Jp q
(), (5), ()
p
P (I1.4)

-(5), (%), (4
B ii'(a)

(@), (5

)q-[P,Pj]

\/.Q

Similarly,
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8pk 825
Bta_P> = ogop’ *°
0Q; on opr, Qi
@.01-3(53) (), (7, - (57)

J zk: 0P, ) (\Opr) \OP: ) o \OP; )

_0Q; _0Q (I1.5)
oP;  OP;
%S d’S

=0. <

~ 0P0P;  OP;0P;

Appendix ITI Derivation of (2.22) from the Schrédinger equation

We start by finding the amplitude A2 to get from (¢1,q1) to (t2,q2), where the interval ¢t —¢; is small.
In Dirac’s notation, this amplitude is

A12 - <q2|'¢)at2>a (IIIl)

where |1, t2) is the ket into which |q;) has evolved at t5. In other words, |1, t2) is the solution of the
time-dependent Schrodinger equation (TDSE) for initial condition |, 1) = |q1). This is

[, ta) = eI Ht=t)/R gy, (I11.2)

Here the exponentlal is the operator with the same eigen-kets |E ) as the Hamiltonian H, and eigenvalues
equal to e Fr(t2=t1)/h where the E, are the eigen-values of H. That is,

olH(ta=t1)/h = Z |En>e—iEn(tz—t1)/ﬁ<En|_ (111.3)

(To prove that (II1.2) satisfies the TDSE, just substitute (II.3) into (II1.2) and differentiate w.r.t. t5.)
Our amplitude can now be written

A = <q2|e*if’“2*“>/h|q1>

. 1.4
:/ p(az|p)(ple” 2=t)/R | qy), ()

where use has been made of the fact that [ d3p|p)(p| is just the identity operator since the states |p)
of well-defined momentum form a complete set.

H and thus the function of it appearing in (II1.4) is a function of the operators p and q. Let’s
assume that every p has been positioned to the left of every q. Then every p can be considered to act
to the left and be replaced by its eigen-value p, while every q acts similarly to the right. So the complex
number (ple~ iH (2t /™ q;) becomes simply
o—iH(t2—t1)/h e pa/h

71H(t2 t1 /h(
(2nh)3/2’

Plai) = (I11.5)

where H is the classical Hamiltonian evaluated at the classical phase-space point (p,q) and we have
used the fact that (p|q;) is just the complex conjugate of the wave-function of a particle of well-defined
momentum p. When we insert (IIL.5) into (II.4) and similarly replace {q2|p) by a plane wave, we find

A = hl3 /dSP exp [h (P (q2 —a1) — H(t2 — tl))]- (111.6)

Equation (IIL.6) for the amplitude to get from one event to another is only valid for infinitesimal

ty — t;. There are two issues: (i) H may be time-dependent; (i) for finite 7 the operator e iflT =
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1—iHr+ L (HT) - involves high powers of H and so many reversals of the order of the operators
P and q W111 be requ1red to ensure that the p’s are to the left of all q’s. In view of these objections we
use (I11.6) only for small ¢ — 1. Given two widely separated events (t;,q;) and (¢, q¢), we express the
amplitude to pass between them by a particular path q; = q1 — ... = qr as the product

AipAra X - - X Ap g (IIL.7))

of m amplitudes of the form (III1.6) over small intervals (¢;_1,¢;). We then obtain the amplitude to pass
between (i, q;) and (t¢, qr) by any path by summing (II1.7) over all values of the intermediate positions
q;. The final amplitude is

m—oo h3M

Ay = lim —/H ’p;diq;) exp [% i ( (A1 — ar) — H(tk+1 — tk))}
5 (IIL.8)

= constant x /Dqu exp [ﬁ/ (p -dq — Hdt)}.

Here the symbol DpDq means one is to sum the integrand over all paths (p(t), q(t)) which pass through
(ti, i) and (tr, qr).

Thus, as claimed in §2.2, the amplitude to get from (¢, qi) to (¢, qr) is a sum over all paths of
'S/ where S is the classical action for that path. When |S| > % the contributions from paths that
do not extremize S will cancel each other out to high precision, and the amplitude for the transition is
dominated by the extremizing “classical” path.

Exercise (3):
In (TI1.8) replace H with %pQ/m +V(q) and dq by qd¢. Then do the integration over every p; by

completing the square and using ffooo e dr = /7. Explain the relation of the resulting expression
for Aj¢ to the Lagrangian principle of least action.



