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1 Relativistic Covariance

Observers who move relative to one another do not always agree about the values of
quantities, such as speed, mass, energy etc, associated with the same physical system.
The special theory of relativity tells us how we may predict the values measured by
any observer once we know the values assigned by one particular observer, for example
ourselves.

Special relativity teaches us to think of experience as being made up of ‘events’,
each with a definite location in the four-dimensional continuum of spacetime. Any
given observer assigns to each event a unique 4-tuple of numbers (¢, z,y, z). Of course
he can do this in many, many ways. But special relativity claims that there are certain
specially favoured systems for assigning coordinates to events, the so-called inertial
coordinate systems. O chooses one inertial system and another observer, O’, sets up
a different one. But according to special relativity the coordinates (t',z’,y’,2") O’
assigns to any event can be related to O’s coordinates (t,x,y, z) of the same event by

ct’ cto ct

/
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where c is the speed of light and (to, o, Yo, 20) is a set of numbers characteristic of the
two observers, as is the 4 x 4 matrix L.

Clearly, (to, zo, Yo, 2z0) are the coordinates O’ assigns to the event that marks the
origin of O’s coordinates. For simplicity we shall assume that (to, zo, %0, 20) = 0. In
general L can be represented as the product of matrices generating a rotation, a boost
parallel to a coordinate direction and a second rotation: L = R’-Lg-R, where R rotates
the coordinate axes so as to align the boost direction with a coordinate direction, Lg
effects the boost along the given axis and R’ rotates the coordinates to any desired
final orientation. If R is chosen such that the x-axis becomes the boost direction, L
has the form

vy =By 00 )
By v 00 p=v/c
Lo = where . 1.2
0 0 0 1 0 =N (1.2)
0 0 01

For simplicity we confine ourselves to observers whose spatial coordinate systems
are aligned, and whose relative motion lies along their (mutually parallel) z-axes. Then
in (1.1) L = Ly and we get the familiar equations of a Lorentz transformation:

(1.3)
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4-vectors Lorentz transformations mix up space and time, so it is useful to define

new coordinates which all have dimensions of length. We write 2° = ¢t, 2! = =z,
2?2 =y, 23 = 2, and refer to a general component of the 4-vector (z°, zt, 22, 23) as z¥.
(The reason for labelling the components with superscripts rather than subscripts will

emerge shortly.) Then we write a Lorentz transformation as

= AF a, (1.4a)
where
¥y =By 0 0
_| -8By ~ 00
A=, 010l (1.4b

0 0 0 1
In (1.4a) the Einstein summation convention is being used in that the summation

sign lejzo has been omitted for brevity. You know it’s really there because v appears
twice on the right-hand side of the equation, once up and once down.

Why do we write the row index of A as a superscript and the column index as a
subscript?

A key property of a Lorentz transformation is that —(ct’)? + 2/ + ¢y'? + 2% =
—(ct)?+22+y2+22. This is analogous to the fact that if two vectors a and a’ are related
by a rotation matrix, then a}? 4+ a;’ 4+ a? = a2 + a2 +a2. So a Lorentz transformation
is a sort of modified, four-dimensional rotation. When we rotate a vector a we like to
say that the length |a| is invariant (i.e., stays constant). Analogously we define the
length of the 4-vector x to be

x| = —(=%)7 + (&) + (&) + (=7)*. (1.5)
Notes:
(i) We don’t extract a square root because we have no guarantee that |x| > 0.

(ii) 4-vectors that have negative lengths are called time-like, while those with positive
lengths are space-like. Vectors with zero length are said to be null.

(iii) Every book on relativity uses a different convention. The sign of the lengths of
space-like vectors is called the “signature of the metric”.

