
Prof J.J. Binney 4th year: Option C6

Classical Fields III: Solutions

1. Let e1 = eiφ1 , e2 = eiφ2 with φ1, φ2 real, then

φ = u+ iv = ψ1e1 + ψ2e2 = (ψ1 cosφ1 + ψ2 cosφ2) + i(ψ1 sinφ1 + ψ2 sinφ2)

So we require

ψ1 =
sinφ2u− cosφ2v

sin(φ2 − φ1)

and similarly for v. Given that φ1 6= φ2 the ψi can be be determined.

The general covariant derivative in this case is ∇µψa = ∂µψ
a + Γa1µψ

1 + Γa2µψ
2 which coincides

with Dµψ = ∂µψ + i(q/h̄)Aµψ if we adopt ψ1 = <e(ψ), ψ2 = =m(ψ) Γ2
2µ = Γ1

1µ = 0 and Γ1
2µ = −Γ2

1µ =
−qAµ/h̄.

2.
∇µ∇νZα = ∂µ∇νZα + Γαµβ∇νZβ − Γβµν∇βZα

= ∂µ(∂νZ
α + ΓανβZ

β) + Γαµβ(∂νZ
β + ΓβνγZ

γ)− Γβµν∇βZα

The part of this that is antisymmetric in µν is

RαβµνZ
β = [∂µΓ

α
νβ − ∂νΓαµβ ]Zβ + [ΓαµβΓ

β
νγ − ΓανβΓ

β
µγ ]Z

γ

Now
DµDνψ = [∂µ − i(q/h̄)Aµ][∂ν − i(q/h̄)Aν ]ψ

=
[

∂µ∂ν − i(q/h̄)(Aµ∂ν +Aν∂µ)− i(q/h̄)∂µAν − (q/h̄)2AµAν
]

ψ

Rµνψ is the part of this that’s antisymmetric in µν

Rµνψ = −i(q/h̄)(∂µAν − ∂νAµ)ψ = −i(q/h̄)Fµνψ

Reintroducing labels 1 and 2 for real and imaginary parts, we can read off from this R1
0µν = R2

2µν = 0
and R1

2µν = −R2
1µν = (q/h̄)Fµν .

3. Extremizing the “Lagrangian”

−c2Dṫ2 + ṙ2

D
+ r2θ̇2 + r2 sin2 θφ̇2

we find for the t equation of motion

d

dτ
(−2c2Dṫ) = 0 ⇒ ẗ+

D′

D
ṙṫ = 0

so Γtrt =
1
2
D′/D. For a radially moving photon we have

0 =
dxµ

ds
∇µk0 =

dk0

ds
+ Γ0

µνk
µkν =

dk0

ds
+
D′

D
k0 dr

ds
=

1

D

d

ds
(Dk0)

so

ω(r) =
ω(∞)

D(r)
=

ω(∞)

1− rs/r
.

This equation shows that as r increases ω decreases to its value at ∞ – this is the gravitational redshift
in action.
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4. For a B field along the x axis

Fµν = Fµν =







0 0 0 0
0 0 0 0
0 0 0 B
0 0 −B 0







so

F · F =







0 0 0 0
0 0 0 0
0 0 0 B
0 0 −B 0













0 0 0 0
0 0 0 0
0 0 0 B
0 0 −B 0






=







0 0 0 0
0 0 0 0
0 0 −B2 0
0 0 0 −B2







and

Tµν =
1

µ0

[ 1
4
Tr(F ·F)ηµν− (F ·F)µν ] =

B2

µ0

[

− 1
2
diag(−1, 1, 1, 1) + diag(0, 0, 1, 1)

]

=
B2

2µ0

diag(1,−1, 1, 1)

so there’s pressure P = B2/2µ0 in the yz directions and tension per unit area of the same magnitude
along x.

