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The Physics of Quantum Mechanics
Solutions to starred problems

3.11* By expressing the annihilation operator A of the harmonic oscillator in the momentum
representation, obtain (p|0). Check that your expression agrees with that obtained from the Fourier
transform of
1 2 2 h
(x]0) = (271'62)1/4 , where (= Dy (3.1)

Soln: In the momentum representation = ihd/dp so [z, p] = ihdp/dp = ih. Thus from Problem

58 14 lp h O
p
A= <2£+1h ) 1< +2wp>

14 h O
O = A’LLO = —p’LLO = ——2£ —81;0 = uo(p) o< efinzez/h2
Alternatively, transforming ug(z):

—ax? /402

0l0) = [ dstpla)talo) = [~ dwe S

- 1 ° X ipg 2 7;0262/7‘12 - 26\/7'( 7;0262/7‘12
~ (2nf2h?)1/A /,oo do exp (‘ {ﬂ * 7} ) ¢ = 2r2r2)i/s ©

3.13* A Fermi oscillator has Hamiltonian H = fTf, where f is an operator that satisfies

fF=0, ffi+flf=1 (3.2)
Show that H?> = H, and thus find the eigenvalues of H. If the ket |0) satisfies H|0) = 0 with
(010) = 1, what are the kets (a) |a) = f|0), and (b) |b) = £1]0)?

In quantum field theory the vacuum is pictured as an assembly of oscillators, one for each
possible value of the momentum of each particle type. A boson is an excitation of a harmonic
oscillator, while a fermion in an excitation of a Fermi oscillator. Explain the connection between
the spectrum of f1f and the Pauli principle.

Soln:

H = fTffff=fia-fnr=rr=H
Since eigenvalues have to satisfy any equations satisfied by their operators, the eigenvalues of H
must satisfy A2 = A, which restricts them to the numbers 0 and 1. The Fermi exclusion principle
says there can be no more than one particle in a single-particle state, so each such state is a Fermi
oscillator that is either excited once or not at all.

lla)|> = (0|fTf|0) =0 so this ket vanishes.
[[bY% = (0| ££1]0) = (0](1 — fT£)[0) =1 so |b) is more interesting.
Moreover,
Hip) = f1ff10) = £1(1 — f1£)10) = £1]0) = |b)
so |b) is the eigenket with eigenvalue 1.
3.15* P is the probability that at the end of the experiment described in Problem 3.14, the

oscillator is in its second excited state. Show that when f = %, P = 0.144 as follows. First show
that the annihilation operator of the original oscillator

A=+ A+ (- pATY (3.3)
where A’ and A" are the annihilation and creation operators of the final oscillator. Then writing

the ground-state ket of the original oscillator as a sum |0) = ) cy|n’) over the energy eigenkets of
the final oscillator, show that the condition A|0) =0 yields the recurrence relation

Cn+1 = f : f Cn—l-
N

(3.4)
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Finally using the normalisation of |0), show numerically that co ~ 0.3795. What value do you get
for the probability of the oscillator remaining in the ground state?

Show that at the end of the experiment the expectation value of the energy is 0.2656hw. Explain
physically why this is less than the original ground-state energy %hw.

This example contains the physics behind the inflationary origin of the universe: gravity explo-
sively enlarges the vacuum, which is an infinite collection of harmonic oscillators (Problem 3.13).
Excitations of these oscillators correspond to elementary particles. Before inflation the vacuum is
unexcited so every oscillator is in its ground state. At the end of inflation, there is non-negligible
probability of many oscillators being excited and each excitation implies the existence of a newly
created particle.

Soln: From Problem 3.6 we have
_mwztip ,_ mffertip

 V2mhw B \/ 2mhf2

_x fx
T +ﬁ
Hence f 0i0 f
! AR Popt = reaty e Loar - oart
A+ A Vi A — A ffhp so A= 2f(A A)+2(A AT

0=A10) =3 {(f '+ HexA|K) + (f 7 = fexAT|K)}
k

—%Xk:{f + f)Vkerlk —1') + (f‘l—f)\/k+1ck|k+1’>}

Multiply through by (n/|:
0=(f"+ f)vVn+1leayr + (F1 = f)vnen—1,
which is a recurrence relation from which all non-zero ¢, can be determined in terms of c¢g. Put
co = 1 and solve for the c¢,. Then evaluate S = |¢,,|? and renormalise: ¢, — ¢,/ VS.
The probability of remaining in the ground state is |co|> = 0.8. (E) =3 |cn|*(n+ 3)hf%w. Tt
is less than the original energy because of the chance that energy is in the spring when the stiffness
is reduced.

3.16* In terms of the usual ladder operators A, A, a Hamiltonian can be written
H = pATA+ \(A + AT). (3.5)
What restrictions on the values of the numbers i and X follow from the requirement for H to be
Hermitian?
Show that for a suitably chosen operator B, H can be rewritten

H = uB'B + constant, (3.6)
where [B, Bf] = 1. Hence determine the spectrum of H.
Soln: Hermiticity requires x4 and A to be real. Defining B = A + a with a a number, we have
[B,BT] =1 and
H=pu(B'—a")(B—a)+XB—-a+B'—a*) = uB' B4+ (A—pa*)B+ (A —pa) BT + (|a*1n— Ma+a*)).
We dispose of the terms linear in B by setting a = A/, a real number. Then H = uB'B — \2/p.
From the theory of the harmonic oscillator we know that the spectrum of BfB is 0,1,..., so the
spectrum of H is nu — \?/p.

3.17* Numerically calculate the spectrum of the anharmonic oscillator shown in Figure 3.2. From
it estimate the period at a sequence of energies. Compare your quantum results with the equivalent
classical results.

Soln:
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3.18* Let B = cA+ sAT, where ¢ = coshf, s = sinh @ with 0 a real constant and A, At are the
usual ladder operators. Show that [B, BT] = 1.
Consider the Hamiltonian

H=eATA+ INATAT + AA), (3.7)
where € and \ are real and such that € > A\ > 0. Show that when
ec—As=Fc¢, Ac—es=Es (3.8)

with E a constant, [B, H| = EB. Hence determine the spectrum of H in terms of € and ).
Soln:
[B, B] = [cA + sAT, cAT + sA] = (* — s})[A, AT] =1

[B,H] = [cA+ sAT,eATA + IN(ATAT + AA)] = c[A,eATA + JAATAT] + s[AT,eATA + INAA]
= c(eA+ AAT) — s(eAT + \A) = cEA+ sEA" = EB
as required. Let H|Ey) = Ep|Ep). Then multiplying through by B
EyB|Ey) = BH|Ey) = (HB + [B, H])|Eo) = (HB + EB)|Eo)

So H(B|Ey)) = (Ey — E)(B|Ey)), which says the B|Ep) is an eigenket for eigenvalue Ey — E.
We assume that the sequence of eigenvalues Ey, Eg— E, Eg—2E, . . . terminates because B|Fin) =
0. Mod-squaring this equation we have

0 = (Ewmin| BT B|Emin) = (Bmin|(cAT + sA)(cA + sAT)| Enin)
= (Bmin|{(* + s?)ATA + 5% + cs(ATAT + AA)}| Emin)
= cs(Emin|{(c/s +5/c)ATA+ s/c+ (ATAT + AA)}| Ein)

But eliminating F from the given equations, we find A(¢/s + s/c) = 2¢. Putting this into the last

equation
2
0 = (Emin| {{ATA +s/c+ (ATAT + AA)} | Erin )

Multiplying through by A/2 this becomes
0 = (Emin|{H + s\/2¢}|Emin)
80 Emin = —sA/2¢. Finally, = s/c satisfies the quadratic
2
9 € B € €
Also from the above E = € — Az so the general eigenenergy is

E, = Enin +nE = —3X\z + ne —nAz =ne — (n+ )z =ne — (n+ 3) (e:l: 62—/\2)
=—2eF(n+iHve -\

We have to choose the plus sign in order to achieve consistency with our previously established value

of Fnin; thus finally
E, = _%E‘F(H‘F %)\/62—)\2

4.2*  Show that the vector product a X b of two classical vectors transforms like a vector under
rotations. Hint: A rotation matrix R satisfies the relations R - RT = I and det(R) = 1, which in

tensor notation read Zp RipRyp = 644 and Zijk €ijkRirRjs Rkt = €rst.



4

Soln: Let the rotated vectors be a’ = Ra and b’ = Rb. Then
(@' xb'); = Z €k Rj101 Rim b,
Jklm

= Z Oit€tik Rji Rigm by

tjklm

= > RipRupejnRjRimaibn,

ptjklm

= Ripepimaiby, = (Ra x b);.

plm

4.3  We have shown that [v;, J;] = 1), €rvr for any operator whose components v; form a
vector. The expectation value of this operator relation in any state |v) Is then (Y|[v;, J;]|¢) =
1>, €iji (Y|v|). Check that with U(c) = e~ '*7 this relation is consistent under a further rotation
|) = ") = U(a)|v) by evaluating both sides separately.

Soln: Under the further rotation the LHS — (|UT [v;, J;]U|1). Now

Utlvi, J)U = Ul ;U — Ut J0,U = (U, U)UTJ;U) — (U U) (U U)
= Z[Rikvk, R J)) = ZRikle [Vk, J1].
kl kl
Similar |¢)) — Ul¢) on the RHS yields
i) Rimeish (vm[v).
km

We now multiply each side by R;sR;; and sum over ¢ and j. On the LHS this operation yields
[vs, J¢]. On the right it yields

i Z Risttkaeijk <1/)|’Um|1/}> = IZ €stm <1/)|’Um|1/}>a
ijkm m
which is what our original equation would give for [v, Ji].
4.4* The matrix for rotating an ordinary vector by ¢ around the z-axis is
cos¢p —sing 0
R(¢) = | sing cos¢p 0 |. (4.1)
0 0 1
By considering the form taken by R for infinitesimal ¢ calculate from R the matrix J, that appears
in R(¢) = exp(—iTJ.¢). Introduce new coordinates uy = (—x+iy)/+/2, uz = z and uz = (x+1iy)//2.

Write down the matrix M that appears in u = M-x [where x = (x,y, z)] and show that it is unitary.
Then show that

J =M-7J, Mt (42)
is identical with S, in the set of spin-one Pauli analogues
1 0 1 0 1 0 —i 0 1 0 0
Se=—0|1 0 1], Sy=—701 0 -], S;=10 0 0 |. (4.3)
vZlo 1 0 vZlo 1 o0 00 -1

Write down the matrix J, whose exponential generates rotations around the x-axis, calculate J
by analogy with equation (4.2) and check that your result agrees with S, in the set (4.3). Explain
as fully as you can the meaning of these calculations.

Soln: For an infinitesimal rotation angle d¢ to first order in d¢ we have

1 —6¢ 0
1-iJ.00 =R(@G¢)=|dp 1 0
0 0 1



comparing coefficients of §¢ we find

0 -1 0
J.=i|l1 0 O
0 0 O
In components u = M - x reads
Ul 1 -1 i 0 x
U =— | 0 0 2
uz V2 1 i \{) Z

so M is the matrix above. We show that M is unitary by calculating the product MMT. Now we
have

-1 i 0 0 —i 0 -1 0 1
J.=i1 0 0 2 i 0 0 -i 0 i
i 0 0 0 0 2 0
-1 i 0 -1 0 -1 2 0 0
=110 V2 -i 0 i |]=3{00 0
1 i 0 0 0 0 00 -2
Similarly, we have
00 0
J.=il0 0 -1
01 0
SO
-1 i 0 00 0 -1 0 1
J.=3| 0 0 2 0 0 —i - 0 i
1 i 0 0 i 0 0 V2 0
-1 i 0 0 0 0 0 2 0
=3 0 0 2 0 —iy2 0]=2%3|v2 0 2
1 i 0 1 0 1 0 2 0

These results show that the only difference between the generators of rotations of ordinary 3d
vectors and the spin-1 representations of the angular-momentum operators, is that for conventional
vectors we use a different coordinate system than we do for spin-1 amplitudes. Apart from this, the
three amplitudes for the spin of a spin-1 particle to point in various directions are equivalent to the
components of a vector, and they transform among themselves when the particle is reoriented for
the same reason that the rotation of a vector changes its Cartesian components.