The lengths of 4-vectors are sufficiently important for it to be useful to have a
way of writing them that does not involve writing out all the components explicitly.
To achieve this we introduce this matrix, called the Minkowski metric:

-1 0 0 0
[ 0 1T 0 O
1o o010 (1.6)
0 0 0 1
Then we have
x| =x-m-x, (1.7a)
or in component form
x| = 2 nu”. (1.7b

The Einstein convention is here being used to drop two summation signs. We write
both of »’s indices as subscripts so that each sum is over one up and one down index.
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Covariant and contravariant vectors We write the result of matrix multipli-
cation of x by 1 as
Ty = Ny’ .

We have 2o = —2° = —ct, 71 = 2!, 19 = 22 and x3 = 23. Thus the length of x is

zhr, = A2t 4+ 2%+ + 22

Notice that here as everywhere else, we are summing over one up and one down index.
In order to stick rigidly to this rule, we define

-1 0 0 0

0O 1 0 O
nY — =

0 0 0 1

Note:

We have n#*7n,, = 6%, or in matrix form 1 - n = I, where I and ¥ are two ways
of writing the 4 x 4 identity matrix. Also ¥ = #7467, so in a sense 7 is merely
the up-up and down-down forms of the identity matrix.

From z, we can recover xz*;
= nx,. (1.9)

z, is a 4-vector, but of a slightly different type than z#, because under a Lorentz
transformation we have

/ v v K [ZN
T, = Nt = NNz = A7 0™ x)

I
-1 0 0 O v =By 0 0 -1 0 0 0 o
- 0O 1 0 0 — B vy 0 0 0 1 0 O T
o 0O 01 0 0 0 1 0 0O 01 o To
0 0 0 1 0 0 0 1 0 0 0 1/ \uzj (1.10)
vy By 00 Tg
_ ﬁfy i 0 0 x1 — v
=l o o 1 0 |a] T
0 0 0 1 T3
where we have defined a new matrix
A =AY o™ (1.11)
Notice that the transpose of A,” is the inverse of A¥,:
AFGALT =0, (1.12)

where we have again written the 4 x 4 identity matrix as 6.
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Exercise (1):

Obtain (1.12) from the requirement that for any two vectors x, y, we have z,y'* =

z,y*.

Vectors with their indices below are called covariant (z,). Vectors with indices
above are called contravariant (z*). I shall call them down and up vectors. The
operation of setting two indices equal and summing from 0 to 3 is called contraction.
In a contraction one index must be up and one down. Quantities like > u TuTp have
nothing to do with physics. An important motivation for writing x* rather than x
is to distinguish the up from the down form of x. Often an expression is equally
valid for up or down vectors provided the basic rules are obeyed, and then it is neater
to use conventional vector notation than to stick in indices. For example, if a and
b are vectors and M is a matrix, we can interpret a = M - b as a* = M*”b,, as
a, = M,,b", or in yet other ways. But if you ever express a 4-vector in component
form, you must come clean and say whether you're giving the up or the down vector,
as in ¥ = (ct,z,y, 2).

According to special relativity, all quantities of physical interest can be grouped
into n-tuples.

1.1 1-tuples (4-scalars)

On some things all observers agree, for example the charge and total spin of the an
electron. These quantities are called 4-scalars or relativistic invariants. The length
of a 4-vector is a 4-scalar.

1.2 4-tuples (4-vectors)

If O measures the wave-vector and frequency of a photon to be k and w, then an ob-
server O’ who moves at speed v along O’s z-axis measures wave-vector k' and frequency
w’ given by

w'/c v =By 0 0 w/e
Be | =By v 0 0| ke
Kol =L o o 1 o]k (1.13a)
K o 0 o0 1/ \ &k
The matrix form of this equation is
v =By 00
w'/e\ w/e _{ =By v 00
( W )-A ( & ) where A = 0 0o 1 0 (1.13b
0 0 0 1

Notes:

(i) The Lorentz transformation matrix A is dimensionless, so w has to be divided by ¢
to give the same dimensions as k before being put into the last place of a 4-vector
with k.
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(ii) Vectors written in italic boldface (k) are 3-vectors, while those written in Roman
boldface (k) are 4-vectors.