5. The energy-momentum tensor is

Tµν = diag(ρc2,−F/A, 0, 0)

Consider T ′µν in the frame boosted along x, showing only the x0, x1 entries:

T ′µν =

(

γ βγ
βγ γ

)(

ρc2 0
0 −F/A

)(

γ βγ
βγ γ

)

=

(

γ βγ
βγ γ

)(

γρc2 βγρc2

−βγF/A −γF/A

)

Hence

T ′00 = γ2ρc2 − (βγ)2F/A = γ2(ρc2 − β2F/A)

and we need F/A < ρc2 if this is to remain > 0 in the limit β → 1.

The speed of transverse waves on the rope is

cs =

√

tension

mass/length
=

√

F

ρA

so F/A < ρc2 ⇔ cs < c.

6. Extremizing the “Lagrangian” −c2ṫ2 + ż2 + r20(θ̇
2 + sin2 θφ̇2) we find

d

dτ
(−2c2ṫ) = 0

d

dτ
(2ż) = 0

d

dτ
(2r20 θ̇)− 2r20 sin θ cos θφ̇

2 = 0
d

dτ
(2r20 sin

2 θφ̇) = 0

⇒ θ̈ − 1
2
sin 2θφ̇2 = 0 φ̈+ 2 cot θθ̇φ̇ = 0

so

Γtµν = 0 Γzµν = 0 Γθφφ = − 1
2
sin 2θ Γφθφ = cot θ

Now
Rθθ = ∂θΓ

µ
µθ − ∂µΓ

µ
θθ + ΓλθµΓ

µ
θλ − ΓµλµΓ

λ
θθ

= ∂θ cot θ + ΓλθφΓ
φ
θλ = − csc2 θ + cot2 θ = −1
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and
Rφφ = ∂φΓ

µ
µφ − ∂µΓ

µ
φφ + ΓλφµΓ

µ
φλ − ΓµλµΓ

λ
φφ

= ∂φ cot θ − ∂θ(− 1
2
sin 2θ) + ΓφφθΓ

θ
φφ + ΓθφφΓ

φ
φθ − ΓφθφΓ

θ
φφ

= cos 2θ + cot θ(− 1
2
sin 2θ) = − sin2 θ

So

Rµν = diag(0, 0,−1,− sin2 θ)

Rµ
ν =







0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 − sin2 θ













−1/c2 0 0 0
0 1 0 0
0 0 1/r20 0
0 0 0 1/(r20 sin

2 θ)






=







0 0 0 0
0 0 0 0
0 0 −1/r20 0
0 0 0 −1/r20







and R = −2/r20. Finally

Gµν = diag(0, 0,−1,− sin2 θ) + r−2
0 diag(−c2, 1, r20, r20 sin2 θ)

= diag(−c2/r20, 1/r20, 0, 0) = −
8πG

c4
diag(T00, Tzz, 0, 0)

so Tzz = −c4/(8πGr20). The tension is

F = r20

∫ θm

0

dθ sin θ

∫ 2π

0

dφTzz = 2π(1− cos θm)
r20c

4

8πGr20
=
c4(1− cos θm)

4G

7. The Minkowski metric is −dudv + dy2 + dz2.

Extremizing the “Lagrangian” −u̇v̇ + f 2ẏ2 + ż2 we obtain

du̇

dτ
= 0 ; −dv̇

dτ
− 2ff ′ẏ2 − 2gg′ż2 = 0;

0 =
d

dτ
(f2ẏ)

= f2ÿ + 2ff ′u̇ẏ
;

0 =
d

dτ
(g2ż)

= g2z̈ + 2gg′u̇ż

so the non-vanishing Christoffel symbols are

Γvyy = 2ff ′ Γvzz = 2gg′ Γyuy = f ′/f Γzuz = g′/g

From eqs of motion above can see that ẏ = 0 ⇒ ÿ = 0 and similarly for z, so y = const, z = const
are solutions. Also then ü = v̈ are required, so u and v are linear in τ . If x is constant c2dτ2 = dudv,
which is consistent with this linearity. Thus constant x, y, z defines geodesics.