4.6 Show that if &« and 3 are non-parallel vectors, a is not invariant under the combined rotation
R(a)R(B). Hence show that
RY'(BR"(0)R(B)R(a)
is not the identity operation. Explain the physical significance of this result.
Soln: R(a)a = « because a rotation leaves its axis invariant. But the only vectors that are

invariant under R(8) are multiples of the rotation axis 3. So R(8)a is not parallel to c.
If RT(B)RT(a)R(B)R(ax) were the identity, we would have

R'(BRY(@)R(BR(@)a=a = R(AR(a)a=R(@R@Ba = R(B)a=R(x)(R(B)a)
which would imply that R(8)c is invariant under R(e). Consequently we would have R(B)a = a.
But this is true only if a is parallel to 3. So our original hypothesis that RT(3)RT (a)R(B)R(a) =1
is wrong. This demonstrates that when you rotate about two non-parallel axes and then do the
reverse rotations in the same order, you always finish with a non-trivial rotation.

4.7* In this problem you derive the wavefunction
(x|p) = P>/ (4.4)

of a state of well-defined momentum from the properties of the translation operator U(a). The state
|k) is one of well-defined momentum hk. How would you characterise the state |k’) = U(a)|k)? Show
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Figure 5.0 The real part of the wavefunction when a free particle of energy F is scattered by a classically forbidden
square barrier barrier (top) and a potential well (bottom). The upper panel is for a barrier of height Vo = E/0.7 and
half-width a such that 2mFEa?/h? = 1. The lower panel is for a well of depth Vo = £/0.2 and half-width a such that
2mEa?/h? = 9. In both panels (2mE/h?)1/2 = 40.
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that the wavefunctions of these states are related by uys(x) = e~ @ %y (x) and uy (x) = uk(x — a).
Hence obtain equation (4.4).
Soln: U(a)lk) is the result of translating a state of well-defined momentum by k. Moving to the
position representation

i (x) = (x|U(a)lk) = (k|U' (a)|x)" = (k|x — a)" = u(x — a)
Also . . .

(x|U(a)k) = (x|e”™P/"k) = e~ **(x[k) = e uy(x)

Putting these results together we have uy(x —a) = e ¥y (x). Setting a = x we find uk(x) =
e'® >3 (0), as required.
5.13* This problem is about the coupling of ammonia molecules to electromagnetic waves in an
ammonia maser. Let |+) be the state in which the N atom lies above the plane of the H atoms and
|—) be the state in which the N lies below the plane. Then when there is an oscillating electric field
€ coswt directed perpendicular to the plane of the hydrogen atoms, the Hamiltonian in the |+) basis

becomes .
I E 4 ¢€scoswt —A
o —-A E —gEscoswt | -

Transform this Hamiltonian from the |£) basis to the basis provided by the states of well-defined
parity |e) and |o) (where |e) = (|4+) + |—))/v/2, etc). Writing

[¥) = ac(t)e !/ e) + ao(t)e "/ o), (5.2)

(5.1)



show that the equations of motion of the expansion coefficients are

d(;le _ —ian(t) (ei(w—wo)t + e—i(w—i—wo)t)
da (5.3)
(;lto = —iQaq(t) (ei(w-i-wo)t i e—i(w—wo)t),

where Q = ¢€s/2h and wy = (E, — E,)/h. Explain why in the case of a maser the exponentials
involving w 4+ wq can be neglected so the equations of motion become

da, : da. .

©c _ 3 i(w—wo)t °O _ _j; —i(w—wo)t
g” iQa,(t)e ST iQae(t)e . (5.4)
Solve the equations by multiplying the first equation by e~'“~«0)t and differentiating the result.
Explain how the solution describes the decay of a population of molecules that are initially all in

the higher energy level. Compare your solution to the result of setting w = wq in (5.4).
Soln: We have

(elHle) = 5 (+] + (=D H (I+) +1-))
=5 (HH|+) + (= [H|=) + (<[ H[+) + (+]H]-))
=E-A=E.

(olHlo) = 5 (+| = (=D H (|+) = |-))
=5 (HH|+) + (= H|-) = (=|H[+) = (+]H]-))
=F+A=E,

(o[ Hle) = (e[Hlo) = 5 ((+| + (=) H (|+) — [-))
=5 (HH|+) = (= H|=) + (~|H|+) = (+]H]-))
= ¢€s cos(wt)
Now we use the TDSE to calculate the evolution of 1)) = ace™Fet/"|e) 4 ae 1ot/ |o):
9 . . . .
i % = ihace Bt/ e) + agBoe T et/ M o) + ihaoe 1 Et " 0) + ap Boe T ot/ 0)

= aee_iEet/hH|e> + aoe_iE"t/hH|0>
We now multiply through by first (e| and then (o|. After dividing through by some exponential
factors to simplify, we get
ihie + acBe = ae(e|H|e) + ae!Pe=EIt/R (o H|o)
ihie + a0 Ey = ace!Fe=PIt/M (6| He) 4 ao (0| H|o)
With the results derived above
ihae + acEe = acFEe + aoei(EC*EO)t/hqc‘:s cos(wt)
ihae + aoEo = acei(EO*EC)t/hqc‘:s cos(wt) + aoEo
After cancelling terms in each equation, we obtain the desired equations of motion on expressing
the cosines in terms of exponentials and using the new notation.
The exponential with frequency w +wy oscillates so rapidly that it effectively averages to zero,
so we can drop it. Multiplying the first eqn through by e~H(®~«0)t and differentiating gives
d
dt
The exponentials cancel leaving a homogeneous second-order o.d.e. with constant coefficients. Since
initially all molecules are in the higher-energy state |o), we have to solve subject to the boundary

(efi(wfwo)tdc) _ efi(wfwo)t [—i(w _ Wo)dc + dc] — _Q2acefi(w7wg)t
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. Figure 5.2 The symbols show the
ratio of the probability of reflection
to the probability of transmission
when particles move from z = —o0
in the potential (5.69) with energy
E = h?k?/2m and Vp = 0.7E. The
dotted line is the value obtained for
a step change in the potential
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condition a.(0) = 0. With a¢(0) = 1 we get from the original equations the second initial condition
ae(0) = —if2. For trial solution a, o< e®* the auxiliary eqn is

a? —i(w—w))a+9*=0 = a:%[i(w—wo):t\/—(w—wo)Q—élQﬂ = iwy

with w+ = 1 [(w —wp) £/ (w—wp)? + 492] When w =~ wy, these frequencies both lie close to .

From the condition a.(0) = 0, the required solution is a(t) o< (el“+! — el“-*) and the constant of
proportionality follows from the second initial condition, so finally

-0 , ,
alt) = (et — e (¥
(w—wop)? + 402
The probability oscillates between the odd and even states. First the oscillating field stimulates
emission of radiation and decay from |o) to |e). Later the field excites molecules in the ground state
to move back up to the first-excited state o).

If we solve the original equations (1) exactly on resonance (w = wy), the relevant solution is

ac(t) _ %(efiﬂt _ eiQt)

which is what our general solution () reduces to as w — wy.

)

5.15% Particles of mass m and momentum hk at x < —a move in the potential

0 for x < —a
V(z) = Vo { %[1 + sin(wz/2a)]  for |z| < a (5.5)
1 for x > a,

where V) < h2k2/2m. Numerically reproduce the reflection probabilities plotted in Figure 5.20 as
follows. Let 1; =1 (x;) be the value of the wavefunction at x; = jA, where A is a small increment
in the x coordinate. From the TISE show that
by = (2 = A%K* )41 — Yy, (5.6)

where k = \/2m(E — V')/h. Determine 1; at the two grid points with the largest values of x from
a suitable boundary condition, and use the recurrence relation (5.6) to determine 1; at all other
grid points. By matching the values of i) at the points with the smallest values of x to a sum of
sinusoidal waves, determine the probabilities required for the figure. Be sure to check the accuracy
of your code when Vy = 0, and in the general case explicitly check that your results are consistent
with equal fluxes of particles towards and away from the origin.

Equation (12.40) gives an analytical approximation for v in the case that there is negligible
reflection. Compute this approximate form of ¢ and compare it with your numerical results for
larger values of a.

Soln:
We discretise the TISE
K d%y R a1+ -1 — 2y
Temar TVYSEY Y T PV = By
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which readily yields the required recurrence relation. At the right-hand boundary we require a pure
outgoing wave, so ¢; = exp(ij KA) gives ¢ at the two last grid points. From the recurrence relation
we obtain v elsewhere. At the left boundary we solve for A1 and A_ the equations

At exp(i0kA) + A_ exp(—i0kA) = 9

Ay exp(ilkA) + A_exp(—ilkA) = 9
The transmission probability is (K/k)/|A+|?>. The code must reproduce the result of Problem 5.4
in the appropriate limit.
5.16* In this problem we obtain an analytic estimate of the energy difference between the even-

and odd-parity states of a double square well. Show that for large 0, coth @ — tanh § ~ 4e=2%. Next
letting 6k be the difference between the k values that solve

2 coth (/W2 — (ka)?) even parity
tan [rm — k(b — a)] LQ —-1= ( ) (5.7a)
(ka) tanh ( w2 — (k:a)z) odd parity,
where
2mVya?
W= hf (5.7b)

for given r in the odd- and even-parity cases, deduce that

(5™ ) oot Yo

~ —4exp [—2 w2 — (ka)ﬂ .

Hence show that when W > 1 the fractional difference between the energies of the ground and first
excited states is

OE _ —8a  _ow /imE/vo

7 = W(b—a)e . (5.9)
Soln: First

et et 14020 ]_e20 - - B

cothf — tanh = ol il 1_o¥ 13o ~ (1+2e720) — (1 —2e729) = 4¢=%
So when W > 1 the difference in the right side of the equations for k in the cases of even and odd
parity is small and we may estimate the difference in the left side by its derivative w.r.t. k times the
difference dk in the solutions. That is

— e — k(b — a)](b — )k, | (Z‘;; 14t — k(b — a)) LB o S

W2
Gayr — 1

In the case of interest the right side of the original equation is close to unity, so we can simplify the
last equation by using

tan [rm — k(b — a)] %—1:1

With the help of the identity s26 = 14 tan? @ we obtain the required relation. We now approximate
the left side for W > ka. This yields

w T (ha W2
E(b —a)0k ~ —4e W V1= (ka/W)? %)
Since E = h*k?/2m, §E/E = 20k/k and
» 2mFEa? h?
= X
iR 2mVpa?
The required relation follows when we use these relations in ($).

(ka/W)

= E/Vj.
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6.11* Show that when the density operator takes the form p = |)(¢)|, the expression Q = Tr Qp for
the expectation value of an observable can be reduced to (|Q|v). Explain the physical significance
of this result. For the given form of the density operator, show that the equation of motion of p

vields
6) (] = l)el where  |¢) =in 1L — iy (6.1)

Show from this equation that |¢) = a|y), where a is real. Hence determine the time evolution of |1))
given the at t = 0, |¢)) = |E) is an eigenket of H. Explain why p does not depend on the phase of
|t) and relate this fact to the presence of a in your solution for |i),t).