If we define k° = w/c, then

K =A-k ie, k"=A"L" (1.14)

Exercise (2):
Determine whether the photon is blue or red shifted between its emission by O
and its detection by O’. Relate this to the question of whether O’ is approaching
or receding from O.

The length of a photon’s 4-vector is the scalar
2
_ 0\2 12 22 3y2 W 2 _
[kl = —(A7)" + ()" + (k%) + (k%) = ——5 + |k[* = 0.
One can prove that this really is a scalar by brute force:

|kl| — —(k’0)2 4 (k/1)2 + (kl2)2 + (kl3)2

Y S 1) _ a W 1)? 2\2 3\2

= (’vc ﬂvk) +( ﬂ76+’vk) + (K7)" + (k7)

(1) 0 1 0
= (RO + (R 4 ()2 + (1),

Another familiar 4-tuple: if observer O measures energy £ and momentum p for
some particle, then O’ will measure E’ and p’ given by

(E!f) :A-(EIZC), (1.15)

or setting p® = E/c, we have p'* = A¥,p".

The length of the momentum-energy 4-vector of a particle of rest mass mg # 0 is
just —c? times the square of its rest mass mg. We show this by arguing that it doesn’t
matter in whose frame we evaluate a scalar. We choose the particle’s rest frame. Then
p=0and E = cp® = mgc?, so

")+ (") + (0°)> + (0°)* = —mgc’.

1.3 6-tuples (antisymmetric 2"¢ rank tensors)

If the electric and magnetic fields measured by O are arranged into the antisymmetric
matrix F,

0 E,/c Ey/c E,/c
—FE;/c 0 B, -B,
—-E,/c —-B, 0 B,
-E,/c By, —By 0

Fr = (SI units), (1.16)
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then O’ will measure E’ and B’ as

0 E'zJe E'yJc E',/c
—F';/c 0 B, -DB,
~E'yJe -B', 0 B,
~E'.Je B, -B, 0

= F'M = AP NV \F", (1.17)

Note that F*” transforms as if it were the product p*p” of two down-vectors (which
it isn’t). Objects that transform in this way are called second-rank tensors.

F is called the Maxwell field tensor.

Exercise (3):
Transform F** with the matrix A#, defined by (1.13b) to show that an ob-
server who moves at speed v down the z-axis of an observer who sees fields E =
(Ez, Ey,0) and B = 0, perceives fields E' = (E,,vE,,0) and B’ = (0,0,yvE,/c).
[Hint: since A is symmetric, we can write F/ = A-F-A.] Hence deduce the general

rules E|’| = E”, Ej_ :’Y(EJ_—l—’U ><.B)7 B|’| = B”, B, = ’}/(BJ_—’U X E/Cz). Verify

that (B2 — E?/¢®) = (B"* — E'%/c?).

Some 6-tuples correspond to elements of area. This correspondence works as
follows. With any two displacements, say u and v, we associate the parallelogram
bounded by u and v. Information about the size and orientation of this parallelogram
is conveyed by the antisymmetric tensor S = u*v? — uPv®; in particular, if u = v,
then S = 0. S has fewer degrees of freedom than the eight numbers involved in u and
v because we can add to u any multiple of v without affecting S, and vice versa for v
and u.

Exercise (4):
Consider transformation u — u’ = au + bv, v — v/ = cu + dv with the corre-
sponding mapping S — S’. Show that the equation S’ = S imposes one constraint
on the numbers a, b, ¢, d. Hence only 8 — 3 = 5 numbers are needed to specify S.
Give a geometrical interpretation of this result.

In three-space the size and orientation of a parallelogram may be specified by
giving the magnitude and direction of the normal. Hence in three-space full infor-
mation about an antisymmetric 2"9 rank tensor can be packed into the three com-
ponents of the 3-vector which we call the cross-product of the parallelogram’s sides.
In four-dimensional spacetime each parallelogram has a magnitude and two mutually
perpendicular normals, requiring five numbers for its full specification. Consequently
there is no direct analogue of the cross product and we must represent areas directly
with antisymmetric tensors.

