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Introduction to Quantum Mechanics MT 2011

Problems 1 (weeks 5-6 of MT)

1.1 What physical phenomenon requires us to work with probability amplitudes rather than just
with probabilities, as in other fields of endeavour?

1.2 What properties cause complete sets of amplitudes to constitute the elements of a vector space?

1.3 V ′ is the adjoint space of the vector space V . For a mathematician, what objects comprise
V ′?

1.4 In quantum mechanics, what objects are the members of the vector space V ? Give an example
for the case of quantum mechanics of a member of the adjoint space V ′ and explain how members
of V ′ enable us to predict the outcomes of experiments.

1.5 Given that |ψ〉 = eiπ/5|a〉+ eiπ/4|b〉, express 〈ψ| as a linear combination of 〈a| and 〈b|.
1.6 What properties characterise the bra 〈a| that is associated with the ket |a〉?
1.7 An electron can be in one of two potential wells that are so close that it can “tunnel” from
one to the other (see §5.2 for a description of quantum-mechanical tunnelling). Its state vector can
be written

|ψ〉 = a|A〉+ b|B〉, (1.1)

where |A〉 is the state of being in the first well and |B〉 is the state of being in the second well and all
kets are correctly normalised. What is the probability of finding the particle in the first well given
that: (a) a = i/2; (b) b = eiπ; (c) b = 1

3 + i/
√
2?

1.8 An electron can “tunnel” between potential wells that form a chain, so its state vector can be
written

|ψ〉 =
∞
∑

−∞
an|n〉, (1.2a)

where |n〉 is the state of being in the nth well, where n increases from left to right. Let

an =
1√
2

(−i

3

)|n|/2
einπ. (1.2b)

a. What is the probability of finding the electron in the nth well?
b. What is the probability of finding the electron in well 0 or anywhere to the right of it?

1.9 How is a wave-function ψ(x) written in Dirac’s notation? What’s the physical significance of
the complex number ψ(x) for given x?

1.10 Let Q be an operator. Under what circumstances is the complex number 〈a|Q|b〉 equal to
the complex number (〈b|Q|a〉)∗ for any states |a〉 and |b〉?
1.11 Let Q be the operator of an observable and let |ψ〉 be the state of our system.
a. What are the physical interpretations of 〈ψ|Q|ψ〉 and |〈qn|ψ〉|2, where |qn〉 is the nth eigenket

of the observable Q and qn is the corresponding eigenvalue?
b. What is the operator

∑

n |qn〉〈qn|, where the sum is over all eigenkets of Q? What is the
operator

∑

n qn|qn〉〈qn|?
c. If un(x) is the wavefunction of the state |qn〉, write dow an integral that evaluates to 〈qn|ψ〉.

1.12 What does it mean to say that two operators commute? What is the significance of two
observables having mutually commuting operators?

Given that the commutator [P,Q] 6= 0 for some observables P and Q, does it follow that for all
|ψ〉 6= 0 we have [P,Q]|ψ〉 6= 0?

1.13 Let ψ(x, t) be the correctly normalised wavefunction of a particle of mass m and potential
energy V (x). Write down expressions for the expectation values of (a) x; (b) x2; (c) the momentum
px; (d) p

2
x; (e) the energy.

What is the probability that the particle will be found in the interval (x1, x2)?
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1.14 A system has a time-independent Hamiltonian that has spectrum {En}. Prove that the
probability Pk that a measurement of energy will yield the value Ek is is time-independent. Hint:
you can do this either from Ehrenfest’s theorem, or by differentiating 〈Ek, t|ψ〉 w.r.t. t and using
the tdse.

1.15 A particle moves in the potential V (x) and is known to have energy En. (a) Can it have well
defined momentum for some particular V (x)? (b) Can the particle simultaneously have well-defined
energy and position?

1.16 The states {|1〉, |2〉} form a complete orthonormal set of states for a two-state system. With
respect to these basis states the operator σy has matrix

σy =

(

0 −i
i 0

)

. (1.3)

Could σ be an observable? What are its eigenvalues and eigenvectors in the {|1〉, |2〉} basis? Deter-
mine the result of operating with σy on the state

|ψ〉 = 1√
2
(|1〉 − |2〉). (1.4)

1.17 Prove for any four operators A,B,C,D that

[ABC,D] = AB[C,D] + A[B,D]C + [A,D]BC. (1.5)

Explain the similarity with the rule for differentiating a product.

1.18 Show that a classical harmonic oscillator satisfies the virial equation 2〈KE〉 = α〈PE〉 and
determine the relevant value of α.

1.19 Given that the wavefunction is ψ = Aei(kz−ωt) +Be−i(kz+ωt), where A and B are constants,
show that the probability current density is

J = v
(

|A|2 − |B|2
)

ẑ, (1.6)

where v = h̄k/m. Interpret the result physically.
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Problems 2 (Weeks 7–8)

2.1 Write down the time-independent (tise) and the time-dependent (tdse) Schrödinger equa-
tions. Is it necessary for the wavefunction of a system to satisfy the tdse? Under what circumstances
does the wavefunction of a system satisfy the tise?