Soln:
Te(Qp) = Y (n|QI¥) (¥|n)
n
We choose a basis that |¢) is a member. Then there is only one non-vanishing term in the sum,
when |n) = |¢), and the right side reduces to (¥|Q|¢) as required. This result shows that density
operators recover standard experimental predictions when the system is in a pure state.
Differentiating the given p we have

dp _ 9l) oW 1
— =" —— =—(H — H
L= T8 )+ ) = o (HINw] — 1) (1)
Gathering the terms proportional to (1| on the left and those proportional to |¢)) on the right we
obtain the required expression. Now

[O) (Y] =)ol = [6){¥l) = |¢){d]9),
which establishes that |¢) o |¢)). We define a as the constant of proportionality. Using |¢) = a|t))
in |@)(¢| = |¢)($| we learn that a = a* so a is real.
Returning to the definition of |¢) we now have

Lol
h—r = (H —a)[).

This differs from the TDSE in having the term in a. If [¢)) is an eigenfunction of H, we find that its
time dependence is |¢,t) = |1, 0)e E=®/" pather than the expected result |¢),t) = [¢), 0)e 1EL/M,
We cannot determine a from the density-matrix formalism because p is invariant under the trans-
formation |¢) — e~X|y)), where y is any real number.

7.9* Repeat the analysis of Problem 7.8 for spin-one particles coming on filters aligned successively
along +z, 45° from z towards z [i.e. along (1,0,1)], and along x.

Use classical electromagnetic theory to determine the outcome in the case that the spin-one
particles were photons and the filters were Polaroid. Why do you get a different answer?
Soln: We adapt the calculation of Problem 7.8 by replacing the matrix for J, by that for n-J =
(Jo + J2)/+/2. So if now (a, b, c) is | + n) in the usual basis, we have

2—1/2

0 a a a —
2— /2
1 bl=10b = b¢

“Tar e
The normalisation yields b = %, soa = % /(2 —+/2) and the required probability is the square of this,
0.25/(6 — 4,/2) ~ 0.73. So the probability of getting through all three filters is + x (0.73)? ~ 0.177.
In electromagnetism just one of two polarisations gets through the first filter, so we must say
that a photon has a probability of half of passing the first filter. Then we resolve its £ field along the
direction of the second filter and find that the amplitude of £ falls by 1/4/2 on passing the second
filter, so half the energy and therefore photons that pass the first filter pass the second. Of these
just a half pass the third filter. Hence in total % = 0.125 of the photons get right through.
Although photons are spin-one particles, there are two major difference between the two cases.
Most obviously, polaroid selects for linear polarisation rather than circular polarisation, and a photon
with well-defined angular momentum is circularly polarised. The other difference is that a photon
can be in the state |+ z) or | — z) but not the state |0z), where the z-axis is parallel to the photon’s

O W=
= O Nl

2
_2—1/2
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motion. This fact arises because emag waves are transverse so they do not drive motion in the
direction of propagation k; an angular momentum vector perpendicular to k would require motion
along k. Our theory does not allow for this case because it is non-relativistic, whereas a photon,
having zero rest mass, is an inherently relativistic object; we cannot transform to a frame in which
a photon is at rest so all three directions would be equivalent.

7.13* Write a computer program that determines the amplitudes a., in

S
|Il;8,8> = Z am|85m>
m=—s
where n = (sinf,0,cosf) with 6 any angle and |n;s,s) is the ket that solves the equation (n -
S)|n; s, s) = s|n; s, s). Explain physically the nature of this state.
Use your a,, to evaluate the expectation values (S,) and <S§> for this state and hence show
that the rms fluctuation in measurements of S, will be \/s/2 cos@.
Soln: We use a routine tridiag() that computes the e-values and e-kets of a real symmetric
tri-diagonal matrix — the routine tqli() in Numerical Recipies by Press et al. is suitable.
#define J 100
#define NT 3
double tridiag(double*,double*,int,double*x)// evaluates & ekets of real,
// symmetric tridiagonal matrix
double alphap(int j,int m){
if (m>=j)return O;
return sqrt((double) (j*(j+1)-m*(m+1)));
}
double alpham(int j,int m){
if (m<=-j) return 0;
return sqrt((double) (j*(j+1)-m*(m-1)));
}
void expect(double *a,int j,double st){//evaluate <Sx> and <Sx?%>
double s1=0,s2=0;
for(int n=-j;n<=j;n++){
int nm2=n-2,nml=n-1,npl=n+1,np2=n+2;
if (nm2>=-j) s2+=alpham(j,n)*alpham(j,nml)x*a[nm2]*a[n];
if (np2<=j) s2+=alphap(j,n)*alphap(j,npl)*a[np2]*aln];
s2+=(alphap(j,nml)*alpham(j,n)+alpham(j,npl)*alphap(j,n))*pow(aln],2);
if (nm1>=-j) sil+=alpham(j,n)*al[nmil*a[n];
if (npl<=j) si+=alphap(j,n)*alnpll*aln];
}
slx=.5; s2%=.25;
printf ("%f %f %f %f\n",sl,j*st,s2,.5xj*(1-st*st)+pow(j*st,2));
}
int main(void){
double pi=acos(-1),thetalNT]={80,120,30};
double *D = new double[2*xJ+1];
double *E = new double[2%J+1];
double **Z = new doublex[2*J+1];//allocate storage for square matrix
for(int i=0; i<2*xJ+1; i++) Z[i] = new double[2*J+1];
for(int it=0; it<3; it++){
theta[it]=thetal[it]*pi/180;
double ct=cos(thetal[it]), st=sin(thetalit]);
for(int m=-J; m<=J; m++){
D[J+m]=m*ct;//diagonal elements of matrix
if (m>-J) E[J+m]=st*.5%alpham(J,m);//sub-diagonal elements
}
tridiag(D,E,2%J+1,Z);//finds evalues & ekets of tridiagonal matrix
int mm;
for(int i=0; i<2*J+1; i++){
if (fabs(D[i]-J)<.05) mm=i; // identify eket m=J
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expect(Z[mm]+J,J,st);

¥
}
7.14* We have that 9
Ly sz+iLy:el¢(89 +1c0t98—¢) (7.1)
From the Hermitian nature of L, = —i0/0¢ we infer that derivative operators are anti-Hermitian.

So using the rule (AB)" = BT AT on equation (7.1), we infer that

L_ = LL = (— 92 +18_¢C0t9) e i?,
This argument and the result it leads to is wrong. Obtain the correct result by integrating by parts
Jd0 sin® [d¢ (f*Lg), where f and g are arbitrary functions of @ and ¢. What is the fallacy in
the given argument?

Soln:

/d9 sin@/d¢(f*L+g) z/d9 s1n9/d¢f* i¢ (6—+1cot6‘g—¢)
=/d¢ei¢/d9 sinﬁf*%ﬂ/de cos@/d¢f"ei¢g—i
= /dgbei‘Zb ([sinof*g] —/degia(s'iggf*))

+i/d9 cosf ([f*ei¢g] —/dqsg(?(g;?)

The square brackets vanish so long f, g are periodic in ¢. Differentiating out the products we get

/dt? sin@/d¢(f*L+g) = —/d¢ei¢ (/dt? sin@g%‘f; +/d9 cos@gf*)
—1/(19 cos (/d¢ei¢g%g +i/d¢>ei¢’gf*>

The two integrals containing f*g cancel as required leaving us with

/d0 sin@/d¢(f*L+g) = —/d9 sin9/d¢gei¢ (%J;* i %ﬁ) = /d0 sine/dgbg(L,f)*

where

L_= —e_i‘i’(% —icot 9(%))

The fallacy is the proposition that /00 is anti-Hermitian: the inclusion of the factor sinf in the
integral prevents this being so.

7.15* By writing h*L? = (xxp) (xxp)= Zijklm €ijkTj Dk €ilmT1Pm Show that

RL? 1 ,
p? = = +ﬁ{(r-p)2—1hr-p}. (7.2)
By showing that p -+ — - p = —2ih/r, obtain r - p = rp, + ih. Hence obtain
h>L?

Give a physical interpretation of one over 2m times this equation.
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Soln: From the formula for the product of two epsilon symbols we have

K22 — Z (010km — 0jmOkl) L PETIPm

Jklm
= (;pra;pr — TpETiD;)-
jk
The first term is
D wiprripr = Y i@k + ek = Y @i (@ipr — 0ok )p
Jk Jk jk
=r2p? —ihr - p.

The second term is
ijpkifkpj = Z%‘(Ikpk - iﬁ)l’j
jk jk

= Z zj(pjrepr + 1hd ppr) — 3ih ijpj
Jk J
= (r-p)(r-p) - 2ih(r - p).
When these relations are substituted above, the required result follows.
Using the position representaion

in in -1 3 1
P —ipe—ihV- (/) = = vy = =S g, O 3, L
T T T T T

Using this relation and the definition of p,.
2ih
rpT:g(f'-p—l-p-f'): g (2f~p—%) =r-p-—ih

Substituting this into our expression for p? we have

, h’Ly 1 . - ; -
= =5 + = (rpy +i0)(rpy + 1) — ih(rp, + 7))

p 2

When we multiply out the bracket, we encounter rp,rp, = r2p? + rp,,r|p, = r?p2 — ilrp,. Now
when we clean up we find that all terms in the bracket that are proportional to h cancel and we
have desired result.

This equation divided by 2m expresses the kinetic energy as a sum of tangetial and radial KE.
7.20* Show that [J;, L;] = i), €1 Lr and [J;, L?] = 0 by eliminating L; using its definition
L =h 'x x p, and then using the commutators of J; with x and p.

Soln:
hlJi, L] = emlJi, vip] = ejra([Ji, zlpe + 2 Ji, pi])
= €t (i€ikmTmPl + €i1nTrPn) = 1(€rij€kmiTmPl + €1jkEMiTLPR)
= 1(01m0ji — 01i0jm)TmPi + 1(0j00ki — 05i0kn)TrPn
=i(x-pdij — x;pi + vip; — x - Pbij) = i(wip; — T;ps)
But

iheiji Ly = i€ijk€rimTiDm = 1€kij€rim@iPm = 1(80jm — Oimdji)xipm = i(zip; — x;p;)

7.21* In this problem you show that many matrix elements of the position operator x vanish when
states of well-defined [, m are used as basis states. These results will lead to selection rules for electric
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dipole radiation. First show that [L?, z;] = 1> €jin(Ljzk + axLj). Then show that L -x = 0 and
using this result derive

(L2, (L2, ai]] =1 ejin (Li[L? 2] + [L2, ax] L) = 2(Lx; + @i L?). (7.4)

jk
By squeezing this equation between angular-momentum eigenstates (I, m| and |I’,m’) show that
0={(8- 5" =208+ 6 }{l,mlzll',m),

where § = I(l+ 1) and 8’ = I'(l' + 1). By equating the factor in front of (I, m|x;|l';m’) to zero,
and treating the resulting equation as a quadratic equation for 3 given ', show that (I, m|x;|l', m’)

must vanish unless | +1' = 0 or l =1’ £ 1. Explain why the matrix element must also vanish when
I=1=0.

Soln:
SOIL3 @) = (LilLyj, @) + (L, 2] L) =1 ejin(Ljax + xxLy)
J J Jk
hL - x = Zéijkﬂfjpkilfi = Zéijk(ilfjﬂﬁipk + @ [pr, xi]) = Zfijk(xjxipk — iha;0k;)
ijk ijk ijk

Both terms on the right side of this expression involve >, €;;xSix where Sj;, = Si; so they vanish
by Problem 7.3. Hence x - L = 0 as in classical physics.