Exercise (5):
Relate the above statements to the number of independent components of an
antisymmetric n x n matrix for n = 2, 3, 4.
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A physically interesting 6-tuple that describes an area is the tensor (z#p” — z¥p*)
formed from the space-time coordinate vector z* = (ct,x,y, z) and the 4-momentum
of a particle. If the angular momentum about the origin is L, we have

0
H" = (zhp” — 2¥pt) = c(zE/c® —tp;) 0 ; (1.18)
c(yE/c* —tp,) —L, 0 :
c(zE/c* —tp,) L, —L, 0
where the diagonal dots stand for minus the quantities in the lower left triangle of the

matrix. The numbers in the first column of this matrix give mc times the particle’s
initial position vector.

With every 6-tuple we get two free scalars. If the 6-tuple is of the form
(u®v? — uPv®), then one of these is twice the squared magnitude of the corresponding
parallelogram:

SHY (NSt = S# S, = —TrS - S

= (uhv” — u"v")(uyv, — uyvy,) = 2[ullv| — (u- v)?].

Note:

Here by Tr M we mean M,* = M“,. That is, the sum implied by Tr must always
be over one up and one down index.

Evaluation in the particle’s rest frame shows that the scalar 1 H,, H* = [|x||p| —
(x-p)?] = —(mgerg)?, where 7 is the distance (in the rest frame) between the particle
and the origin at ¢t = 0.

It is interesting to evaluate this same scalar for the Maxwell field tensor. Straight-
forward matrix multiplication shows that the down-down shadow of F*¥ is!

0 —E;/c —E,/c —E,/c

— Em/C 0 Bz _By .
F,, = E,jJc -B, 0 B, (ST units), (1.19)
E./c B, -B, 0

Multiplying each element of F,,, by the corresponding element of F'#* we find

— 1 v 1
m:§FﬂyFM :—§TI‘FF

= %(each element of F),,) x (corresponding element of F*") (1.20)

= (B* - E?*/c?).

To extract another scalar from a 6-tuple we need to introduce the Levi-Civita
symbol:

—1 if afBv6 is an odd permutation of 0123 (1.21)

s { +1 if af~vd is an even permutation of 0123
P10 =
0 otherwise.

1 It is worth remembering that in special relativity the lowering operation only changes the sign
of the mixed space-time components.
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Note:

Whereas when n is odd, the cyclic interchange 77 — t9 — ... = 4,1 — @, — 11
is an even permutation of the ig, when n is even, this permutation is odd. (To
prove this exchange 77 and 4,, and then make n — 2 exchanges to work #; back to

the second place.) So whereas for 3-dimensional tensors €;i; = €%, we now have
6ﬁfy5a — _604,376-

€*P7% allows us to form the dual F of F:

7 = Leobrop g
0 B, B, B,
| -B, 0o -E.)c E,/c (1.22)
| -B, E./c 0 —E,/c |’

-B, —-E,/c E;/c 0

F can be obtained from F by the transformation E — B, B — —E. The other scalar
is the trace of the product of F with its dual:

f=TrF-F

= —(each element of Fi,3) X (corresponding element of FQB) (1.23)

4
= —-F - B.
C

Exercise (6): B
Show that with S,, = u,v, —u,v,, TrS-S = 0. This result explains why S has
only 5 degrees of freedom (Exercise 4).

