Prof J.J. Binney 4th year: Option C6

Classical Fields I1I: Solutions
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so dividing through by 1/gas df; dd””f we can replace each dA with ds and have
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Multiplying through by ¢”* and cleaning up
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On subtracting the two equations the terms with I' cancel because the Christoffel symbol is symmetric
in its subscripts.

3.
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But interchanging the labels p and o we see that
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so the first and last terms in the brackets cancel and we have I'f;, = % 9**OvGpa-

From the definition of a cofactor,
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Now by Kramer’s rule (A71);; = cof(A;;)/ det(A), so
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In em., A, — Al = A, + J,A. The first line of equation (1) gives the formula for the strong-field
case.

5. We start from the definition
FZ,@ = %guu(aaguﬁ + aﬁgau - augaﬁ)

We multiply it by the matrices required to transform each index on the left and use the chain rule on
the right:
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In the first terms we can replace o by « and in the second we can replace ¢ by 3. Then differentiating

out the products oth the terms spawned by the third term cancel on terms spawned by the first two
terms, and we have
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We now identify gﬁ\u and exploit the fact that it is the inverse of ¢’** to arrive at
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Differentiating (1) we have
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Using this to replace the double derivative in (2) and rearranging we get the required expression
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From the given expression we have
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With the left side set to zero this becomes a set of linear p.d.es for z’* that we should be able to solve
for given source terms I'’(x) in the same way that we would solve the wave equation for the vector
potential A* generated by a given current density j°.

We always have
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where we’ve used eq. (1) of the problem set. Now
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S0 Oy (\/ﬁgM) = 0 in the harmonic gauge.
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We form Rgyq, by antisymmetrizing this in arv and adding the I'T" terms, so
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On cancelling the second I'T" term on the fifth and the fourth on the sixth we obtain the desired I'T’
terms. Similarly when we replace the I's with all subscripts by their definitions in terms of derivatives
of g two of the six double derivatives cancel and we are left with the desired terms.

The permutation p — v — k — p interchanges the first and the third double derivatives in the
given expression so two pairs of these terms will cancel between permutations. The other two double
derivatives are 0y of 0,9, — Oxgur, which changes sign under x — v — p, so again terms in the cyclic
sum cancel. The I'T terms have the same symmetry properties and likewise cancel. This completes the
proof of the cyclic identity Rxuvx + Rxkpw + Ravep = 0.

Ry, can be thought of as Rap where A and B are antisymmetric pairs of indices. There are
%4 X 3 = 6 such possible pairs. Also Rap = Rpa so there are %6 x 7 = 21 independent ways of
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choosing a distinct pair of index-pairs. Using these pair-wise symmetries we can show that the cyclic
sum Sagsy = Ragsy + Rasys + Ravyss is completely antisymmetric. For example,

Saﬁ’y& = *Raﬁé'y + Roryzsﬁ + Ra&ﬁfy
= _Raﬁé’y - Ra'y[% - Raé'yﬁ = _Saﬂ'yé

Hence already from the pair-wise symmetries of R we can show that it is non-zero only when all four
indices are different. Thus the cyclic identity adds the single constraint Sgi1234 = 0 on the components
of R, and there are 20 independent components overall.

7. From the previous question

d*h d*h 0%h d%h
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as required.

The gauge condition is

0=2g"T, ~ 0" (Ophuy + Ovhyn — Ochy)
= 20, h"* — 0 h.

Plugging
O hyg = %8,\h

into (3) we get
Ry~ %[Qﬁﬁh - %(auaﬂh + 0,0sh) + Dhy] = %thm

Taking the trace of this equation we find that R = %Dh, so the Einstein equations are

— 81G
R/uc - %Rnum = %Dhm@ = _CTTHK (4)

The analogous e.m. equation is OA* = ppj*. From this equation we easily infer the propagation
of e.m. waves, so in (4) we have an equation that predicts gravitational waves.

8. Now for stationary rest mass the only non-vanishing element of T}, is Too = pc®. So E;m =0 for
uk # 00. Et follows that h,. = %hnlm for puk # 00. Now h = —hgg + hy; = —hoo + %h, so h = 2hgo.
Moreover hgg = hog + %h = 2hgo. Thus hgg satisfies the equation

Ohgy = — ——
00 2 p

Bearing in mind that the matter is stationary so dph = 0, and Poisson’s equation V2® = 47Gp, we see

that hgo = —2®/c?. Finally the other non-zero elements of h are hyy = hyy = h., = 2h = hgy = —2®/c?

as required.