Now
[L2, [L2,CL'1‘]] = iZEjik[LQ, (Ljzy + 21 L)) = izejik(Lj [L2, xE] + [L2,.’L'k]Lj)
ik ik
= - Z €jik€tkm (Li{LiTm + TmLi} + {Li%m + TmLi}Lj)
Jjkim
== (jmbit — §j16im) (Li{ Lizm + Tm L1} + {Lizm + zm L1} L;)
Jjlm

==Y (L{Lix; +x;Li} + {Liw; + 25 Li} L — Li{ Ljwi + 2Ly} — {Ljmi + 2, L;} L)
i

= — Z(LjLifL'j + .’L‘jLiLj) — L2Ii — Z(Lj.%‘iLj + LjZCiLj) - IiL2
J J
where to obtain the last line we have identified occurrences of L - x and x - L. Now

Z LjLi,Tj = Z(LngLz + Lj [Ll, xj]) = lz Eijij,Tk
J J jk
Similarly, Ej x;L; Ly = izjk €jikxiL;. Moreover
Z Ljz;L; = Z([Lj,wi]l/j + ZCiLij) = izejikxkl/j + ZCZ'LQ
J J Jk
= Z(LJ [:Z?i, LJ] + LJLJ.’,EZ) = izeijijIk + L2I1‘
J Jk
Assembling these results we find

[L2, [LQ, Il]] = — IZ eijk[Lj7 .Ik] — L2I1‘ — IZ ejik[xk; LJ] — IiLQ — L2I1‘ — .IiL2
Jk Jk
= 2(L%z; + x; L)
as required. The relevant matrix element is
(Im|[L?, [L?, 2])|l'm/) = (Im|(L*L?x; — 2L%x; L + x; L*L*)|[I'm’) = 2(im|(L2x; + 2 L*)|I'm/)
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which implies
B2 (Im|a;|I'm/y — 26(Im|zi|l'm") 3" + (Im|zi|l'm") 3 = 28{m|z;|l'm’) + 2(Im|z;|I'm/) 5’

Taking out the common factor we obtain the required result.
The quadratic for 8(8’) is

B2 =208 +1)B+ B (F ~2)=0

B=p+1+/(B +1) 2—ﬁ’([3’—2 )=08+1+ /48 +1
=Vl + D)+ 12 V/A2+A+1=0U1U"+1)+1+£2U'+1)
=17+3'+2 or "=V
We now have two quadratic equations to solve
PHl—(7+3'+2)=0 = [1=3-1L£(2 +3)
P+i-(17-1=0 = 1=3-1£2'-1)]
Since [,1’ > 0, the only acceptable solutions are [ +1' = 0 and [ =1’ + 1 as required. However, when

I =1' = 0 the two states have the same (even) parity so the matrix element vanishes by the proof
given in eq (4.42) of the book.

7.22* Show that | excitations can be divided amongst the x, y or z oscillators of a three-dimensional
harmonic oscillator in (31+1)(I+1) ways. Verify in the case | = 4 that this agrees with the number
of states of well-defined angular momentum and the given energy.

Soln: If we assign n, of the [ excitations to the x oscillator, we can assign 0,1, ...,l—n, excitations
to the y oscillator [(I — ny + 1) possibilities], and the remaining excitations go to z. So the number
of ways is

SO

1 1
S=> (-n.+1)=>Y (I+1)- an—l—kl Hl+1)=01+1)(31+1)
nge=0 nge=0 ng=1
In the case of 4 excitations, the possible values of [ are 4, 2 and 0, so the number of states is
(2x4+1)+(2%x2+4+1)+1 =15, which is indeed equal to (4 +1) * (2+ 1).

7.23* Let ) (L4 1)
_|_
A = ip, — —I—mwr) . 7.5
= (i - (7.5)

be the ladder operator of the three-dimensional harmonic oscillator and |E, 1) be the stationary state
of the oscillator that has energy E and angular-momentum quantum number [. Show that if we
write Aj|E,l) = a_|F — hw,l 4+ 1), then a— = /L — I, where L is the angular-momentum quantum
number of a circular orbit of energy E. Show similarly that if A}L71|E, ) = ay|E + hw,l — 1), then
CYJ,_ = E — l + 2

Soln: Taking the mod-square of each side of 4;|E,l) = a_|E — fiw,l + 1) we find

o2 = (B, AT 44|, 1) = (. I| (ﬂ—m )) Bl)= 2 (1+3).

In the case | = £, |a_|? =0, so £ = (E/hw) — 2 and therefore |a_|> = £ — I as required. We can
choose the phase of a_ at our convenience.
Similarly
o} = (B A A B, 1) = (B II(A]y A + [Aia, ALDIE, 1)

H, H,— H_ E
=& ll( lwl (l+%)+#+l> By = —l+3=L—1+2

hw w
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7.24* Show that the probability distribution in radius of a particle that orbits in the three-
dimensional harmonic oscillator potential on a circular orbit with angular-momentum quantum
number | peaks at r/{ = \/2(l + 1), where

(=] —. (7.6)

Derive the corresponding classical result.
Soln: The radial wavefunctions of circular orbits are annihilated by A;, so A;|E,l) = 0. In the
position representation this is

0 1 I+1 r
(5—1—;—7—1—@)11(7&)—0

Using the integrating factor,

exp {/dr <—£ n #) } = r~Lexp (r?/40%) (7.7)

to solve the equation, we have u oc rle=""/4¢* | The radial distribution is P(r) oc 72|u|? = r2(+De=r"/2¢7,
Differentiating to find the maximum, we have
21+ )2+t — 22 — 0 = =20+ 1)Y%

For the classical result we have
mu? 9 IR

mrv=1h and — =mwr = r=v/w=
T

mrw
so r = (Ih/mw)'/? = (21)'/2¢ in agreement with the QM result when [ > 1.

7.25% A particle moves in the three-dimensional harmonic oscillator potential with the second
largest angular-momentum quantum number possible at its energy. Show that the radial wavefunc-
tion is

h

— wh =r/l with (=] 7.8
)e where x=r/{ wi =\ 5o (7.8)

20+1
x

U o ! (:v—

How many radial nodes does this wavefunction have?
Soln: From Problem 7.24 we have that the wavefunction of the circular orbit with angular mo-

mentum [ is (r|E,[) o rle—r2/46
(r|E + hw,1 — 1) o< (r|A]_, | E, 1)

9 1+1 r | —r?/40? g IR AR PRy
“(‘5‘ - +ﬁ> e T U Lt 720 C

_ Tleirz/uz (L _ 21 + 1) ~ xle712/4 (J: _ 20 + 1)
02 r T
This wavefunction clearly has one node at x = v/2[ + 1.

7.28" The interaction between neighbouring spin-half atoms in a crystal is described by the Hamil-

tonian ) (1) @)
H:K(S ST _ 487 -a)(8 'a)), (7.9)

a a’d

. So the required radial wavefunction is

where K is a constant, a is the separation of the atoms and S(1) is the first atom’s spin operator.
Explain what physical idea underlies this form of H. Show that S5 4 S§1)87§2) = %(Sil)S(_Q) +

S(,l)Sf)). Show that the mutual eigenkets of the total spin operators S? and S, are also eigenstates
of H and find the corresponding eigenvalues.

At time t = 0 particle 1 has its spin parallel to a, while the other particle’s spin is antiparallel
to a. Find the time required for both spins to reverse their orientations.
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Soln: This Hamiltonian recalls the mutual potential energy V' of two classical magnetic dipoles
19 that are separated by the vector a, which we can calculate by evaluating the magnetic field B
that the first dipole creates at the location of the second and then recognising that V' = —pu - B.

SPSE = (s 1isM) (83 —is@) = VR 4 (g2 4 (55?552
Similarly,
WP = g™ 4 g5 (552 _ 5152y
Adding these expressions we obtain the desired relation.
We choose to orient the z-axis along a. Then H becomes

K
H == (4(55% + 505%) + s — 35052). (7.10)

The eigenkets of S? and S, are the three spin-one kets |1, 1), |1,0) and |1, —1) and the single spin-zero
ket |0,0). We multiply each of these kets in turn by H:

K
HIL1) = B4+ = — (3805 + 50 sP) — 25052 [4)14)
K
- _%Hv 1>
which uses the fact that 5" |+) = 0. Similarly H|1, —1) = H|-)|-) = —(K/2a)|1, —1).

%<|+>|—> + 9+ = % (358 + D5 — 25D 5@ ) (4] =) + |-)+)
— e G+ (R + 1) = S L0)

where we have used Sy|—) = |+), etc. Finally

H10,0) = H5 (1) = 191 = Z= (H(525% + 505) 25050 (14)1-) = 1))

H[1,0) = H

K
=V (=z+3z) (D= = 1=)+) =0
The given initial condition
1
) =1+H)-) = %(IL(D +10,0)),

which is a superposition of two stationary states of energies that differ by K/a. By analogy with the
symmetrical-well problem, we argue that after time 7h/AFE = wha/K the particle spins will have
reversed.
8.10* A spherical potential well is defined by
0 forr<a
Vir) = { Vo otherwise,
where Vi > 0. Consider a stationary state with angular-momentum quantum number . By writing
the wavefunction 1(x) = R(r)Y]"(0,$) and using p> = p? + h>L?/r?, show that the state’s radial
wavefunction R(r) must satisfy
R: (A 1\? I+ 1)k
( + > R+ Q

om \dr ' r 2mr?

(8.1)

o R+V(r)R = ER. (8.2)

Show that in terms of S(r) = rR(r), this can be reduced to

d2s S  2m
—Z I+ 1)S + (B - =0. .
g2 )5+ -5 (E-V)S=0 (8.3)
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Assume that Vy > E > 0. For the casel = 0 write down solutions to this equation valid at (a) r < a
and (b) r > a. Ensure that R does not diverge at the origin. What conditions must S satisty at
r = a? Show that these conditions can be simultaneously satisfied if and only if a solution can be
found to kcot ka = —K, where h*k? = 2mE and h>K? = 2m(Vy — E). Show graphically that the
equation can only be solved when v/2mVya/h > w/2. Compare this result with that obtained for
the corresponding one-dimensional potential well.

The deuteron is a bound state of a proton and a neutron with zero angular momentum. Assume
that the strong force that binds them produces a sharp potential step of height V{y at interparticle
distance a = 2 x 10715 m. Determine in MeV the minimum value of Vy for the deuteron to exist.
Hint: remember to consider the dynamics of the reduced particle.

Soln: In the position representation p, = —ih(9/0r + r~1), so in this representation and for an
eigenfunction of L? we get the required form of E|E) = H|E) = (p*/2m + V)|E). Writing R = S/r
we have

d W\ po (4 1NS_1ds o /d 1\, /d 1)1dS _ 1d%S
dr r T \dr ) rdr dr r T \dr ) rdr rdr2

Inserting this into our TISE and multiplying through by r, we obtain the required expression.
When [ = 0 the equation reduces to either exponential decay or shm, so with the given condition

on E we have .
So({coskr or sinkr atr<a

Ae K7 atr >a
where k% = 2mE/h? and K2 = 2m(Vy — E)/h®. At r < a we must chose S  sinkr because we
require R = S/r to be finite at the origin. We require S and its first derivative to be continuous at
r = a, S0
sin(ka) = Ae K

kcos(ka) = —K Ae K@

= cot(ka) = —% =—/W?/(ka)? -1

with W = \/2mV0a2/h2. In a plot of each side against ka, the right side starts at —oo when ka = 0

and rises towards the x axis, where it terminates when ka = W. The left side starts at oo and
becomes negative when ka = 7 /2. There is a solution iff the right side has not already terminated,
ie. it W > 7/2.

We obtain the minimum value of Vg for W = (a/h)v/2mVy = 7/2, so

2h2 A 2
_ T RO o5 ey

Vi —
07 8ma? 4dmy,

where m 2~ $my, is the reduced mass of the proton.