2.2 Why is the tdse first-order in time, rather than second-order like Newton’s equations of
motion?

2.3 A particle is confined in a potential well such that its allowed energies are En = n2E , where
n = 1, 2, . . . is an integer and E a positive constant. The corresponding energy eigenstates are |1〉, |2〉,
. . . , |n〉, . . .. At t = 0 the particle is in the state

|ψ(0)〉 = 0.2|1〉+ 0.3|2〉+ 0.4|3〉+ 0.843|4〉. (2.1)

a. What is the probability, if the energy is measured at t = 0 of finding a number smaller than
6E?

b. What is the mean value and what is the rms deviation of the energy of the particle in the state
|ψ(0)〉?

c. Calculate the state vector |ψ〉 at time t. Do the results found in (a) and (b) for time t remain
valid for arbitrary time t?

d. When the energy is measured it turns out to be 16E . After the measurement, what is the state
of the system? What result is obtained if the energy is measured again?

2.4 Let ψ(x) be a properly normalised wavefunction and Q an operator on wavefunctions. Let
{qr} be the spectrum of Q and {ur(x)} be the corresponding correctly normalised eigenfunctions.
Write down an expression for the probability that a measurement of Q will yield the value qr. Show
that

∑

r P (qr|ψ) = 1. Show further that the expectation of Q is 〈Q〉 ≡
∫∞
−∞ ψ∗Q̂ψ dx.1

2.5 Find the energy of neutron, electron and electromagnetic waves of wavelength 0.1 nm.

2.6 Neutrons are emitted from an atomic pile with a Maxwellian distribution of velocities for
temperature 400K. Find the most probable de Broglie wavelength in the beam.

2.7 A beam of neutrons with energy E runs horizontally into a crystal. The crystal transmits
half the neutrons and deflects the other half vertically upwards. After climbing to height H these
neutrons are deflected through 90◦ onto a horizontal path parallel to the originally transmitted beam.
The two horizontal beams now move a distance L down the laboratory, one distance H above the
other. After going distance L, the lower beam is deflected vertically upwards and is finally deflected
into the path of the upper beam such that the two beams are co-spatial as they enter the detector.
Given that particles in both the lower and upper beams are in states of well-defined momentum,
show that the wavenumbers k, k′ of the lower and upper beams are related by

k′ ≃ k

(

1− mngH

2E

)

. (2.2)

In an actual experiment (R. Colella et al., 1975, Phys. Rev. Let., 34, 1472) E = 0.042 eV and
LH ∼ 10−3m2 (the actual geometry was slightly different). Determine the phase difference between
the two beams at the detector. Sketch the intensity in the detector as a function of H .

2.8 A three-state system has a complete orthonormal set of states |1〉, |2〉, |3〉. With respect to this
basis the operators H and B have matrices

H = h̄ω





1 0 0
0 −1 0
0 0 −1



 B = b





1 0 0
0 0 1
0 1 0



 , (2.3)

where ω and b are real constants.
a. Are H and B Hermitian?
b. Write down the eigenvalues of H and find the eigenvalues of B. Solve for the eigenvectors of

both H and B. Explain why neither matrix uniquely specifies its eigenvectors.
c. Show that H and B commute. Give a basis of eigenvectors common to H and B.

1 In the most elegant formulation of qantum mechanics, this last result is the basic postulate of the theory, and

one derives other rules for the physical interpretation of the qn, an etc. from it – see J. von Neumann, Mathematical

Foundations of Quantum Mechanics.
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2.9 Given that A and B are Hermitian operators, show that i[A,B] is a Hermitian operator.

2.10 Given a ordinary function f(x) and an operator R, the operator f(R) is defined to be

f(R) =
∑

i

f(ri)|ri〉〈ri|, (2.4)

where ri are the eigenvalues of R and |ri〉 are the associated eigenkets. Show that when f(x) = x2

this definition implies that f(R) = RR, that is, that operating with f(R) is equivalent to applying
the operator R twice. What bearing does this result have in the meaning of eR?

2.11 Show that if there is a complete set of mutual eigenkets of the Hermitian operators A and B,
then [A,B] = 0. Explain the physical significance of this result.

2.12 Given that for any two operators (AB)† = B†A†, show that

(ABCD)† = D†C†B†A†. (2.5)



Oxford Physics Prof J Binney

Introduction to Quantum Mechanics MT 2011

Problems 3 (Christmas vacation)

3.1 After choosing units in which everything, including h̄ = 1, the Hamiltonian of a harmonic
oscillator may be written H = 1

2 (p
2 + x2), where [x, p] = i. Show that if |ψ〉 is a ket that satisfies

H |ψ〉 = E|ψ〉, then
1
2 (p

2 + x2)(x∓ ip)|ψ〉 = (E ± 1)(x∓ ip)|ψ〉. (3.1)

Explain how this algebra enables one to determine the energy eigenvalues of a harmonic oscillator.

3.2 Given that A|En〉 = α|En−1〉 and En = (n + 1
2 )h̄ω, where the annihilation operator of the

harmonic oscillator is

A ≡ mωx+ ip√
2mh̄ω

, (3.2)

show that α =
√
n. Hint: consider |A|En〉|2.

3.3 The pendulum of a grandfather clock has a period of 1 s and makes excursions of 3 cm either
side of dead centre. Given that the bob weighs 0.2 kg, around what value of n would you expect its
non-negligible quantum amplitudes to cluster?