1.4 10-tuples (symmetric 2°¢ rank tensors)

Imagine that we move some charges around. Then the rate at which we do work on

the e.m. field is
E=— / E.jdzx
1

(1.24)
1 OFE
- | E. B- 27 g
Mo <VX C2 6t>d$
But V- (ExB)=B-(VxE)—E-(VxB),so (1.24) can be rewritten
é=L [V (ExB &+ L (—B-(VXE)JrlZE-a—E)d?’m
Ho Ho c ot
) S0 (1.25)
=— ExB-d25+—/—BQ+E2c2 d’z.
o ( ) 210 3t( /&)

If energy is to be conserved, the energy we deploy moving the charges has to go
somewhere. According to (1.25) energy will be conserved if we interpret the Poynting

vector 1
= —FExB (1.26)

Ho
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as the flux of e.m. energy, and

1
—(B*+ E?/¢? 1.27
s (B2 + B2/c?) (1.27)

as the density of e.m. energy.

How do the Poynting vector and the e.m. energy-density fit into the scheme of
n-tuples? From F we can construct the following important tensor:

1

T = — [~ (F5, PO ) — FHy F;
“10 (1.28)
T=—[1Tv(F -F)n—-F- F|,
Mo

where F is, as usual, the Maxwell field tensor (1.16). It’s easy to see that Tr'T = 0. A
little slog shows that in terms of E and B the tensor T is

ﬁ(32 +/E2/c2) Ngz/c Ny/c N,/c
N, /c
T = m 1.29
N /e P, : (1.29)
N, /c
where
1 E? E;E; .
Py=oo [%6“- (B2+ =) - (BiB+ 0—2”)] (i, = 1,2,3). (1.30)

Thus the energy density in the e.m. field is the 00 component of T and the Poynting
vector occupies the mixed space-time components of T. It turns out that the 3 x
3 matrix P;; describes the flux of the three kinds of momentum: P;; = flux of z-
momentum etc.

Exercise (7):
Show that a uniform magnetic field parallel to the z-axis is associated with tension
(negative pressure) along the axis, and pressure in the perpendicular directions.

A As an example of T consider a plane e.m. wave running along i polarized parallel
to j. Then
E = (0, FE,0) cos(wt — kx)

B = (0,0, B) cos(wt — kx).
E and B are related by —0B/0t =V x E = B=kE/w= E/c. Hence
N = (E?/uqc,0,0) cos®(wt — k).

The first term in our expression (1.30) is non-zero only on the diagonal. The second
term is non-zero only in the yy and zz slots and there cancels the first term. So P is

1 0 0 B2
Pj=10 0 0 5 cos?(wt — kx),
0 0 o) HoC
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and finally

E2

T = cos?(wt — kx). (1.31)

foc?

[ P RS
[ P RS
cocooo
cocooo

The stress tensor P has only an entry in the zz slot because our wave is engaged in the
business of carrying z-type momentum in the z-direction; the wave would push back
a mirror placed in a plane z = constant. Clearly the Poynting vector is also directed
along the z axis, which accounts for the off-diagonal units in T. In proper relativistic
units the wave employs unit energy density (“capital employed”) to carry unit fluxes of
energy and momentum (“turnover”). Notice that the wave’s phase is the scalar —k - x.

1.5 Derivatives of tensors

Derivatives with respect to any system of coordinates can be expressed in terms of
derivatives w.r.t. any other system by use of the chain rule:

a.f'ﬂ N gj‘ aiv' (1.32)
If the primed and unprimed systems are linked by a Lorentz transformation,
' = At (1.33)
we have on multiplying by A,” and summing over v,
A = AN 2t = 2,
where the last step follows by (1.12). Differentiating we get
% = A", (1.34)
Thus
&% _ Aﬂu%7 (1.35)
and we see that
Oy, = 0/0zt = (%%,%,%,%) (1.36)

transforms like a down vector.
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Notes:

( )

0

Fyn operates on vectors to produce 274 rank tensors:
T

0A,

Gu = Fm =0,A, = A,

0 .

o operates on tensors to produce higher-rank tensors:
x

0By,

W=
" ozk

G = 0,8\ = B,y

The operand’s indices can be either up or down: G,” = 9, A”.

(ii) If we contract the tensor produced by operating on a vector, we get a scalar, the
4-divergence 1 = 0,, A*.