8.13* From equation (8.50) show that I'+4 = /(I 4+ 4)? — 3 and that the increment A in I’ when

| is increased by one satisfies A2 + A(21' + 1) = 2(I + 1). By considering the amount by which the
solution of this equation changes when I’ changes from | as a result of  increasing from zero to a
small number, show that

26

412 -1
Explain the physical significance of this result.
Soln: The given eqn is a quadratic in I’
B —1+/1+4(l+1)—48
- 2

A=1+ +0(B%). (8.4)

4+ —1(l+1)+8=0 = I = U'+i=\/0+1)2-5, (85)

where we’ve chosen the root that makes I’ > 0.
Squaring up this equation, we have

432 =0+3°=8 = ('+A+3)"=0+3)7*-5
Taking the first eqn from the second yields
A2+ DA=(1+3)P2 -1+ 3)?=2(0+1)
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This is a quadratic equation for A, which is solved by A = 1 when I’ = [. We are interested in
the small change dA in this solution when I’ changes by a small amount §I’. Differentiating the
equation, we have

2A61
2A0A 4+ 2A681 + (21 + 1)6A = A=—_"7"
OA +2A00" 4 (21" +1)6 0 = o SATor 1
Into this we put A =1, !’ = [, and by binomial expansion of (8.5)
B
I —
e
and have finally
-2
5A = b

(20 +1)(20 + 3)
Eq (8.55) gives the energy of a circular orbit as
_ Z3e?

8mepao(l'(l) + k +1)2°
with k£ the number of nodes in the radial wavefunction. This differs from Rydberg’s formula in that
(I'(1)+k+1) is not an integer n. Crucially (1) + k does not stay the same if k in decreased by unity
and [ increased by unity — in fact these changes (which correspond to shifting to a more circular
orbit) cause I’(I) + k to increase slightly and therefore E to decrease slightly: on a more circular
orbit, the electron is more effectively screened from the nucleus. So in the presence of screening the
degeneracy in H under which at the same E there are states of different angular momentum is lifted
by screening.

E =

8.15* (a) A particle of mass m moves in a spherical potential V(r). Show that according to

classical mechanics
d 2 ﬂ de,

—(pxL)=m , 8.6

a P > Le) dr dt (8.6)
where L. = r X p is the classical angular-momentum vector and e, is the unit vector in the radial
direction. Hence show that when V(r) = —K/r, with K a constant, the Runge—Lenz vector

M. = p x L. — mKe, is a constant of motion. Deduce that M, lies in the orbital plane, and that
for an elliptical orbit it points from the centre of attraction to the pericentre of the orbit, while it
vanishes for a circular orbit.

(b) Show that in quantum mechanics (p x L)T —p x L = —2ip. Hence explain why in quantum
mechanics we take the Runge—Lenz vector operator to be

M = 1nN —mKe, where N=pxL—L x p. (8.7)

Explain why we can write down the commutation relation [L;, M;] =1, €1 M.
(c) Explain why [p*, N] = 0 and why [1/r,p x L] = [1/r, p] x L. Hence show that

1 1
[l/r,N]_l{T—3(r2p—xx~p)—(pr2—p-xx)r—3}. (8.8)
(d) Show that
1 1 T; T;
2 _ s Rt} 2.
[p ,eT]—lh{—(p;—i-;p) +Z(p]T3x+xT3p])}. (8.9)
J
e) Hence show that [H, M| = 0. What is the physical significance of this result?
Y g
(f) Show that (1) [Ml,L2] = iij Eijk(Mij + LjM]g), (11) [Ll,M2] = O, where M2 = Mg +

M; + M?2. What are the physical implications of these results?
(g) Show that

[Ni, Nj] = —4126ijup2Lu (8.10)

u
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and that

4ih
[Ny, (e,);] — [Ny, (er)i] = —— > eijely (8.11)
t
and hence that
[M;, Mj] = —2i*mH > €iju L. (8.12)
k
What physical implication does this equation have?
Soln: (a) Since L. is a constant of motion
d ) ov dv
E(pXLC):pXLC:—E XLC:—EQ’,«XLC, (813)
where we have used Hamilton’s equation p = —0H/Jx and 0r/0x = e,. Also
der _ wxe
dt "
where w = L./mr? is the particle’s instantaneous angular velocity. So e, x L, = —mr?w x e, =

—mpr?é,. Using this equation to eliminate e, x L. from (8.13), we find that when dV/dr = Kr?,
the right side becomes mKé,, which is a total time-derivative, and the invariance of M, follows.
Dotting M, with L. we find that M, is perpendicular to L. so it lies in the orbital plane. Also

M. +mKe, =p x (r xp) =p’r —p-rp.
Evaluating the right side at pericentre, where p - r = 0, we have
M. = (p°r — mK)e,.

In the case of a circular orbit, by centripetal balance p?/mr = K/r? and M = 0. At pericentre, the
particle is moving faster than the circular speed, so p? > mK/r and the coefficient of e,. is positive,
so M. points to pericentre.

(b) Since both p and L are Hermitian,

(Px L)l = enlpsLe)t =Y eijnLip;

jk jk
= Z €iji(pj Lk + [Lk, pj]) = Zézjk <ijk +iZ€kjmpm>
ik jk m

We want the Runge—Lenz vector to be a Hermitian operator, so we apply the principle that %(AB +
BA) is Hermitian even when [A, B] # 0 and write

M; =11 €jr(piLi + Lip;) — mKe, = 1h(p x L — L x p) — mKe,
jk
M is a (pseudo) vector operator, so its components have the standard commutation relations with
the components of L.
(c) p? is a scalar so it commutes with L, and of course it commutes with p, so it must commute
with both p x L and L X p. As a scalar 1/r commutes with L, so

i in
[1/r,px L] =[1/r,p] x L= —ﬁ[ﬁ,p] x L= X X L.

Similarly,

. 1
[1/r,L x p] = —ihL x X3
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Now
1 1 1
(xxL); = 7 Z €ijh€RlmTjT1Pm = T Z €ijh€mhTiT1Pm = - Z(5il5jm — 0im0j1)T;T1Pm
Jjkilm Jjklm jlm
= ﬁ(xix -p —’pi)
and
1 1 1
(Lxx); =2 > €ijkCiimTipmTy = 7 > €iki€iimTipmTy = 7 > (Okibim — Skm i) Tipm i
jklm jklm klm
1
=% Zk: (TrpiTr — TiPrTk) =7 Z PiTrTy + R0y — PrTiTr — ih0RiTk)
= ﬁ(pﬂﬂ —P'Xﬂﬁi)
Hence

[1/r,N]=[pxL,1/r]— [Lxp,1/r] = i{—ris(:zzix p—rpi)+ (pr* —p- x:z:l)r%} (8.14)

(d)
0%, (er)n] = [P* @n/r] = Z (0[P, xn /7] + [Djs Tn/7]D5)

:Z(pj[pj,ifn]/T+pj$n[pj71/7"]+[pjvxn]/ij+In[pj71/7"]pj)
. Oin z;  Oip T
= 1hz (—ijT + Py s = =+ :ch—;pj)
J
. .r
_1h{—( -+ pn) Z(pj 3xn+xn 3pj)}
J

(e)

P> K

HM]=|——-— in{pxL—-Lxp}—-mKe,
2 2
m T

The results we have in hand imply that when we expand this commutator, there are only two
non-zero terms, so

[HM] = —1K [p* e ] — hK[ .pxL-— L><p:|
. 1 1 T T 1 9 1
%1hK{(p;+;p) —;(pjT—;x—i—xT—;pj)—i-T—g(xx-p—r p)— (pr’—p- xx)Tg}

=0
This result shows: (i) that the eigenvalues of the M; are good quantum numbers — if the particle
starts in an eigenstate of M;, it will remain in that state; (ii) the unitary transformations U;(0) =
exp(—ifM;) are dynamical symmetries of a hydrogen atom. In particular, these operators turn
stationary states into other stationary states of the same energy.

(f) ()
(M;, L% = > [M;, L3] = > (M, L)L + Li[M;, L;]) =1 €iju(MiLj + L;My) # 0.
J J Jk
so we do not expect to know the total angular momentum when the atom is in an eigenstate of any
of the M;.
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(i) [Ls, M?] = Zj[Li,MJZ] = 1) €ije(MpMj + M;My) = 0, so there is a complete set of
mutual eigenstates of L2, L, and M2.

(2)
(P x L)i,pm| = Zeijk [Dj Lk, Pm] = Z €ijkDj | Lks Dm) = izﬁijkekmnpjpn = iZEkijEkmnpjpn

Jk Jjk jkn jkn
= 12(517715377, - 5zn5jm)pjpn = 1(p251m - plpm)
nj
Similarly [(L X p)i, pm] = —i(p?im — piPm), so we have shown that

[Ni, pm] = 21(p*Oim — PiPm)-
Moreover, since N is a vector, [N;, L] =1, €imnNp, S0

[Ni;Ns] = Zestu[Ni;ptLu - Ltpu] = Zestu{[Nivpt]Lu +pt[N17Lu] - [Nz;Lt]pu - Lt[Nupu]}

tu tu

- IZ estu{2(p25it - pzpt)Lu - 2Lt(p25zu - pzpu) + Z(eiunpth - eitnanu)}

n

tu
=2i Z 6siupQLu —2i Z 6stiLtp2 —2i Z Estu (plptLu - Ltplpu)
u t tu

+i E 6st’u,eiunptj\/vn —i E 6stueitn‘anpu

tun tun

= 212 €siu (p2Lu + Lup2) —2i Z Estu(piptLu - Ltpzpu)

tu

+ i Z(ésnéti - 6si6nt)pth - IZ(éunész - 6u165n)anu
tn

nw

=4y esiup Ly — 20 Y €stu(pipiLu — Lipipu) +1(piNs + Nopi) —i(p - N+ N - p)di;

u tu

=43 cuiup®Lu +i( = 2pi(p X L), + 2(L x p)ap;
+pi(Pp x L)s = pi(L x p)s + (p x L)sp; — (L x p)spz-) —i(p- N+ N-p)dis,

(8.15)
where we have used the fact that [p?, L,] = 0. We show that the terms with cross products sum to
zero by first ensuring that all terms with p; on the left contain p x L and all terms with p; on the
right contain L x p. We have to amend two terms to achieve this standardisation:

—pi(Lxp)s + (p x L)spi = Z €sjk (—piLjpk + pjLipi)

ik
= Z Esjk (_pi{pij + iz ijnpn} + {Lkpj + iz ijnpn}pi)
Jk n n

=pi(p x L)s — (L x p)sp;
(8.16)
The standardised sum of cross products in equation (8.15) is now

i( —2pi(p x L)s + 2(L x p)spi + pi(p x L)s + pi(p X L) — (L x p)spi — (L X p)spz-)

and is manifestly zero. The last term in (8.15) has to vanish because it alone is symmetric in is,
and it’s not hard to show that it does:

p - N+N-p= Zfijk (pi(ijk — Ljpr) + (pjLi — Ljpk)pi)
ijk
The first and last terms trivially vanish because they are symmetric in ¢j and ik,respectively. The
remaining terms can be written

- Z €ijeDiLipr + Z €ijkPi Lpi
ijk ki
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and they cancel.
Since e, = x/r and in (8.8) we already have [1/r,N] we prepare for calculating [N;,e,] by
calculating

[(p X L)ivxj] = Z eist[psLt; Ij] = Zeist(ps[Ltvxj] + [pswrj]Lt) = izeist( s Zetjnxn - hastt>

st st st n

= 1{2(61]6571 - 5in5.sj)psxn - hz Githt} = l(p . Xéij —Pj%; — h Z Eitht>
sn t t

Similarly
[(L X p)i, LL‘j] = —i (X P 5ij — Tipj — hz Githt)
t
SO

[Ni, ;] = i{(P X +x-p)i; — (pjmi +wip;) =20y ﬁz'tht}
t

Now we can compute
[Ni, (er);] = [Ni, 5 /7] = [Niy 5]/ + 25[N;, 1/7]
8 1 2n
1{(p x+x p)r (pjx +xpg)r . Et €ijt t}