3.4 Show that the minimum value of E(p, x) ≡ p2/2m+ 1
2mω

2x2 with respect to the real numbers

p, x when they are constrained to satisfy xp = 1
2 h̄, is

1
2 h̄ω. Explain the physical significance of this

result.

3.5 How many nodes are there in the wavefunction 〈x|n〉 of the nth excited state of a harmonic
oscillator?

3.6 Show for a harmonic oscillator that the wavefunction of the second excited state is 〈x|2〉 =

constant × (x2/ℓ2 − 1)e−x2/4ℓ2 , where ℓ ≡
√

h̄
2mω , and find the normalising constant. Hint: apply

A† to |0〉 twice in the position representation.

3.7 Use

x =

√

h̄

2mω
(A+A†) = ℓ(A+A†) (3.3)

to show for a harmonic oscillator that in the energy representation the operator x is

xjk = ℓ































0
√
1 0 0 . . .√

1 0
√
2 0

0
√
2 0

√
3 · · ·√

3 . . .
. . . . . . . . . . . .

. . . 0
√
n− 1 . . .√

n− 1 0
√
n√

n 0
√
n+ 1 · · ·√

n+ 1 0
· · · · · · · · · · · · · · ·































(3.4)

Calculate the same entries for the matrix pjk.

3.8 At t = 0 the state of a harmonic oscillator of mass m and frequency ω is

|ψ〉 = 1
2 |N − 1〉+ 1√

2 |N〉+ 1
2 |N + 1〉. (3.5)

Calculate the expectation value of x as a function of time and interpret your result physically in as
much detail as you can.

3.9∗ In terms of the usual ladder operators A, A†, a Hamiltonian can be written

H = µA†A+ λ(A +A†). (3.6)

What restrictions on the values of the numbers µ and λ follow from the requirement for H to be
Hermitian?

Show that for a suitably chosen operator B, H can be rewritten

H = µB†B + constant. (3.7)

where [B,B†] = 1. Hence determine the spectrum of H .
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Problems 4 (Weeks 1–2)

4.1 A particle is confined by the potential well

V (x) =
{

0 for |x| < a
∞ otherwise.

(4.1)

Explain (a) why we can assume that there is a complete set of stationary states with well-defined
parity and (b) why to find the stationary states we solve the tise subject to the boundary condition
ψ(±a) = 0.

Determine the particle’s energy spectrum and give the wavefunctions of the first two stationary
states.

4.2 At t = 0 the particle of Problem 4.1 has the wavefunction

ψ(x) =

{

1/
√
2a for |x| < a

0 otherwise.
(4.2)

Find the probabilities that a measurement of its energy will yield: (a) 9h̄2π2/(8ma2); (b) 16h̄2π2/(8ma2).

4.3 Find the probability distribution of measuring momentum p for the particle described in Prob-
lem 4.2. Sketch and comment on your distribution. Hint: express 〈p|x〉 in the position representation.

4.4 Particles move in the potential

V (x) =

{

0 for x < 0
V0 for x > 0.

(4.3)

Particles of mass m and energy E > V0 are incident from x = −∞. Show that the probability that
a particle is reflected is

(

k −K

k +K

)2

, (4.4)

where k ≡
√
2mE/h̄ and K ≡

√

2m(E − V0)/h̄. Show directly from the tise that the probability
of transmission is

4kK

(k +K)2
(4.5)

and check that the flux of particles moving away from the origin is equal to the incident particle
flux.

4.5 Show that the energies of bound, odd-parity stationary states of the square potential well

V (x) =

{

0 for |x| < a
V0 > 0 otherwise,

(4.6)

are governed by

cot(ka) = −
√

W 2

(ka)2
− 1 where W ≡

√

2mV0a2

h̄2
and k2 = 2mE/h̄2. (4.7)

Show that for a bound odd-parity state to exist, we require W > π/2.

4.6 Give an example of a potential in which there is a complete set of bound stationary states of
well-defined parity, and an alternative complete set of bound stationary states that are not eigenkets
of the parity operator. Hint: modify the potential discussed apropos NH3.
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Figure 4.0 A triangle for Prob-

lem 5.10

4.7 A free particle of energy E approaches a square, one-dimensional potential well of depth V0
and width 2a. Show that the probability of being reflected by the well vanishes when Ka = nπ/2,
where n is an integer and K = (2m(E + V0)/h̄

2)1/2. Explain this phenomenon in physical terms.

4.8 Show that the phase shifts φ (for the even-parity stationary state) and φ′ (for the odd-parity
state) that are associated with scattering by a classically allowed region of potential V0 and width
2a, satisfy

tan(ka+ φ) = −(k/K) cot(Ka) and tan(ka+ φ′) = (k/K) tan(Ka),

where k and K are, respectively, the wavenumbers at infinity and in the scattering potential. Show
that

Prefl = cos2(φ′ − φ) =
(K/k − k/K)2 sin2(2Ka)

(K/k + k/K)2 sin2(2Ka) + 4 cos2(2Ka)
. (4.8)

Hint: apply the cosine rule for an angle in a triangle in terms of the lengths of the triangle’s sides
to the top triangle in Figure 4.0.