(iii) We can reduce the number of indices on a higher-rank tensor by contraction:
A = 0,GM*.

(iv) The 4-analogue of taking the curl of a vector is to antisymmetrize the tensor
formed by operating on a vector: F,, = (0,4, — 0,A,). If A, = 0,¢, then
F,,, = 0 because partial derivatives commute.

(v) A natural generalization of the divergence theorem reads

oT,
4 Q... 3
Adxaﬂ _ﬁmxmnm (1.37)

where S is the boundary of the 4-d region V. Notice that T may have as many
indices as it pleases and that one of them may be contracted with p if you wish.

Example:

In e.m. the usual vector potential A and the electrostatic potential ¢ form the
four components of an up vector

At = (¢p/c, Az, Ay, Ay) [= A= (—¢/c, Az, Ay, Al (1.38)

Our old friend the Maxwell field tensor F is then

F,, =0,A, —0,A,. (1.39)
0A, 0A A, 10¢
Thus Flo = —2 - 2 =B,and Fp; = — + ~— = —E,/c.
s 2 ox oy and for c + cOx /e
Derivatives with respect to proper time The history of a particle defines

a curve in space-time. Let A be a parameter which labels points on the curve in
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a continuous way. Then the coordinates z* of points on the curve are continuous
functions z#(A). For A < 1 the small vector
dx
0X = — A
dA
almost joins two points on the curve. Hence it is time-like and |[0x| < 0. For any two
points A and B on the curve, we define

1 (B dx
== [ /-5 1.40
’ c/A ‘d)\ (1.40)

to be the proper time difference between A and B along the curve. If the curve is a
straight line, we may transform to the coordinate system in which z* = (ct,0,0,0) at
all points on the curve, and then

_det d(=ct)
dh  dA

A\ = [tg — ta]. (1.41)

Hence the name. We regard the coordinates z# of events along the trajectory as
functions z#(7) of the proper time. Differentiating w.r.t. 7 and multiplying through
by the rest mass mg we obtain a 4-vector, the momentum
dx
= mo—. 1.42
p 0 1r ( )
From the zeroth component of the up version of this equation we have dt = ~vdr; the
hearts of passengers on a fast train (they mark off units of 7) appear to beat slowly to
a medic on the station platform (whose watch keeps t).

1.6 Laws of e.m. and mechanics in tensor form
The relativistic generalization of Newton’s second law is
d?x d ( dX) dp ¢
mog— = — | mn— = — =1,
Odr2 — dr \dr dr
where f is the 4-force. The last three components of f# are just the Newtonian force
components f;. With u = 0 equation (1.43) states that the zeroth component of f# is

to 1/c times the rate of change of the particle’s energy cp?; hence physically f°is 1/c
times the rate of working of the force w. In summary

fﬂ: (w/cufmvfyufz)- (1'44)

(1.43)

The divergence of (1.16) consists of these four equations:

10E, 10E, 10E,

¢ Ox c Oy c 0z %V -E
Fiv, = | 0B,/0y—0B,/dz — 0B, /0t | = ( 1 0E ) . (1.45)
—0B,/0x + 0B, /02 — 0E, /ot VXB-5—or
9B, )0z — OB, /0y — LOE, /ot
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The zeroth component is by Poisson’s equation equal to p/(ceg) = cuop, where p is the
charge density. By Ampere’s law, the last three of these equations are equal to po7,
where 3 is the current density. Hence if we form a 4-vector

3 = (cp; Jus Jy: =) (1.46)
we may write four of Maxwell’s equations as
FM ., = poj*. (1.47)
It is straightforward to verify that Maxwell’s other four equations can be written

Fuu:A +F>\,u7u +Fu)\7,u,:0 (/17é1/7é )\)- (1.48)

Exercises (8):
(i) Show that when A, i and v equal 1, 2 and 3 respectively, (1.48) becomes V-B = 0.
(ii) Show that with equation (1.22) equation (1.48) may also be written F' ,, = 0.