+z[(p x L)i, 1/r] — 2;[(L x p);, 1/7]

. 0ij 1 2h
= 1{(p X+ X- p)TJ — (pjzi +wipj); - Zez'tht
t

T 1
+ r—;(xix-p—rzpi) —,Tj(pﬂ‘2 —p-xwi)r—3}

when we calculate [N, (e,);] — [N;, (e,);] all terms above that are symmetric in 75 and will vanish
and we find
. 1 4h
[Ni, (er);] = [Njs (er)i] =13 =(pjwi + wipj — piwj —ajpi)— = —= ) €ijeL

t

1 1 1
= —(agpi — wipj) = (2pi — ipj) — + (2P X0 — 2P - X&) 5

. 4h 1 1 1
= 1{—7 zt: €ijeLe — (pjai — pﬂj); - ;(iji —zip;) + (z;p X — ;P X'rj)r_g}
(8.17)
Now
inpkxkxj = in(xjpk —ihdk)xR = inxjpkxk —ihxix; = ij (prxi + 1hok; ) xk — ihax;
k k k k

= E TjPLLET;
k

so the terms with dot products in (8.17) cancel. Finally [1/r,p;] = —ihaz; /73 so
1 ) . 1
—(@pi = wip;) = @ (pi/r — thai /1) — wip; /1 — iha;/r?) = (w9 — wip;)
so the terms with factors 1/r in (8.17) cancel and we are left with
4ih
[Ni, (er);] = [Nj, (er)i] = === D €ijeLe (8.18)
t
From the definition of M we have
[Mi, MJ] = [%fLNl — mK(er)i, %fLNl - mK(eT)Z-] = %h2[Ni, N]] — %mKh([NZ, (er)j] + [(eT)i, N]])
= $P?[Ni, Nj] — §mKR([N;, (e,);] — [N, (e )i]).
since the components of e commute with each other. We obtain the required result on substituting
from equations (8.10) and (8.11).
A physical consequence of (8.12) is that we will not normally be able to know the values of
more than one component of M — but we can in the exceptional case of completely radial orbits

(L2[¢) = 0).
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10.8* The Hamiltonian of a two-state system can be written

o A1 + B16 B2€
H= ( Bye A ) , (10.1)

where all quantities are real and € is a small parameter. To first order in €, what are the allowed
energies in the cases (a) Ay # As, and (b) A1 = As?

Obtain the exact eigenvalues and recover the results of perturbation theory by expanding in
powers of €.
Soln: When A4; # As, the eigenvectors of Hy are (1,0) and (0, 1) so to first-order in € the perturbed
energies are the diagonal elements of H, namely A; + Bie and As.

When A; = As the unperturbed Hamiltonian is degenerate and degenerate perturbation theory
applies: we diagonalise the perturbation

- Bie Bye\  (By Bs
L= BQE 0 - Bg 0
The eigenvalues A of the last matrix satisfy

N -BIA-B5=0 = A:%(Bli\/B%HBg)

and the perturbed energies are

A1+)\6=A1+%Blei%\/35+4336

Solving for the exact eigenvalues of the given matrix we find

A= %(Al + As + Ble) + %\/(Al + Ag + B1€)2 — 4A2(A1 + Blﬁ) + 4B2€2
= L(A1 + A2 + Bio) £ §1/(4y — 49)2 + 2(A) — Ay)Bie + (B} + 4B)e?

If A; = A, this simplifies to
A=Ay + 3Bie++3,/ B} +4Bje
in agreement with perturbation theory. If A; # Ay we expand the radical to first order in €
B
A= %(Al —I—A2+B1€) %(Al AQ) €+O(€2)
A1 Az

o Al + B1€ lf +
| As if —

again in agreement with perturbation theory

10.9* For the P states of hydrogen, obtain the shift in energy caused by a weak magnetic field
(a) by evaluating the Landé g factor, and (b) by use equation (10.28) and the Clebsch—Gordan
coeflicients calculated in §7.6.2.

Soln: (a) From/=1and s = % we can construct j = 5 and 5 so we have to evaluate two values

of g. When j =3, j(j +1) = 15/4, and when j = 3, j (j +1)=3/4,s0

— S 4 r':§
5 _ L+ 1) (S+1>—{§ for j :
3 2

gL =

2 iG+1) for j =
So
2 forjzﬁ,m:%
Es/(unB) = mgy = § 2 forj = Sm =1
g forj=35,m=3

with the values for negative m being minus the values for positive m
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e Xy Figure 10.3 The relation of input

and output vectors of a 2 x 2 Hermi-

~ tian matrix with positive eigenvalues
A1 > A2. An input vector (X,Y) on
the unit circle produces the output
vector (x,y) that lies on the ellipse
that has the eigenvalues as semi-
axes.

(b) We have |3, 3) = [+)[11) so (3, 5]S:153) = 5 and Ep/(upB) = m+ ($|S:|¢) = 5 + 5 =2
in agreement with the Landé factor. Similarly

0 =IO 300 > G SR =3-D+3=1
so Ep/(usB) = 1 + § = 2 Finally

%% ﬁ—m VIR0 = (L HSIL D = 3-h + 3 =4
so Ep/(usB) = 6 3

10.12* Show that with the trial wavefunction v(z) = (a® + 2?)~2 the variational principle yields
an upper limit Ey < (1/7/5)hw ~ 0.529 iw on the ground-state energy of the harmonic oscillator.
Soln: We set x = atanf and have

o0 /2 /2
[ sl =a T [ avcoto—a T [ a0 30+ cos20))?
0 0 0

/2
= %aq/o df (1 + 3cos20 + 3cos® 20 + cos®20) = La "in(1+ 3) = Sma "

where we have used the facts (i) that an odd power of a cosine averages to zero over (0,7) and (ii)
that cos? @ has average value % over this interval.
Similarly

00 /2 /2
/ dx 2?[]? = a*5/ df cos* fsin® § = a75/ d6 (1 + cos 20) sin® 26
0 0 0

/2
=1a"" / df (sin® 20 + cos 20 sin”20) = ta~°(im + &[sin® 260]) = L7wa~"
0
and )
(zlpl) = —ihm%
0

0o /2 /2
/ dz |py|? = 16h2a_9/ df cos® fsin® 6 = 16h2a_9/ d6 £(1 + cos26)1 sin* 26
0 0 0
/2 /2
— %h2a9< / df (sin® 260 + 3 cos? 26 sin? 20) + / df cos26(3 + 1 — sin? 29))
0 0

= %h2a79 (%w(l +3)+ {3 sin® 26 — L. sm5 29}) = 3—72h27m79
Hence

7 5209 1,21 -5 2
3z a 7T/2m—|— sMwzsa" °T h _
(H) = 32 32 =—Ia7% + Hmw?a?
Za 2m
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_O(H) h27 )
0= % ———5 34 mwa
ho\? V7
4: _ = 1/4 2 :—h
a 7<mw) = a=7T'%/2¢ (H) 3 w

10.14* Using the result proved in Problem 10.13, show that the trial wavefunction v, = e’/

yields —8/(3m)R as an estimate of hydrogen’s ground-state energy, where R is the Rydberg constant.
Soln: With ¢ = e=""*/2 dyp/dr = —b?re=¥"7"/2 g0

h2b4 4 —p2p2 62 2 _p2p2
(H) = <—2m /drr 47T60 drre /drr
h? 2 2 2
Gy dz ze 47T€0b2 d:C Te b3 dz z2e

Now

SRPE S
dr e = e_2 ] = %
L 0
- eixz 50 \/
—z? €z 1 7127 7T
L 0
[ 3 —x2 o
3
/dx:ve”” xiz +/dxwe1:$
L 0
SO

() = < h? 3/ e? 1) v 3h%b? e?b

2mb 8  dmegh?? 463 T 4m 273/2¢

At the stationary point of (H) b = me?/(373/?eoh?). Plugging this into (H) we find

(H) = 3h% m2et e? me? . 8m e\’ 8
~ 4m 97T3€%h4 2m3/2¢g 373/2¢gh? 3w 2 \4mey) 3w
10.18* A particle of mass m is initially trapped by the well with potential V(z) = —Vjo(x),

where Vs > 0. From t = 0 it is disturbed by the time-dependent potential v(x,t) = —Fxe %!, Its
subsequent wavefunction can be written

[v) = a(t)e Eot/|0) 4 /dk {br(t)|E, ) + cx(t)|k,0)} e EE/R, (10.2)

where Ej is the energy of the bound state |0) and Ej, = h*k?/2m and |k, ) and |k, 0) are, respectively
the even- and odd-parity states of energy E}, (see Problem 5.17). Obtain the equations of motion

in {a|o>eiE°t/ﬁ + /dk <6k|k,e> + ek, o>) eiEkt/ﬁ}
= {a|0)e_iE°t/h + /dk (brlk,e) + ck|k, 0)) e_iE’“t/h} .

Given that the free states are normalised such that (k' olk,o) = §(k — k'), show that to first order
inwv, by =0 for all t, and that

(10.3)

; in(Qxt/2 E,—FE
it /2 %’;2/)7 where ), = % W, (10.4)
Hence show that at late times the probability that the particle has become free is
2rmE%t |(k,o|z|0)]?
Py (t) =

iF
ck(t) = - (k,ol|x|0) e

(10.5)

Q=0
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Given that from Problem 5.17 we have

(x|0) = VKe K17l where K = mVs

1
- and (z|k,o0) = — sin(kx), (10.6)

N

(k, o|z]|0) = @% (10.7)

Hence show that the probability of becoming free is

Pult) = 8hE?%t  \/FE:/|FEo| (10.8)
. mE3 (1+ Et/|Eo)*’ '

where Ey > 0 is the final energy. Check that this expression for Py is dimensionless and give a
physical explanation of the general form of the energy-dependence of P (t)
Soln: When we substitute the given expansion of |¢) in stationary states of the unperturbed Hamil-
tonian Hj into the TISE, the terms generated by differentiating the exponentials in time cancel on
Hyl). The given expression contains the surviving terms, namely the derivatives of the amplitudes
a, by and ¢ on the left and on the right v|¢). In the first order approximation we put a = 1 and
bi, = ¢ = 0 on the right. Then we bra through with (k’,e| and (k’, o| and exploit the orthonormality
of the stationary states to obtain equations for 5k(t) and ¢k (t). The equation for by, is proportional
to the matrix element (k, e|v|0), which vanishes by parity because v is an odd-parity operator. Then
we replace v by —xFe™“! and have

show that

t : t : i)t
F . , F Kt 1
e (t) :/0 dt’ ¢, = 1€<k,o|:1c|0>/0 dt’ ell(Er—Eo)/h—w]t’” _ 1€</€,o|gc|0)e o
ir . sin(Qxt/2)
_ k 0 Ith/Q .
ﬁ< 7O|‘T| >e Qk/2
The probability that the particle is free is
F? sin?(Qpt/2)
Py(t) = [ dk|ex|* = — [ dk|(k 0))? L2
O e e B

As t — oo we have sin? xt/z? — 7td(x), so at large t

F2

F? |{k,ol|x|0)|?nt
Palt) = — /dk (8, of]0) rts (2 /2) = Lo Lk olzl0) e

B2 d(Q/2)/dk

Moreover, Q; = 37ik*/m + constant, so d€2, /dk = Tik/m and therefore
2rmF2t |(k,o|x|0)|?
Pty - % o))
h Q=0

Evaluating (k,o|x|0) in the position representation, we have

©  sink [K1 [~ : ~
(k. olal0) 2/ e SET ek g __./ du o (e(lkfx)z _ ef(lkJrK)ac)
0 \/ﬂ- T 21 0

- _i\/§ <(ik—1K)2 N (ik+1K)2> - @%

The probability of becoming free is therefore
Pu(t) = 27TmF2t5 16kK? _ 32mF2t k/K

r BE 7 (k2 + K2) WBKY (k2/K2 + 1)
The req2uired result follows when we substitute into the above k?/K? = E;/|Eo| and h*K? =
(2mE0) .