4.9 A particle of energy E approaches from x < 0 a barrier in which the potential energy is
V (x) = Vδδ(x). Show that the probability of its passing the barrier is

Ptun =
1

1 + (K/2k)2
where k =

√

2mE

h̄2
, K =

2mVδ

h̄2
. (4.9)

4.10 A system AB consists of two non-interacting parts A and B. The dynamical state of A is
described by |a〉, and that of B by |b〉, so |a〉 satisfies the tdse for A and similarly for |b〉. What
is the ket describing the dynamical state of AB? In terms of the Hamiltonians HA and HB of the
subsystems, write down the tdse for the evolution of this ket and show that it is automatically
satisfied. Do HA and HB commute? How is the tdse changed when the subsystems are coupled
by a small dynamical interaction Hint? If A and B are harmonic oscillators, write down HA, HB.
The oscillating particles are connected by a weak spring. Write down the appropriate form of the
interaction Hamiltonian Hint. Does HA commute with Hint? Explain the physical significance of
your answer.

4.11 Explain what is implied by the statement that “the physical state of system A is correlated
with the state of system B.” Illustrate your answer by considering the momenta of cars on (i) the
M25 at rush-hour, and (ii) the road over the Nullarbor Plain in southern Australia in the dead of
night.

Explain why the states of A and B must be uncorrelated if it is possible to write the state of
AB as a ket |AB;ψ〉 = |A;ψ1〉|B;ψ2〉 that is a product of states of A and B. Given a complete set
of states for A, {|A; i〉} and a corresponding complete set of states for B, {|B; i〉}, write down an
expression for a state of AB in which B is possibly correlated with A.

4.12 Consider a system of two particles of mass m that each move in one dimension along a given
rod. Let |1;x〉 be the state of the first particle when it’s at x and |2; y〉 be the state of the second
particle when it’s at y. A complete set of states of the pair of particles is {|xy〉} = {|1;x〉|2; y〉}.
Write down the Hamiltonian of this system given that the particles attract one another with a force
that’s equal to C times their separation.

Suppose the particles experience an additional potential

V (x, y) = 1
2C(x + y)2. (4.10)

Show that the dynamics of the two particles is now identical with the dynamics of a single particle
that moves in two dimensions in a particular potential Φ(x, y), and give the form of Φ.
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4.13 In §6.1.4 we derived Bell’s inequality by considering measurements by Alice and Bob on an
entangled electron-positron pair. Bob measures the component of spin along an axis that is inclined
by angle θ to that used by Alice. Given the expression

|−,b〉 = cos(θ/2) eiφ/2|−〉 − sin(θ/2) e−iφ/2|+〉, (4.11)

for the state of a spin-half particle in which it has spin − 1
2 along the direction b with polar angles

(θ, φ), with |±〉 the states in which there is spin ± 1
2 along the z-axis, calculate the amplitude

AB(−|A+) that Bob finds the positron’s spin to be − 1
2 given that Alice has found + 1

2 for the
electron’s spin. Hence show that PB(−|A+) = cos2(θ/2).
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Problems 5 (week 3)

5.1 Show that Li commutes with x · p and thus also with scalar functions of x and p.

5.2 In the rotation spectrum of 12C16O the line arising from the transition l = 4 → 3 is at
461.04077GHz, while that arising from l = 36 → 35 is at 4115.6055GHz. Show from these data that
in a non-rotating CO molecule the intra-nuclear distance is s ≃ 0.113 nm, and that the electrons
provide a spring between the nuclei that has force constant ∼ 1904Nm−1. Hence show that the
vibrational frequency of CO should lie near 6.47× 1013Hz (measured value is 6.43× 1013Hz). Hint:
show from classical mechanics that the distance of O from the centre of mass is 3

7s and that the

molecule’s moment of inertia is 48
7 mps

2. Recall also the classical relation L = Iω.

5.3 The angular part of a system’s wavefunction is

〈θ, φ|ψ〉 ∝ (
√
2 cos θ + sin θe−iφ − sin θeiφ).

What are the possible results of measurement of (a) L2, and (b) Lz, and their probabilities? What
is the expectation value of Lz?

5.4 A system’s wavefunction is proportional to sin2 θ e2iφ. What are the possible results of mea-
surements of (a) Lz and (b) L2?

5.5 A system’s wavefunction is proportional to sin2 θ. What are the possible results of measure-
ments of (a) Lz and (b) L2? Give the probabilities of each possible outcome.

5.6 Show that Li commutes with x · p and thus also with scalar functions of x and p.

5.7 Let n be the unit vector in the direction with polar coordinates (θ, φ). Write down the matrix n·
σ and find its eigenvectors. Hence show that the state of a spin-half particle in which a measurement
of the component of spin along n is certain to yield 1

2 h̄ is

|+,n〉 = sin(θ/2) eiφ/2|−〉+ cos(θ/2) e−iφ/2|+〉, (5.1)

where |±〉 are the states in which ± 1
2 is obtained when sz is measured. Obtain the corresponding

expression for |−,n〉. Explain physically why the amplitudes in (5.1) have modulus 2−1/2 when
θ = π/2 and why one of the amplitudes vanishes when θ = π.