Lf ′ = Θ+ uΘ′, Lf ′′ = 2Θ′ + uΘ′′ and Lg′ = −2Θ′ − uΘ′′ so

f ′′

f
+
g′′

g
=

2Θ′ + uΘ′′

L+ uΘ
− 2Θ′ + uΘ′′

L− uΘ
which always vanishes because the numerators vanish unless u = 0, and when u = 0 the denominators
are equal so the two terms cancel.

Dz =

∫ a

−a

dz g =

∫ a

−a

dz [1− u

L
Θ(u)] = 2a[1− u

L
Θ(u)]

Dy = 2a[1 +
u

L
Θ(u)]

Dx =

∫ a

−a

dx = 2a

Thus

Dz =
{

2a(1− ct/L) for 0 < ct
2a otherwise

; Dy =
{

2a(1 + ct/L) for 0 < ct
2a otherwise

so at t = 0 particles are impelled towards each other along z and away from each other along y by a
disturbance that propagates along x. This is a gravitational shock wave.
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8. The eqns of θφ motion are

0 =
d

dτ
(2a2r2θ̇)− a2r sin 2θφ̇2

0 =
d

dτ
(2a2r2 sin2 θφ̇)

so r2 sin2 θφ̇ = const. If this const is zero and θ = π/2, then d(r2θ̇)/dτ = 0, which is satisfied by θ̇ = 0
at all τ .

The current distance is obtained by integrating ds = a(t0)dr from zero to the coordinate rg of the
galaxy, and we have D = a(t0)rg = rg because currently a = 1.

Since photon propagates radially, dt = a(t)dr, and rg =
∫ t0
t1

dt/a =
∫ t0
t1

dt/(t/t0)
2/3 = 3t

2/3
0 (t

1/3
0 −

t
1/3
1 ). Hence D = 3t

2/3
0 (t

1/3
0 − t1/31 ).

We have K > 0 because the universe is closed, so the distance to the galaxy is.

D = a(t0)

∫ rg

0

dr√
1−Kr2

=
a(t0)√
K

∫ ψg

0

dψ where sinψ ≡
√
K r

Hence sin(
√
KD/a(t0)) =

√
Krg.

At t1 let the edge of the galaxy be at angular coordinate θm, so R = a(t1)rgθm and

θm =
R

a(t1)rg
=

√
KR

a(t1) sin(
√
KD/a(t0))

=
(1 + z)

√
KR

sin(
√
KD)

because a(t1) = (1 + z)−1.

9.
uα∇αvβ − vα∇αuβ = uα∂αv

β − vα∂αuβ + Γβγαu
αvγ − Γβγαv

αuγ = [u, v]β

by the symmetry of Γ.
[

dx

dτ
,
dx

dε

]β

=
dxα

dτ
∇α

dxβ

dε
− dxα

dε
∇α

dxβ

dτ
=

d

dτ

dxβ

dε
− d

dε

dxβ

dτ
= 0

In the given definition of R we put uλ = wλ = dxλ/dτ and vν = dxν/dε and have
(

ẋα∇α
dxβ

dε
∇β −

dxβ

dε
∇β ẋα∇α

)

ẋγ = Rγλµν ẋ
λẋµ

dxν

dε

The second term in the brackets on the left vanishes because x(τ) is geodesic. Moreover,

dxβ

dε
∇β ẋα = ẋβ∇β

dxα

dε
because [, ] = 0

so we can rewrite the first term and then have the equation of geodesic deviation:

(ẋα∇α)(ẋβ∇β)
dxγ

dε
= Rγλµν ẋ

λẋµ
dxν

dε
.

Dropped masses have geodesic paths x(τ, ε) with ẋ0 ' c. Since ẋα∇α = d/dτ , when we multiply
the equation of geodesic deviation by a small number δε we get

d2

dτ2
δxγ ' c2Rγ00νδx

ν .

But from elementary mechanics z̈ = −GM/R2, where M is the Earth’s mass and R is the particle’s
distance from the centre of the Earth. Thus varying z we have

δz̈ =
2GM

R3
δz

Comparing with the z component of the equation of geodesic deviation and setting g = GM/R2 we
obtain Rz00z = 2g/(c2R).