Q=0

(10.9)
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Regarding dimensions, [F] = E/L and [h]| = ET, so
(E/L)’ETT B ET? B ML*T—27?

ME?2  ML*  ML>

P (t) is small for small F because at such energies the free state, which always has a node at

the location of the well, has a long wavelength, so it is practically zero throughout the region of scale
2/ K within which the bound particle is trapped. Consequently for small E the coupling between the
bound and free state is small. At high F the wavelength of the free state is much smaller than 2/K
and the positive and negative contributions from neighbouring half cycles of the free state nearly
cancel, so again the coupling between the bound and free states is small. The coupling is most
effective when the wavelength of the free state is just a bit smaller than the size of the bound state.

[Pfr] =

10.19* A particle travelling with momentum p = hk > 0 from —oo encounters the steep-sided
potential well V(x) = —Vy < 0 for |z| < a. Use the Fermi golden rule to show that the probability
that a particle will be reflected by the well is

2

Vi .
Preflect =~ 4—E02 51n2(2ka),

where E = p?/2m. Show that in the limit E > V; this result is consistent with the exact reflection
probability derived in Problem 5.10. Hint: adopt periodic boundary conditions so the wavefunctions
of the in and out states can be normalised.

Soln: We consider a length L of the z axis where L > a and k = 2nw/L, where n > 1 is an
integer. Then correctly normalised wavefunctions of the in and out states are

win(w)=ﬁe“” ; wout(x):%e_ilm

The required matrix element is

1 L/2 ) . o . .
_/ dz elkzv(:zr)elkx _ —VO/ do e2ike — —VOM

L —L/2 —a Lk
so the rate of transitions from the in to the out state is
2 21 ,sin?(2ka)

. T . 2
P = ZgE)lout|Vin) = o)V

Now we need the density of states g(E). E = p?/2m = h?k?/2m is just kinetic energy. Eliminating
k in favour of n, we have

L
n=——V2mkE
2mh

As n increases by one, we get one extra state to scatter into, so

_dn L 2m
9748 ~ =\ B
Substituting this value into our scattering rate we find
. V@ [2msin®(2ka)
Cop?\V E Lk?
This vanishes as L — oo because the fraction of the available space that is occupied by the scattering
potential is ~ 1/L. If it is not scattered, the particle covers distance L in a time 7 = L/v =
L/+/2E/m. So the probability that it is scattered on a single encounter is
_ V@msin®(2ka) V@

2
T=SE e 1ER sin”(2ka)
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Equation (5.78) gives the reflection probability as
(K/k —k/K)?sin®(2Ka)
(K/k+ k/K)2sin?(2Ka) + 4 cos?(2Ka)

When Vy < E, K2 — k? = 2mVy/h? < k2, so we approximate Ka with ka and, using K/k ~ 1 in
the denominator, the reflection probability becomes

K2 - k%) 2mVp \ 2 Ve
P~ (W) sin?(2ka) ~ (%) sin?(2ka) = 4—52 sin?(2ka),
which agrees with the value we obtained from Fermi’s rule.

10.20* Show that the number of states g(E) dE d*Q with energy in (E, E + dE) and momentum

in the solid angle d?§Q) around p = hik of a particle of mass m that moves freely subject to periodic
boundary conditions on the walls of a cubical box of side length L is

L\ 3 m3/2
g(E)dE d*Q = (2—> 3 V2EdE dO?. (10.10)
™

Hence show from Fermi’s golden rule that the cross-section for elastic scattering of such particles by
a weak potential V (x) from momentum hk into the solid angle d*Q around momentum hk’ is

2 . ) 2
/ d3x ik )'xV(x)

do = — 4’0
(2m)%h
Explain in what sense the potential has to be ‘weak’ for this Born approximation to the scattering
cross-section to be valid.
Soln: We have k, = 2n,m/L, where n, is an integer, and similarly for k,,k,. So each state
occupies volume (27/L)? in k-space. So the number of states in the volume element k? dkd?(Q is
L
g(E)dEd*Q = <2—

™

(10.11)

3
> k* dkd*Q

Using k? = 2mE/ % to eliminate k& we obtain the required expression.

In Fermi’s formula we must replace g(E) dE by g(FE) dE d?Q because this is the density of states
that will make our detector ping if d2() is its angular resolution. Then the probability per unit time
of pinging is

. 2r ) e 2m (LN’ 5 dk 2
P= ﬁg(E)d Ql{owt|V|in)|* = = (27r> k dEd Ql{out|V]in}|

The matrix element is .
(out|V|in) = T3 /d3xe_ik/'xV(x)eik'X

Now the cross section do is defined by P = do x incoming flux = (v/L?)do = (hk/mL?)do. Putting
everything together, we find

hk 1 o o |Per /£ LN? ., dk
do = — d3 —ik XV ikx| 2% [~ k2 _d2Q
mL3 7 T L6 / xe (x)e n o\ 2x dE
kdk/dE - . 2
= do= % ’/d?’xelk 'xV(x)elk'x
(27)2h

Eliminating k with A%k dk = mdE we obtain the desired expression.

The Born approximation is valid providing the unperturbed wavefunction is a reasonable ap-
proximation to the true wavefunction throughout the scattering potential. That is, we must be able
to neglect “shadowing” by the scattering potential.
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11.4* In terms of the position vectors X,,, X1 and Xs of the a particle and two electrons, the centre
of mass and relative coordinates of a helium atom are
MaXa + Me(X1 + X2)

X = , T1=%x1 — X, ros=%xs— X, (11.1)
my
where m; = my, + 2me. Write the atom’s potential energy operator in terms of the r;.
Show that
0 _0 0 0
X 9%, Oxy Oxs (11.2)
9 _9 md 0 _ 0 me 9 '
dr;  0x1  my 0%, Ora  Oxa Mg 0Xg
and hence that the kinetic energy operator of the helium atom can be written
h? 9* B9 92 oo oy
K=—-—roem-climstass) 7 |~ ) (11.3)
2m, 0X2  2u \Ori  Ors 2m: \0x1  Oxg

where p = me(1 4+ 2me/my). What is the physical interpretation of the third term on the right?
Explain why it is reasonable to neglect this term.
Soln: We have from the definitions
X1:X—|—I'1 x2:X+r2
1

1
Xa =0 (M X —me(x1 +%2)) = Me (m:X —me(2X + 11+ 12))

=X - E(1‘1 —l—I‘g)

«
Directly computing the differences x; — X, etc, one finds easily that

e? 2 2 1
" e <|r1 T (me/ma) (1 + )] s+ (me/ma) (1 +2)] i — r2|) '
By the chain rule
0 O0xa 0 Oxi 0 Oxa O 9 0 0
OX ~ X Oxa 0K Oxi | 0K Ox;  Oxa  Oxi | O
as required. Similarly

0 ox, O ox; 0 = me O 0

Ir;  Ory Ox, | Ot Oxi maOxa | Ox1

and similarly for 0/0rs. Squaring these expressions, we have

8_2—8_24_21 i_Fi + i_Fi ’
0X2  0x2 0X, \Ox1  0Xo 0x1 0Oxg

9? B m?2 92 me 02 0?
or?  m2 0x2 Mme 0x10%,  OX3
9? B m?2 92 me 02 n 0?
or3  m2 0x2 Me 0%20%,  OX3

If we add the first of these eqns to m/me times the sum of the other two, the mixed derivatives in
X, cancel and we are left with

9?2 My [ 02 ? me\ 02 Me 0?2 0?2 H?
ar e (et am) = (1ol o (00 0) (G 50) 2
Dividing through by m; we obtain
1 02 Mg 0? 0? 1 02 1 M 0? 0? 2 92
oo e (o aw2) ~ oo o (U ) (5 5) e mam
After multiplication by —h? /2 the first term on the right and the unity part of the second term
constitute the atom’s KE operator. So we transfer the remaining terms to the left side and have the
stated result.
The final term in K must represent the kinetic energy that the a-particle has as it moves around
the centre of mass in reflex to the faster motion of the electrons. It will be smaller than the double

derivatives with respect to r; by at least a factor me/m,. (Classically we’d expect the velocities to
be smaller by this factor and therefore the kinetic energies to be in the ratio m2/m?.)
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11.7* Assume that a LiH molecule comprises a Li™ ion electrostatically bound to an H™ ion, and
that in the molecule’s ground state the kinetic energies of the ions can be neglected. Let the centres
of the two ions be separated by a distance b and calculate the resulting electrostatic binding energy
under the assumption that they attract like point charges. Given that the ionisation energy of Li
is 0.40R and using the result of Problem 11.6, show that the molecule has less energy than that of
well separated hydrogen and lithium atoms for b < 4.4ag. Does this calculation suggest that LiH is
a stable molecule? Is it safe to neglect the kinetic energies of the ions within the molecule?

Soln: When the LI and H are well separated, the energy required to strip an electron from the Li
and park it on the H™ is E = (0.4 + 1 — 0.955)R = 0.445R. Now we recover some of this energy
by letting the Lit and H~ fall towards each other. When they have reached distance b the energy

released is )

€ ap
= R—
4menb b
This energy equals our original outlay when b = (2/0.445)ag = 4.49a0, which establishes the required

proposition.

In LiH the Li-H separation will be < 2aq, because only at a radius of this order will the electron
clouds of the two ions generate sufficient repulsion to balance the electrostatic attraction we have
been calculating. At this separation the energy will be decidedly less than that of isolated Li and
H, so yes the molecule will be stable.

In its ground state the molecule will have zero angular momentum, so there is no rotational
kinetic energy to worry about. However the length of the Li-H bond will oscillate around its equi-
librium value, roughly as a harmonic oscillator, so there will be zero-point energy. However, this
energy will suffice only to extend the bond length by a fraction of its equilibrium value, so it does
not endanger the stability of the molecule.

11.8* Two spin-one gyros are in a box. Express the states |j,m) in which the box has definite
angular momentum as linear combinations of the states |1, m)|1,m’) in which the individual gyros
have definite angular momentum. Hence show that

1
10,0) = %(IL —1)I1,1) = [1,0)|1,0) + |1, 1)[1, —1)). (11.4)
By considering the symmetries of your expressions, explain why the ground state of carbon hasl =1
rather than | = 2 or 0. What is the total spin angular momentum of a C atom?
Soln: We have that J_|2,2) = 2|2,1), J_|2,1) = /6|2,0), J_|1,1) = /2|1,0), J_|1,0) = /2|1, —1).
We start from
12,2) = |1,1)|1,1)
and apply J_ to both sides, obtaining
1

212,1) = /2(|1,0)|1,1) + |1, 1)[1,0)) = |2,1) 7

(11,0)[1,1) +[1,1)[1,0))
Applying J_ again we find

1
Next we identify |1,1) as the linear combination of |1,1)|1,0) and |1,0)|1,1) that’s orthogonal to
|2,1). Tt clearly is
1

|17 1> = \/2

We obtain |1, 0) by applying J_ to this

1
|170> = 5

\/2(|17 _1>|1a 1> - |1a 1>|1a _1>)

and applying J_ again we have

|17_1>: (|17_1>|170>_|170>|17_1>)

1
V2
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Finally we have that |0, 0) is the linear combination of |1, —1)|1,1), |1,1)|1,—1) and |1,0)|1,0) that’s
orthogonal to both |2,0) and |1,0). By inspection it’s the given expression.