5.8 Justify physically the claim that the Hamiltonian of a particle that precesses in a magnetic
field B can be written

H = −2µs ·B. (5.2)

In a coordinate system oriented such that the z axis is parallel to B, a proton is initially in the
eigenstate |+, x〉 of sx. Obtain expressions for the expectation values of sx and sy at later times.
Explain the physical content of your expressions.

Bearing in mind that a rotating magnetic field must be a source of radiation, do you expect
your expressions to remain valid to arbitrarily late times? What really happens in the long run?

5.9 Write down the 3× 3 matrix that represents Sx for a spin-one system in the basis in which Sz

is diagonal (i.e., the basis states are |0〉 and |±〉 with Sz|+〉 = |+〉, etc.)
A beam of spin-one particles emerges from an oven and enters a Stern–Gerlach filter that passes

only particles with Jz = h̄. On exiting this filter, the beam enters a second filter that passes only
particles with Jx = h̄, and then finally it encounters a filter that passes only particles with Jz = −h̄.
What fraction of the particles stagger right through?

5.10 A box containing two spin-one gyros A and B is found to have angular-momentum quantum
numbers j = 2, m = 1. Determine the probabilities that when Jz is measured for gyro A, the values
m = ±1 and 0 will be obtained.

What is the value of the Clebsch–Gordan coefficient C(2, 1; 1, 1, 1, 0)?
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5.11 The angular momentum of a hydrogen atom in its ground state is entirely due to the spins of
the electron and proton. The atom is in the state |1, 0〉 in which it has one unit of angular momentum
but none of it is parallel to the z-axis. Express this state as a linear combination of products of the
spin states |±, e〉 and |±, p〉 of the proton and electron. Show that the states |x±, e〉 in which the
electron has well-defined spin along the x-axis are

|x±, e〉 = 1√
2
(|+, e〉 ± |−, e〉) . (5.3)

By writing
|1, 0〉 = |x+, e〉〈x+, e|1, 0〉+ |x−, e〉〈x−, e|1, 0〉, (5.4)

express |1, 0〉 as a linear combination of the products |x±, e〉|x±, p〉. Explain the physical significance
of your result.
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Problems 6 (weeks 4–5)

6.1 Some things about hydrogen’s gross structure that it’s important to know (ignore spin through-
out):
a) What quantum numbers characterise stationary states of hydrogen?
b) What combinations of values of these numbers are permitted?
c) Give the formula for the energy of a stationary state in terms of the Rydberg R. What is the

value of R in eV?
d) How many stationary states are there in the first excited level and in the second excited level?
e) What is the wavefunction of the ground state?
f) Write down an expression for the mass of the reduced particle.
g) We can apply hydrogenic formulae to any two charged particles that are electrostatically bound.

How does the ground-state energy then scale with (i) the mass of the reduced particle, and (ii)
the charge Ze on the nucleus? (iii) How does the radial scale of the system scale with Z?

6.2 In the Bohr atom, electrons move on classical circular orbits that have angular momenta lh̄,
where l = 1, 2, . . .. Show that the radius of the first Bohr orbit is a0 and that the model predicts the
correct energy spectrum. In fact the ground state of hydrogen has zero angular momentum. Why
did Bohr get correct answers from an incorrect hypothesis?

6.3 Show that the speed of a classical electron in the lowest Bohr orbit (Problem 6.2) is v = αc,
where α = e2/4πǫ0h̄c is the fine-structure constant. What is the corresponding speed for a hydrogen-
like Fe ion (atomic number Z = 26)?

6.4 Show that Bohr’s hypothesis (that a particle’s angular momentum must be an integer multiple
of h̄), when applied to the three-dimensional harmonic oscillator, predicts energy levels E = lh̄ω
with l = 1, 2, . . .. Is there an experiment that would falsify this prediction?

6.5 Show that the electric field experienced by an electron in the ground state of hydrogen is of
order 5× 1011Vm−1. Can comparable macroscopic fields be generated in the laboratory?

6.6 Positronium consists of an electron and a positron (both spin-half and of equal mass) in orbit
around one another. What are its energy levels? By what factor is a positronium atom bigger than
a hydrogen atom?

6.7 The emission spectrum of the He+ ion contains the Pickering series of spectral lines that is
analogous to the Lyman, Balmer and Paschen series in the spectrum of hydrogen.

Balmer i = 1, 2, . . . 0.456806 0.616682 0.690685 0.730884
Pickering i = 2, 4, . . . 0.456987 0.616933 0.690967 0.731183

The table gives the frequencies (in 1015Hz) of the first four lines of the Balmer series and the first
four even-numbered lines of the Pickering series. The frequencies of these lines in the Pickering series
are almost coincident with the frequencies of lines of the Balmer series. Explain this finding. Provide
a quantitative explanation of the small offset between these nearly coincident lines in terms of the
reduced mass of the electron in the two systems. (In 1896 E.C. Pickering identified the odd-numbered
lines in his series in the spectrum of the star ζ Puppis. Helium had yet to be discovered and he
believed that the lines were being produced by hydrogen. Naturally he confused the even-numbered
lines of his series with ordinary Balmer lines.)

