Prof J.J. Binney 4th year: Option C6

Classical Fields III: Solutions

1. Let e; = €'t eg = €'%2 with ¢1, ¢ real, then

¢ =u+iv=1ple; +v’er = (¥' cosd1 + 1p? cos o) +i(yp" sin ¢y + ¥” sin o)

So we require
Sin gou — COS Pov

1 _
YT sin( - o)
and similarly for v. Given that ¢, # ¢» the ¥’ can be be determined.
The general covariant derivative in this case is V,9¢ = M/J“ +If wl + Fa#wz which coincides
with D¢ = 9,4 +1i(q/h) Ay if we adopt o' = Re(v)), ¢? = Sm(y) I'5, =T}, =0 and T3, = —T7, =

—qAu/h.

2.
ViV, Z% =0,V 2% + 103V, 20 =10 N 3 2°

= 0u(0, 2% + T3 2°) + 1050, 2° + T Z7) = T,V s Z°

The part of this that is antisymmetric in pv is

RS, 2% = [0,T05 — 0,19 Z° + [T9sT0, —TosTh |27

Ky

DDy = [0, — i(a/M) A0, — i(a/h) AL
= [0,0, — i(a/n) (A0, + A,D) — i(a/D)DuA, — (/) A,A,] b

R, % is the part of this that’s antisymmetric in pr
R = =i(q/0) (0, Ay = 0, AL)Y = —i(a/h) Fputp

Reintroducing labels 1 and 2 for real and imaginary parts, we can read off from this Ro;w = R2;w =0
and RZ;LU = Rl,uv - (q/h)

3. Extremizing the “Lagrangian”
. 72 . .
—2Di% + o) + 7262 + 12 sin? 9>

we find for the ¢ equation of motion

d - . D .
(2D =0 = it =0

so I't, = 2D'/D. For a radially moving photon we have

dx# 0 dk° o dk® D’ odr 1d 0
_ 2 L0 ey =2V _
0 dSVk d+ yROR ds+Dkd5 Dds<k>
S0
oy = 902) _ (=)

 D(r)  1—ry/r’

This equation shows that as r increases w decreases to its value at co — this is the gravitational redshift
in action.
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4. For a B field along the = axis

00 0 ©
00 0 ©
172 2 —
Y= Fuy = 00 0 B
0 0 —B 0
SO
00 0 0 00 0 © 00 O 0
F.F70000 00 0 O} |00 O 0
“{o o o0 B 00 0 BJ] oo —-B2 o0
00 —-B 0 00 —-B 0 00 0 -—B?
and
1, B? . : B
Ty = —[3 Te(F-F)n, — (F-F),] = — [ diag(—1,1,1,1) + diag(0,0,1,1)] = — diag(1,-1,1,1)
1o Ho 2410

so there’s pressure P = B2 /2y in the yz directions and tension per unit area of the same magnitude
along x.

5. The energy-momentum tensor is
T = diag(pc®, —F/A,0,0)

Consider T}, in the frame boosted along x, showing only the 20, 2! entries:
T ( gl ﬂv) (pc? 0 ) ( g 57) _ < g ﬁv) ( vpc® Prpe’ )
By 0 —F/A)\By ~ By v ) \-ByF/A —yF/A

T/()O — 72p02 _ (ﬁ’y)QF/A :72(002 _62F/A)

and we need F//A < pc? if this is to remain > 0 in the limit 3 — 1.

Hence
The speed of transverse waves on the rope is
tension F
Ce = - @@ @ = -
? mass/length pA

6. Extremizing the “Lagrangian” —c?¢? + 22 + 7“3(92 + sin? 9(;.52) we find

so F/A<p? & cy<ec

i(—202t') =0 i(22) =0

dr dr
d : . d .
5(27130) — 2r2sinfcosfp* =0 5(27% sin? ) = 0

= 0—1sin200°=0 ¢+ 2cot00p =0

SO
_ z 0 _ 14 ¢ _
r,=0 T;,=0 Tg,=—35sin20 Tg, =cotd
Now
Rgg = 09T — 9,Tly + T, T\ —T% Ty

