Prof J.J. Binney 4th year: Option C6

Classical Fields I1I1

1. The standard covariant derivative, V,p” = 0,p" + Ff\up’\, acts on 4-vectors that inhabit the four-
dimensional “tangent space” of the space-time manifold. In particle physics other vector spaces are
associated with each event. For example, a complex scalar field 1) associates with each event x a point
in the complex plane — a two-dimensional vector space. Let e; and es be two unimodular complex
numbers. Show that we can write 1 = 1/ e; 4+ 1)2es, where the 1® are real numbers.

If we make a different choice of basis numbers e, at each event x, 9,1 will not vanish even if 1) is
the same everywhere. To detect this hidden equality we define a connection

Dy = 9, 9p* + Tp, 07,
where I', is a 2 x 2 matrix.

In quantum mechanics an e.m. field affects the dynamics through the replacement of the usual
momentum operator by p, = —ih{d, —i(¢/h)A,}. Show that for an appropriate choice of I';, this can
be written p, = —ikD,,.

2. The curvature tensor is most conveniently defined by (V,V, —V,V,)Z* = R"‘ngﬂ , which holds
for any field Z. From this definition derive an expression for R in terms of the Christoffel symbols.

In the notation of the previous problem, we define the curvature tensor for a scalar complex field
through (D, D, — D, D, ))* = Rabwwb. Assume that, as in the previous problem, summation over the
index of ¢ can be absorbed into complex multiplication, so we can write simply (D,D, — D, D)y} =
R,,%. Show that R, = —i(q/h)F,,, where F,,, = 0, A, — 0, A, is the Maxwell field tensor.

3. With coordinates z# = (¢, 1,6, ¢) the Schwarzschild metric may be written

—c*D 0 0 0

0 D1 0 0 D=1- T—S,
Juv = 2 where T

0 0 T 0 _ 2

s = 2GM/c”.

0 0 0 r2sin?0 " /e

Show that the only non-vanishing Christoffel symbols of the form F/tw are
D/

Pit = ]'—wér = E

From the equation of motion of a photon of momentum #k, show that in the Schwarzschild metric
the time component w = kY of a photon’s 4-vector obeys

d(wD dat
dwD) =0 where the photon’s path z*(s) satisfies k" = —,
ds ds
and give a physical interpretation of this equation.
4. Derive the form of the energy-momentum tensor associated with a uniform magnetic field of strength
B parallel to the z-axis. In which direction or directions does the field exert pressure?

5. A rope made of nylon of density p and cross-section A lies along the z-axis under tension F. Write
down the form of the energy-momentum tensor inside the rope. Show that requiring that the energy
density in the rope be positive for all observers, limits the permissible tension F.

6. A metric for the interior of a cosmic string is
ds? = —c?dt? 4 r2(d6? + sin? d¢?) + dz?,
where 7 is a constant. Show that the only non-vanishing Christoffel symbols are
Fg,¢ = —% sin 260 and F$¢ = Fie = cot f.
Given that the only non-vanishing components of the Ricci tensor are Rgg and Rye and that the edge
of the string is at 6 = 6,,,, show that the tension in the string is F' = ¢*(1 — cos 0,,)/(4G).
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7. With (¢, z,y, z) having their usual meanings, double-null coordinates for space-time are defined by

u=ct—xz Yy =y
7 =

v=ct+=x z.

Write down the Minkowski line element in double-null coordinates.
Consider the line element
ds? = —dudv + f2dy® + ¢*d2?,

where f(u) and g(u). Show that the only non-vanishing Cristoffel symbols are
Doy =211 T =299", Ty, = T4, = '/}, T2u=T0 = ¢'/g .

Hence, or otherwise, show that trajectories on which the spatial coordinates z,y, z are constant are
geodesics.

The metric’s Ricci tensor vanishes provided
i "
.9
Iy

where a prime denotes differentiation with respect to w. Show that this equation is satisfied by the
choice

:07

) =1+ 76() , glu) =1 - 76(u),
where L is a constant and O(u) is the Heaviside step function that vanishes for u < 0 and is unity for
u > 0.

For the above choice of f and g, determine as a function of time the invariant distance between
particles that move on « = 0, y = 0, 2 = +a, and similarly the distance between particles that move on
r=0,y==a, z=0.

Interpret your results physically.

8. The Robertson-Walker metric may be written

dr?

2 _ 2 2

+ 72(d6? + sin® d¢?) |.
Explain the significance of the quantities a and K, and of the world-lines (r, 6, ¢) = constant.
Show that photons can travel down curves (6 = constant, ¢ = constant).

Given that a = (t/tg)?/? for K = 0, find the distance now (ty) in the case K = 0 between us and a
galaxy from which we are currently receiving photons emitted at ¢;.

Suppose the Universe is closed with the Earth at the point » = 0. A distant galaxy of radius R is
currently distance D from us with its centre on the line # = 0. Show that its rim is at angular coordinate

_ (1+2)RVK

sin(DVEK)

where z is the galaxy’s redshift. Simplify this formula for the case z < 1 and discuss the difference
between the general result and this case.

9. Show that for any two vectors u, v we have
(Vo )v? — (V4V o )u? = [u,v]?,
where the vector [u, v] is defined by

[u, V] = u*0qv” — v DquP.
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For each fixed €, 2%(7, €) defines a geodesic, with 7 the affine parameter. Show that
do do]”_
dr’de|

Show further that
dx”

de’

where x = dx/d7 and the curvature tensor R can be taken to be defined by

d Y
(:bava)(:bﬁvﬁ)% = Ry it

((u“VQ)(vﬁVg) — (V*V o) (uPV ) — [u,v]ava)uﬂ = Ry ut v w?,

with u, v and w arbitrary vectors.

Two masses are dropped from points a small height € apart. Show that just after they are released,
the separation dx between them satisfies

D%5x7
_ ¥ v
D = ¢ R0, 02",
where 20 = ct. Hence show that the gravitational field at the Earth’s surface has the curvature compo-
nent

R?00. = 2g/(c*R)

where z is an upwards directed coordinate, g is the usual acceleration due to gravity, and R is the
Earth’s radius.



