Prof J.J. Binney 4th year: Option C6

Classical Fields I

1. A π^0 meson moving with velocity v decays into two gamma-rays. If α denotes the angle between the directions of travel of the two photons, express $\cos \alpha$ in terms of $\beta \equiv v/c$ and $\cos \theta'$, where θ' is the direction of emission of one of the photons in the centre of mass system. Hence show that the angular correlation is given by

$$dN = \frac{\sin \alpha \, d\alpha}{4\beta \gamma^2 \sin^3 \frac{1}{2} \alpha \sqrt{\beta^2 - \cos^2 \frac{1}{2} \alpha}}.$$

[The π^0 meson has zero spin.]

- 2. In a certain frame of reference S, a hollow non-magnetic conductor moves with uniform velocity v in a magnetic field B. Find in the frame S the electric and magnetic fields in the space within the conductor.
- 3. A certain quantity X is known to be a Lorentz scalar and to depend only on the momenta p_a , p_b of two particles and on the electric and magnetic fields. In a constant magnetic field B and zero electric field, X is known to take the form $(p_a \times p_b) \cdot B$. Find the form taken by X when a constant electric field is also present.
- 4. Show that the total e.m. force f acting on a localized distribution of charge and current satisfies

$$f + \frac{\mathrm{d}}{\mathrm{d}t} \int (\mathbf{D} \times \mathbf{B}) \,\mathrm{d}^3 \mathbf{r} = \int \mathbf{W} \,\mathrm{d}^3 \mathbf{r},$$

where $\mathbf{W} \equiv \mathbf{E} \nabla \cdot \mathbf{D} - \mathbf{B} \times (\nabla \times \mathbf{H}) - \mathbf{D} \times (\nabla \times \mathbf{E})$ and the integration is over the region within which the charges and currents are confined. Show that in the vacuum $\mathbf{n} \cdot \mathbf{W} = \nabla \cdot \mathbf{U}(\mathbf{n})$, where

$$m{U}(m{n}) \equiv \epsilon_0 ig[(m{n} \cdot m{E}) m{E} - rac{1}{2} m{n} E^2 ig] + rac{1}{\mu_0} ig[(m{n} \cdot m{B}) m{B} - rac{1}{2} m{n} B^2 ig]$$

and n is any constant vector.

Explain the physical meaning of $D \times B$ and U(n) and the relation of U to the relativistic energy-momentum tensor T.

$$[\boldsymbol{a} \times (\nabla \times \boldsymbol{a}) = \frac{1}{2}\nabla(a^2) - (\boldsymbol{a} \cdot \nabla)\boldsymbol{a}$$
, where \boldsymbol{a} is any vector field.]

5. The components of a 4-vector \mathbf{v} are arranged to make a 2×2 Hermitian matrix

$$\mathbf{X} = \begin{pmatrix} v_0 + v_z & v_x - \mathrm{i}v_y \\ v_x + \mathrm{i}v_y & v_0 - v_z \end{pmatrix}.$$

Show that for given **X** it is in general impossible to find a Pauli spinor η such that $X_{ij} = \eta_i \eta_i^*$.

6. If we complement the usual Pauli matrices by $\sigma_0 \equiv I$, the identity matrix, show that the rule for rotating a four-vector x^{μ} can be written

$$e^{i\theta\sigma_{\mathbf{n}}}x^{\mu}\sigma_{\mu}e^{-i\theta\sigma_{\mathbf{n}}} = x'^{\mu}\sigma_{\mu},$$

where $\sigma_n \equiv n \cdot \sigma$. Show that any vector that is invariant under this transformation has a spatial part that is proportional to n, and explain the physical significance of this result.

7. ϕ is a real scalar field and $V(\phi)$ is a potential function. Derive a field equation for ϕ from

$$\mathcal{L} = -\left[\frac{1}{2}\partial_{\mu}\phi\,\partial^{\mu}\phi + V(\phi)\right]. \tag{1}$$

Explain the connection of this equation to the Klein–Gordon equation. Taking $V = 1 - \cos(\phi)$ derive the Sine–Gordon equation. If $\phi(x,t) = \Phi(x - \beta ct)$, which β a constant, show that Φ satisfies

$$\frac{1}{2}(1-\beta^2)(\Phi')^2 - 2\sin^2\frac{1}{2}\Phi = A,$$

where a prime denotes differentiation and A is a constant. Setting A=0 and taking $\beta^2<1$ obtain the soliton solution

$$\tan \frac{1}{4}\Phi = \pm \exp \left[\pm \gamma (X - X_0)\right],$$

where $\gamma = 1/\sqrt{1-\beta^2}$ and $X = x - \beta ct$. Describe the solution obtained when both signs are positive.

8. Show that the energy density of the field ϕ that is governed by (1) is

$$T^{00} = \frac{1}{2} [(\partial_0 \phi)^2 + |\nabla \phi|^2] + V(\phi).$$

9. ψ is a Dirac-spinor field. Show that

$$\mathcal{L} = \overline{\psi} \gamma^{\mu} \partial_{\mu} \psi - m \overline{\psi} \psi$$

is invariant under a global phase shift

$$\psi \to e^{i\theta} \psi$$
.

Show that this invariance is associated with the conserved current

$$j^{\mu} = i\overline{\psi}\gamma^{\mu}\psi.$$

10. Defining $\psi = E + icB$ show that Maxwell's eqns for source-free fields can be written

$$\frac{\partial \psi}{\partial t} + ic\nabla \times \psi = 0 \quad ; \quad \nabla \cdot \psi = 0. \tag{\dagger}$$

Show that the e.m. energy density is $\frac{1}{2}\epsilon_0\psi^*\cdot\psi$ and the Poynting vector is $\frac{1}{2ic\mu_0}\psi^*\times\psi$. Show further that the field

$$\psi = \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} e^{\pm i(kz - \omega t)} \tag{\dagger}$$

with $\omega = kc$ represents a circularly polarized plane wave. Discuss the parallel between equation (†) and the Dirac equation for the electron wave-function.