6.8 Show that for hydrogen the matrix element 〈2, 0, 0|z|2, 1, 0〉 = −3a0. On account of the non-
zero value of this matrix element, when an electric field is applied to a hydrogen atom in its first
excited state, the atom’s energy is linear in the field strength (§9.1.2).
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Introduction to Quantum Mechanics HT 2010

Problems 7 (Easter vacation)

7.1∗ By expressing the annihilation operator A of the harmonic oscillator in the momentum rep-
resentation, obtain 〈p|0〉. Check that your expression agrees with that obtained from the Fourier
transform of

〈x|0〉 = 1

(2πℓ2)1/4
e−x2/4ℓ2 , where ℓ ≡

√

h̄

2mω
. (7.1)

7.2 Show that for any two N × N matrices A, B, trace([A,B]) = 0. Comment on this result in
the light of the results of Problem 3.7 and the canonical commutation relation [x, p] = ih̄.

7.3∗ A Fermi oscillator has Hamiltonian H = f †f , where f is an operator that satisfies

f2 = 0 ; ff † + f †f = 1. (7.2)

Show that H2 = H , and thus find the eigenvalues of H . If the ket |0〉 satisfies H |0〉 = 0 with
〈0|0〉 = 1, what are the kets (a) |a〉 ≡ f |0〉, and (b) |b〉 ≡ f †|0〉?

In quantum field theory the vacuum is pictured as an assembly of oscillators, one for each
possible value of the momentum of each particle type. A boson is an excitation of a harmonic
oscillator, while a fermion in an excitation of a Fermi oscillator. Explain the connection between
the spectrum of f †f and the Pauli principle.

7.4 In the time interval (t + δt, t) the Hamiltonian H of some system varies in such a way that
|H |ψ〉| remains finite. Show that under these circumstances |ψ〉 is a continuous function of time.

A harmonic oscillator with frequency ω is in its ground state when the stiffness of the spring
is instantaneously reduced by a factor f4 < 1, so its natural frequency becomes f2ω. What is the
probability that the oscillator is subsequently found to have energy 3

2 h̄f
2ω? Discuss the classical

analogue of this problem.

7.5∗ P is the probability that at the end of the experiment described in Problem 7.4, the oscillator
is in its second excited state. Show that when f = 1

2 , P = 0.144 as follows. First show that the
annihilation operator of the original oscillator

A = 1
2

{

(f−1 + f)A′ + (f−1 − f)A′†} , (7.3)

where A′ and A′† are the annihilation and creation operators of the final oscillator. Then writing
the ground-state ket of the original oscillator as a sum |0〉 =

∑

n cn|n′〉 over the energy eigenkets
of the final oscillator, impose the condition A|0〉 = 0. Finally use the normalisation of |0〉 and the
orthogonality of the |n′〉. What value do you get for the probability of the oscillator remaining in
the ground state?

Show that at the end of the experiment the expectation value of the energy is 0.2656h̄ω. Explain
physically why this is less than the original ground-state energy 1

2 h̄ω.
This example contains the physics behind the inflationary origin of the Universe: gravity ex-

plosively enlarges the vacuum, which is an infinite collection of harmonic oscillators (Problem 7.3).
Excitations of these oscillators correspond to elementary particles. Before inflation the vacuum is
unexcited so every oscillator is in its ground state. At the end of inflation, there is non-negligible
probability of many oscillators being excited and each excitation implies the existence of a newly
created particle.

7.6∗ Let B = cA + sA†, where c ≡ cosh θ, s ≡ sinh θ with θ a real constant and A, A† are the
usual ladder operators. Show that [B,B†] = 1.

Consider the Hamiltonian

H = ǫA†A+ 1
2λ(A

†A† +AA), (7.4)

where ǫ and λ are real and such that ǫ > λ > 0. Show that when

ǫc− λs = Ec ; λc− ǫs = Es (7.5)

with E a constant, [B,H ] = EB. Hence determine the spectrum of H in terms of ǫ and λ.
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7.7 Verify that [J,x · x] = 0 and [J,x · p] = 0 by using the commutation relations [xi, Jj ] =
i
∑

k ǫijkxk and [pi, Jj ] = i
∑

k ǫijkpk.

7.8∗ The matrix for rotating an ordinary vector by φ around the z axis is

R(φ) ≡





cosφ − sinφ 0
sinφ cosφ 0
0 0 1



 (7.6)

By considering the form taken by R for infinitesimal φ calculate from R the matrix JJz that appears
in R(φ) = exp(−iJJzφ). Introduce new coordinates u1 ≡ (−x+iy)/

√
2, u2 = z and u3 ≡ (x+iy)/

√
2.

Write down the matrix M that appears in u = M ·x [where x ≡ (x, y, z)] and show that it is unitary.
Then show that

JJ ′
z ≡ M · JJz ·M†. (7.7)

is identical with Sz in the set of spin-one Pauli analogues

Sx =
1√
2





0 1 0
1 0 1
0 1 0



 , Sy =
1√
2





0 −i 0
i 0 −i
0 i 0



 , Sz =





1 0 0
0 0 0
0 0 −1



 . (7.8)

Write down the matrix JJx whose exponential generates rotations around the x axis, calculate JJ ′
x

by analogy with equation (7.7) and check that your result agrees with Sx in the set (7.8). Explain
as fully as you can the meaning of these calculations.