= Jpcot O + I‘é\(z)l"gb)\ = —csc? O+ cot?f = —1



Classical Fields III: Solutions

and
Ry = 06Ty = 0uTis + 15,050 = TH,T3s
= 0 cot 0 — Qp(—3 sin20) + L9, T%, + T4, 1'%, — T, 1%,
= 0820 + cot §(—% sin20) = —sin® 0
So
R, = diag(0,0,—1, —sin?0)
00 0 0 ~1/¢2 0 0 0 00 0 0
RV 00 O 0 0 1 0 0 {00 0 0
e lo 0 -1 0 0 0 1/r} 0 1o 0 —1/r¢ 0
0 0 0 —sin?6 0 0 0 1/(r¢sin?6) 00 0 —1/r}
and R = —2/r¢. Finally
G, = diag(0,0, —1, —sin? 0) + ry 2 diag(—c?, 1,72, 72 sin” §)
8rG
= diag(_CQ/rg7 1/T87 Oa 0) = _71-—4 diag(TUO7 Tzza 07 O)
c
so T,, = —c*/(87Gr2). The tension is
0 27 2.4 4
o [T r§c c*(1 —cosby,)
F:ro/o d951n0/0 ng)TZZ:?w(l—cost)SﬁGrg = 1
7. The Minkowski metric is —dudv + dy? + dz2.
Extremizing the “Lagrangian” —ud + f25? + 22 we obtain
d d
. . 0= L2, 0= -2 (42
P - 2f 2008 =0 ar Y e
" ! = 1%+ 2f f'ig = g% + 299u

so the non-vanishing Christoffel symbols are

Iy, =2ff" Ti.=29 TU,=f/f Ti.=4/g

3

From egs of motion above can see that y = 0 = ¢ = 0 and similarly for z, so y = const, z = const
are solutions. Also then ii = ¥ are required, so « and v are linear in 7. If x is constant c?dr? = dudv,

which is consistent with this linearity. Thus constant x,y, z defines geodesics.
Lf'=0+u®, Lf" =204+ u®"” and Lg' = —20' — u®” so
f// g// B 2@/ _"_u@// 2@/ +u(_)//

7+§_ L+ u® L—u®

which always vanishes because the numerators vanish unless v = 0, and when u = 0 the denominators

are equal so the two terms cancel.

DZ:/a dzg:/a dz[lf%@(u)]:Qa[lf— (u)]

—a —a

S

D, = 2a[l + %@(u)]

Dz:/ dx = 2a

D. = {Qa(l —ct/L) for0 <ct . D, = {2@(1 +ct/L) for0 <ct
2a otherwise 2a otherwise

Thus

so at t = 0 particles are impelled towards each other along z and away from each other along y by a

disturbance that propagates along x. This is a gravitational shock wave.
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8. The eqns of #¢ motion are

d . .
0 = —(2a*r%0) — a®r sin 20¢°
dr
d .
0= E(2a2r2 sin? ¢)

so r2sin” @ = const. If this const is zero and 6 = 7/2, then d(r20)/dr = 0, which is satisfied by § = 0
at all 7.

The current distance is obtained by integrating ds = a(t¢)dr from zero to the coordinate ry of the
galaxy, and we have D = a(ty)ry = 4 because currently a = 1.

Since photon propagates radially, dt = a(t)dr, and ry = ttlo dt/a = fttlo dt/(t/te)?/3 = 3t(2)/3 (t(l)/3 -
t17%). Hence D = 3t2/3(t/* — 1;/%).

We have K > 0 because the universe is closed, so the distance to the galaxy is.

D (t )/Tg dr
= a —_—
0 0 \/I—KTQ

Yo
= alto) / dip  where siny = VK7
0

VK

Hence sin(vK D/a(ty)) = VKr,.

At t; let the edge of the galaxy be at angular coordinate 8,,, so R = a(t1)ry6,, and

R VKR (1+2)VKR

a(t)ry  a(ty)sin(VKD/a(ty))  sin(VKD)

O, =

because a(t;) = (1+ 2)~ L.
9.
UV o v? — 02V’ = u®0,0° — v 9,u” + Ffauo‘v”’ - I‘?/a’uo‘zﬂ = [u,v)?
by the symmetry of T'.
{dx dmr _det o def det o def dde’  ddep

dr’ de dr % de  de “dr  dr de  de dr

In the given definition of R we put u* = w* = dz*/dr and v” = dz”/de and have

de de
The second term in the brackets on the left vanishes because x(7) is geodesic. Moreover,

da? o
%Vg:'ca = iﬁvg% because [,] =0

so we can rewrite the first term and then have the equation of geodesic deviation:

dx” dx”
. .8 ar’ _ oy A
(Vo) (2" V) e RY \ i@ %

daf daf da”
<x’“Va$Vg - sz,Bj?ava> &= R’YA/LVI"/\‘T.M ’
€

Dropped masses have geodesic paths x(7,€) with i° ~ ¢. Since #*V,, = d/dr, when we multiply
the equation of geodesic deviation by a small number de we get

d2
W(Sx'y ~ R g0, 02" .
But from elementary mechanics 2 = —GM/R?, where M is the Earth’s mass and R is the particle’s
distance from the centre of the Earth. Thus varying z we have
. 2GM
0z = o 0z

Comparing with the z component of the equation of geodesic deviation and setting g = GM/R? we
obtain R?go, = 2g/(c*R).