Charge conservation is expressed as
(o0 -j = pog*,p=F* . =0, (1.49)

where the last step follows by the antisymmetry of F.

The natural definition of the 4-current associated with a particle of charge ¢ is

d
J:q—X

s (1.50)

Since the force exerted on a charged particle by an e.m. field has to be linear in ¢, the
fields represented by F', and the particle’s velocity vector, a suitable 4-vector to try as

the force is
f=F-J. (1.51)
Tentatively inserting this into (1.43) and multiplying through by d7/d¢ = 1/~ to obtain
the acceleration as measured in the laboratory frame, we get
dp dx
— =qF - —. 1.52
a ~ T (1.52)

It is straightforward to check that the last three components of the up form of this
vector are

d dx
= (morSr) =alw x B+ E),
while the zeroth component is
d
(mocy) _1p. v,
dt c

2

or, in words, “the rate of change of the particle’s energy mc” is equal to the rate of

working of the Lorentz force.”
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Gauge invariance At a classical (i.e. non-quantum level) only E and B are
physically meaningful—A is just an abstraction from which E and B can be calculated
via F,,, = (0,4, — 0, A,). So nothing physical changes if we replace A by

A=A +0A, (1.53)

where A(x) is any scalar-valued function of space-time coordinates. The change (1.53)
in A is called a gauge transformation.

Gauge transformations can be used to ensure that A satisfies an additional equa-
tion. In particular, given A we can choose A s.t. A’ satisfies one of these gauge
conditions:

(i) Lorentz gauge:>
9-A'=0 = DOA=0-A (1.54)

The Lorentz condition (1.54) does not uniquely specify A’ since many non-trivial
functions satisfy O¢ = 0 and so given one A satisfying the 279 of eqs (1.54), we
can construct many others A’ = A + ¢.

(ii) Coulomb or radiation or transverse gauge
V-A=0 = VA=V-A (1.55)
In this gauge the 0" eqn of the set 0"F,, = poj, reads

Lo oo = —0¥ (90 Ay — 9, Ag)

C€Q
= —9y0" A, + 9”0, Ay
= —800° Ag + 0”8, Ao (1.56)
=00, Ao
= -V3¢/c

i.e., in this gauge the electrostatic potential satisfies Poisson’s eqn, which explains
the gauge’s name.

1.7 Summary

The special theory of relativity requires that any physical quantity must fit into an
n-tuple of numbers, where n = 1,4,6,10,.... Physical laws must be expressed as
equations connecting the n-tuples associated with different physical quantities. These
equations must be constructed in accordance with the rules of tensor calculus, which
permit only:

(i) the multiplication of n-tuples to form either higher-rank n-tuples (as in H,, =
Z, Py — T,p,) or lower-rank n-tuples (as in f, = F,”J,), or

2 We denote the d’Alembertian opertor by O = OpOF by analogy with the notation A = V2 = 6l~6i
for the Laplacian operator.
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(ii) the addition of n-tuples of the same rank.

In particular, both sides of every acceptable equation always form valid n-tuples of the
same kind.

Rest-mass, electric charge and total spin are scalars (1-tuples). The most impor-
tant 4-vectors (4-tuples) include any particle’s energy-momentum p, e.m. current J or
acceleration dp/dr, and the potential A of the e.m. field. Important 6-tuples include
any particle’s angular momentum H and the Maxwell field tensor F. An important
10-tuple is the density T of the energy-momentum due to the e.m. field.

In 4-vector notation the key equation of mechanics and e.m. are

dx
v=— ; p=mgv ; J=g¢qv
dr
dp
f=F-J — =f
Todr

where FH* = n‘”n”‘sts and F = %G“W‘SF,Y(;. The energy-monentum tensor of
the e.m. field is

1
T = m (1 Te(F - F)p*” — Fr F7].