7.9 Determine the commutator [JJ ′
x,JJ ′

z] of the generators used in Problem 7.8. Show that it is
equal to −iJJ ′

y, where JJ ′
y is identical with Sy in the set (7.8).

7.10∗ In this problem you derive the wavefunction

〈x|p〉 = eip·x/h̄ (7.9)

of a state of well defined momentum from the properties of the translation operator U(a). The state
|k〉 is one of well-defined momentum h̄k. How would you characterise the state |k′〉 ≡ U(a)|k〉? Show
that the wavefunctions of these states are related by uk′(x) = e−ia·kuk(x) and uk′(x) = uk(x − a).
Hence obtain equation (7.9).

7.11 An electron moves along an infinite chain of potential wells. For sufficiently low energies
we can assume that the set {|n〉} is complete, where |n〉 is the state of definitely being in the nth

well. By analogy with our analysis of the NH3 molecule we assume that for all n the only non-
vanishing matrix elements of the Hamiltonian are E ≡ 〈n|H |n〉 and A ≡ 〈n± 1|H |n〉. Give physical
interpretations of the numbers A and E .

Explain why we can write

H =

∞
∑

n=−∞
E|n〉〈n|+A (|n〉〈n+ 1|+ |n+ 1〉〈n|) . (7.10)

Writing an energy eigenket |E〉 = ∑

n an|n〉 show that

am(E − E)−A (am+1 + am−1) = 0. (7.11)

Obtain solutions of these equations in which am ∝ eikm and thus find the corresponding energies
Ek. Why is there an upper limit on the values of k that need be considered?

Initially the electron is in the state

|ψ〉 = 1√
2
(|Ek〉+ |Ek+∆〉) , (7.12)

where 0 < k ≪ 1 and 0 < ∆ ≪ k. Describe the electron’s subsequent motion in as much detail as
you can.
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7.12∗ In this problem you investigate the interaction of ammonia molecules with electromagnetic
waves in an ammonia maser. Let |+〉 be the state in which the N atom lies above the plane of the H
atoms and |−〉 be the state in which the N lies below the plane. Then when there is an oscillating
electric field E cosωt directed perpendicular to the plane of the hydrogen atoms, the Hamiltonian in
the |±〉 basis becomes

H =

(

E + qEs cosωt −A
−A E − qEs cosωt

)

. (7.13)

Transform this Hamiltonian from the |±〉 basis to the basis provided by the states of well-defined
parity |e〉 and |o〉 (where |e〉 = (|+〉+ |−〉)/√2, etc). Writing

|ψ〉 = ae(t)e
−iEet/h̄|e〉+ ao(t)e

−iEot/h̄|o〉, (7.14)

show that the equations of motion of the expansion coefficients are

dae
dt

= −iΩao(t)
(

ei(ω−ω0)t + e−i(ω+ω0)t
)

dao
dt

= −iΩae(t)
(

ei(ω+ω0)t + e−i(ω−ω0)t
)

,

(7.15)

where Ω ≡ qEs/2h̄ and ω0 = (Eo − Ee)/h̄. Explain why in the case of a maser the exponentials
involving ω + ω0 a can be neglected so the equations of motion become

dae
dt

= −iΩao(t)e
i(ω−ω0)t ;

dao
dt

= −iΩae(t)e
−i(ω−ω0)t. (7.16)

Solve the equations by multiplying the first equation by e−i(ω−ω0)t and differentiating the result.
Explain how the solution describes the decay of a population of molecules that are initially all in
the higher energy level. Compare your solution to the result of setting ω = ω0 in (7.16).

7.13 238U decays by α emission with a mean lifetime of 6.4Gyr. Take the nucleus to have a
diameter ∼ 10−14m and suppose that the α particle has been bouncing around within it at speed
∼ c/3. Modelling the potential barrier that confines the α particle to be a square one of height V0
and width 2a, give an order-of-magnitude estimate of W = (2mV0a

2/h̄2)1/2. Given that the energy
released by the decay is ∼ 4MeV and the atomic number of uranium is Z = 92, estimate the width
of the barrier through which the α particle has to tunnel. Hence give a very rough estimate of the
barrier’s typical height. Outline numerical work that would lead to an improved estimate of the
structure of the barrier.

7.14∗ Particles of mass m and momentum h̄k at x < −a move in the potential

V (x) = V0

{

0 for x < −a
1
2 [1 + sin(πx/2a)] for |x| < a
1 for x > a,

(7.17)

where V0 < h̄2k2/2m. Numerically reproduce the reflection probabilities plotted Figure 5.20 as
follows. Let ψi ≡ ψ(xj) be the value of the wavefunction at xj = j∆, where ∆ is a small increment
in the x coordinate. From the tise show that

ψj ≃ (2−∆2k2)ψj+1 − ψj+2, (7.18)

where k ≡
√

2m(E − V )/h̄. Determine ψj at the two grid points with the largest values of x from
a suitable boundary condition, and use the recurrence relation (7.18) to determine ψj at all other
grid points. By matching the values of ψ at the points with the smallest values of x to a sum of
sinusoidal waves, determine the probabilities required for the figure. Be sure to check the accuracy
of your code when V0 = 0, and in the general case explicitly check that your results are consistent
with equal fluxes of particles towards and away from the origin.