The kets for j = 2 and j = 0 are symmetric under interchange of the m values of the gyros,
while that for j = 1 is antisymmetric under interchange. Carbon has two valence electrons both in
an | = 1 state, so each electron maps to a gyro and the box to the atom. When the atom is in the
|1,1) state, for example, from the above the part of the wavefunction that described the locations
of the two valence electrons is

<X1,X2|1, 1> = %“Xl'lv O><X2|17 1> - <X1|17 1><X2|17 0>)
This function is antisymmetric in its arguments so vanishes when x; = x2. Hence in this state of
the atom, the electrons do a good job of keeping out of each other’s way and we can expect the
electron-electron repulsion to make this state (and the other two I = 1 states) lower-lying than the
Il =2 or [ = 0 states, which lead to wavefunctions that are symmetric functions of x; and xs.
Since the wavefunction has to be antisymmetric overall, for the [ = 1 state it must be symmetric
in the spins of the electrons, so the total spin has to be 1.

11.9* Suppose we have three spin-one gyros in a box. Express the state |0,0) of the box in which
it has no angular momentum as a linear combination of the states |1, m)|1,m’)|1,m") in which the
individual gyros have well-defined angular momenta. Hint: start with just two gyros in the box,
giving states |j, m) of the box, and argue that only for a single value of j will it be possible to get
|0,0) by adding the third gyro; use results from Problem 11.8.

Explain the relevance of your result to the fact that the ground state of nitrogen has [ = 0.
Deduce the value of the total electron spin of an N atom.
Soln: Since when we add gyros with spins j; and js the resulting j satisfies |j1 — j2| < j < j1 + jo,
we will be able to construct the state |0,0) on adding the third gyro to the box, only if the box has
j =1 before adding the last gyro. From Problem 11.8 we have that

1
where we can consider the first ket in each product is for the combination of 2 gyros and the second
ket is for the third gyro. We use Problem 11.8 again to express the kets of the 2-gyro box as linear
combinations of the kets of individual gyros:

0.0 = (5 (1-DIL0) = 1LOIL ~D)11.1) = 5 (L ~DIL1) = [1 )1, -1)[L.0)

1
+ (LD = 1L DL, —1>>,
_ 1
~ 6
111 =DIL0) + [1L0)|L, D]1,0) — [1. DIL0)[1,0))

This state is totally antisymmetric under exchange of the m values of the gyros.

When we interpret the gyros as electrons and move to the position representation we find that
the wavefunction of the valence electrons is a totally antisymmetric function of their coordinates,
X1,X2,X3. Hence the electrons do an excellent job of keeping out of each other’s way, and this will
be the ground state. To be totally antisymmetric overall, the state must be symmetric in the spin
labels of the electrons, so the spin states will be |4+)|+)|+) and the states obtained from this by
application of J_. Thus the total spin will be s = %
11.10* Consider a system made of three spin-half particles with individual spin states |+). Write
down a linear combination of states such as |+)|+)|—) (with two spins up and one down) that is
symmetric under any exchange of spin eigenvalues +. Write down three other totally symmetric
states and say what total spin your states correspond to.

Show that it is not possible to construct a linear combination of products of |+) which is totally
antisymmetric.

What consequences do these results have for the structure of atoms such as nitrogen that have
three valence electrons?

(|1, —1)[1,0)|1,1) — |1,0)|1, —1)|1,1) — |1, —1)|1,1)|1,0)
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Soln: There are just three of these product states to consider because there are just three places
to put the single minus sign. The sum of these states is obviously totally symmetric:

1
¥) = %(I+>I+>|—> + [+ [S)H)1)

Three other totally symmetric state are clearly |+)|+)|+) and what you get from this ket and the
one given by everywhere interchanging + and —. These four kets are the kets |3, m).

A totally antisymmetric state would have to be constructed from the same three basis kets used

above, so we write it as

[¥') = al+)|H)=) + 0l H) =) +) + | =)+ +)
On swapping the spins of the first and the third particles, the first and third kets would interchange,
and this would have to generate a change of sign. So a = —c and b = 0. Similarly, by swapping the
spins on the first and second particles, we can show that a = 0. Hence |¢)) = 0, and we have shown
that no nonzero ket has the required symmetry.

States that satisfy the exchange principle can be constructed by multiplying a spatial wave-
function that is totally antisymmetric in its arguments by a totally symmetric spin function. Such
states have maximum total spin. In contrast to the situation with helium, conforming states can-
not be analogously constructed by multiplying a symmetric wavefunction by an antisymmetric spin
function.

11.11* In this problem we use the variational principle to estimate the energies of the singlet and
triplet states 1s2s of helium by refining the working of Appendix K.

The idea is to use as the trial wavefunction symmetrised products of the 1s and 2s hydrogenic
wavefunctions (Table 8.1) with the scale length az replaced by ay in the 1s wavefunction and by a
different length as in the 2s wavefunction. Explain physically why with this choice of wavefunction
we expect (H) to be minimised with ay ~ 0.5a¢ but ay distinctly larger.

Using the scaling properties of the expectation values of the kinetic-energy and potential-energy
operators, show that

a3  4dao a? ag
Hy=¢-9- 24+ 2 124D +E R
(H) {a% ” + 12 a + 2a0(D(a1, az) (al,az))} ;

where D and E are the direct and exchange integrals.

Show that the direct integral can be written
2 /°° 1
D== drz?e ™" —{8 — (8 + 6y + 2y* +y*)e ¥},
) 4y{ (8 +6y+2y* +y°)e ¥}

where x = r1/a; and y = r1/as. Hence show that with « = 1 + 2az/a; we have

1 a2 [ 4 6 6 12
p=—d1-2(2 > 0 =)
al{ a? (a2+a3+a4+a5>}

Show that with y = 1 /ae and p = ary/2as the exchange integral is

\/2 *
(raz)o? dxq W (x1) W (x1)

1 9 3 pray/2 2 2 poo
x {— <ﬂ> / dp (p* = p*Ja)e™ + (ﬂ) / dp(p — p2/a)ep}-
71 « 0 « ay/2

b
[ a0 = ) = (1= 22+ 204 ) = 1Y,

E =

Using

and ,
[ ot e = ({1 - 21+ p) - 2)e L
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show that

=
|

2 > 2 " —ary/2a
—m‘/o dmﬁ(l—le)e 1/2a2

AR () P 210 - D ey + e -ttt ]

2a2

+(22) (- 2+ don) — detre )

@

2

(20,
aday a o«

Using the above results, show numerically that the minimum of (H) occurs near a; = 0.5a¢ and
as = 0.8aq in both the singlet and triplet cases. Show that for the triplet the minimum is —60.11 eV
and for the singlet it is —57.0eV. Compare these results with the experimental values and the values
obtained in Appendix K.

Soln: We'd expect the 2s electron to see a smaller nuclear charge than the 1s electron and therefore
to have a longer scale length since the latter scales inversely with the nuclear charge.

The 1s orbit taken on its own has K = (ap/a1)?R because the kinetic energy is R for hydrogen
and it is proportional to the inverse square of the wavefunction’s scale length. The 1s potential
energy is W = —4(ag/a1)R because in hydrogen it is —2R, and it’s proportional to the nuclear
charge and to the inverse of the wavefunction’s scale length. Similarly, the 2s orbit taken on its
own has K = 1(ag/a2)*R and W = —(ag/az2)R, both just § of the 1s values from the 1/n? in the
Rydberg formula. The electron-electron energies are (D + E)2agR because R = e?/8megag. The
required expression for (H) now follows.

When the scale length az is relabelled a; where it relates to the 1s electron and is relabelled aq
where it relates to the 2s electron, equation (K.2) remains valid with p redefined to p = r3/as and z
replaced by y = 11 /as. With these definitions the first line of equation (K.2) remains valid and the
second line becomes

2 > 1
D=2 dza®e ™ — {8 — (8+6y+2y° +y’)e ¥}
az Jo 4y
] . . 9 (11.5)
= —{8/ dorle 2 — / dz $—2(8y +6y° +2y° + y4)e_(21+y)}
2az 0 Y 0 Y
Now z/y = az/a; and fooo dyye= = o~ (" n! so with o = 1 + 2as/a; we have
1 378 6 2 1
D=—1{222_ 22(° 4 0 o1y Z314 g
2a2 |"a;  a$ \ a2 a3 ot ab
(11.6)
Af, @A, 6 6 1
T a2 \a?2 o ot o
which agrees with equation (K.2) when a; = as = az as it should.
Equation (K.3) for the exchange integral becomes
1 3 O 0
B = NCTSEE /d x1 Wig(x1) Wa(x1)
(11.7)

X /dT2d92 T%(l — 7d2/2a2) sin 926*0”2/2(12 |
\/|T% + 12 — 27179 cos o]
After integrating over 0 as in Box 11.1, we have

2 .
o (WVW / oy WO (1) WGy (1)

™1 2 o0
X {/ d?‘g T—Q (1 — 2) e—ar2/2a2 +/ dT‘Q T2 (1 — T—2) e_ar2/2a2}
0 T1 20,2 1 2&2
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With y = r1 /a2 and p = ary/2as

E= (alc\jﬁ/d%‘l W5 (1) W5y (x1)
ao\ > [ov/? as\2 [
) [ (2 -]

Now

b

[ 0~ ) = ~{(1- D)2+ 204 %)~ 25,

and ,

[ a0t =) = <1 = 20+ ) - 2otk
Thus

g V2

W/d%q W (1)WY (x1)

T1 [
+( 32) - )+ Jay) ~ e}
_ 2 2 1 —ary/2az
= 7(a1a2)3/d7‘1 1 ( )
1 (2a2\° W
L (22) 20— - {0 - D+ ay+ Fa) - datyle ]

1 «
2a 2
n (—) [ = 2)(1 + lay) iaﬁ}e%”}

Simplifying further

a?azal

(i> [2(1 - %)e_‘"y/2 —{1-2)2+ay+1a%?) — %a2y3} e_o‘y}
(1= 2)(1+ o)~ Jarhe)

Now let’s collect terms with factors
8a2 [ o 8a2 n! n+1
23/0 dy(l——)ye V= 2 <1— >

a?a3 a?a$ antl 20
The two terms with n = 4 cancel. The coeflicient of the remaining terms are
n=3 : (1-2)la-(1-3)ia=13
n=2 : (1-2)-(1-2)2=2-1
n=1 : —(1-2)2

The final contribution to E is
8&% 4 3 1 —ay/2 8@% 4 3 2 2 9
8a% 16

= o 1-a) (1-3)

3
a“ay &
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Figure 11.4 Estimates of the energy in electron volts of the 1s2s triplet excited state of helium. The estimates
are obtained by taking the expectation of the Hamiltonian using anti-symmetrised products of 1s and 2s hydrogenic
wavefunctions that have scale lengths a1 and a2, respectively.

our final result is

8a3 [16 3 2 3y4 1 2 4 2 3 1 6 4
E:ag—ai,{g(l—a)(1—a)—(1—a)am(l—%)+(a—1)g(1—%)+§g(1—z)
8a2
~ M 60202 40 D0 D (- De- D)
8a3 50 66
=% (g2 4 22
a5a‘;’< a +a2>’

which when a1 = as = az agrees with equation (K.4) as it should.

Figure 11.4 shows (H) for the triplet state as a function of a; and as. The surface has its
minimum —60.11eV at a3 = 0.50ag, as = 0.82a9. As expected, this minimum is deeper than our
estimate —57.8eV from perturbation theory, and it occurs when aq is significantly greater than
0.5ag. It is closer to the experimental value, —59.2 eV, than the estimate from perturbation theory.
A variational value is guaranteed to be larger than the experimental value only for the ground state,
and our variational value for the first excited state lies below rather than above the experimental
value. The variational estimate of the singlet 1s2s state’s energy is —57.0eV, which lies between the
values from experiment (—58.4€eV) and perturbation theory (—55.4eV).