Equation (11.40) gives an analytical approximation for ψ in the case that there is negligible
reflection. Compute this approximate form of ψ and compare it with your numerical results for
larger values of a.
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7.15∗ We have that

L+ ≡ Lx + iLy = eiφ
( ∂

∂θ
+ i cot θ

∂

∂φ

)

. (7.19)

From the Hermitian nature of Lz = −i∂/∂φ we infer that derivative operators are anti-Hermitian.
So using the rule (AB)† = B†A† on equation (7.19), we infer that

L− ≡ L†
+ =

(

− ∂

∂θ
+ i

∂

∂φ
cot θ

)

e−iφ.

This argument and the result it leads to is wrong. Obtain the correct result by integrating by parts
∫

dθ sin θ
∫

dφ (f∗L+g), where f and g are arbitrary functions of θ and φ. What is the fallacy in
the given argument?

7.16∗ By writing h̄2L2 = (x× p) · (x× p) =
∑

ijklm ǫijkxjpk ǫilmxlpm show that

p2 =
h̄2L2

r2
+

1

r2
{

(r · p)2 − ih̄r · p
}

. (7.20)

By showing that p · r̂− r̂ · p = −2ih̄/r, obtain r · p = rpr + ih̄. Hence obtain

p2 = p2r +
h̄2L2

r2
. (7.21)

Give a physical interpretation of one over 2m times this equation.

7.17 A system that has total orbital angular momentum
√
6h̄ is rotated through an angle φ around

the z axis. Write down the 5× 5 matrix that updates the amplitudes am that Lz will take the value
m.

7.18 Write down the expression for the commutator [σi, σj ] of two Pauli matrices. Show that the
anticommutator of two Pauli matrices is

{σi, σj} = 2δij . (7.22)

7.19 Tritium, 3H, is highly radioactive and decays with a half-life of 12.3 years to 3He by the
emission of an electron from its nucleus. The electron departs with 16 keV of kinetic energy. Explain
why its departure can be treated as sudden in the sense that the electron of the original tritium
atom barely moves while the ejected electron leaves.

Calculate the probability that the newly-formed 3He atom is in an excited state. Hint: evaluate
〈1, 0, 0;Z = 2|1, 0, 0;Z = 1〉.
7.20∗ A spherical potential well is defined by

V (r) =

{

0 for r < a
V0 otherwise,

(7.23)

where V0 > 0. Consider a stationary state with angular-momentum quantum number l. By writing
the wavefunction ψ(x) = R(r)Ym

l (θ, φ) and using p2 = p2r + h̄2L2/r2, show that the state’s radial
wavefunction R(r) must satisfy

− h̄2

2m

(

d

dr
+

1

r

)2

R+
l(l + 1)h̄2

2mr2
R+ V (r)R = ER. (7.24)

Show that in terms of S(r) ≡ rR(r), this can be reduced to

d2S

dr2
− l(l+ 1)

S

r2
+

2m

h̄2
(E − V )S = 0. (7.25)

Assume that V0 > E > 0. For the case l = 0 write down solutions to this equation valid at (a) r < a
and (b) r > a. Ensure that R does not diverge at the origin. What conditions must S satisfy at
r = a? Show that these conditions can be simultaneously satisfied if and only if a solution can be
found to k cot ka = −K, where h̄2k2 = 2mE and h̄2K2 = 2m(V0 − E). Show graphically that the
equation can only be solved when

√
2mV0 a/h̄ > π/2. Compare this result with that obtained for

the corresponding one-dimensional potential well.
The deuteron is a bound state of a proton and a neutron with zero angular momentum. Assume

that the strong force that binds them produces a sharp potential step of height V0 at interparticle
distance a = 2 × 10−15m. Determine in MeV the minimum value of V0 for the deuteron to exist.
Hint: remember to consider the dynamics of the reduced particle.
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7.21∗ Given that the ladder operators for hydrogen satisfy

A†
lAl =

a20µ

h̄2
Hl +

Z2

2(l + 1)2
and [Al, A

†
l ] =

a20µ

h̄2
(Hl+1 −Hl), (7.26)

where Hl is the Hamiltonian for angular-momentum quantum number l, show that

AlA
†
l =

a20µ

h̄2
Hl+1 +

Z2

2(l + 1)2
. (7.27)

Given that AlHl = Hl+1Al, show that HlA
†
l = A†

lHl+1. Hence show that

A†
l |E, l + 1〉 = Z√

2

(

1

(l + 1)2
− 1

n2

)1/2

|E, l〉, (7.28)

where n is the principal quantum number. Explain the physical meaning of this equation and its
use in setting up the theory of the hydrogen atom.

7.22∗ From equation (8.46) show that l′+ 1
2 =

√

(l + 1
2 )

2 − β and that the increment ∆ in l′ when

l is increased by one satisfies ∆2 +∆(2l′ + 1) = 2(l + 1). By considering the amount by which the
solution of this equation changes when l′ changes from l as a result of β increasing from zero to a
small number, show that

∆ = 1 +
2β

4l2 − 1
+ O(β2). (7.29)

Explain the physical significance of this result.

7.23 Show that Ehrenfest’s theorem yields equation (8.70) with B = 0 as the classical equation of
motion of the vector S that is implied by the spin–orbit Hamiltonian (8.71).


