
II. COMPLEX DIFFERENTIATION

f : S→C

z = x+ iy; f(z) = u(x, y) + iv(x, y)

• complex differentiability is a far stronger condition than the condition

that u and v be differentiable as functions of real variables x and y

OUTLINE

♦ Differentiability in complex sense

♦ Cauchy-Riemann equations

♦ Holomorphic functions



f : S→C

⊲ f continuous at z0 ∈ S if

lim
z→z0

f(z) = f(z0)

⊲ f differentiable at z0 if

lim
z→z0

f(z)− f(z0)

z − z0
= lim

z→z0

∆f

∆z
exists

= f ′(z0) ≡
df

dz
(z0)

⊲ f holomorphic at z0 if there exists δ > 0 such that

f differentiable whenever |z − z0| < δ

• holomorphic = differentiable in an open set

Examples: Re z continuous but not differentiable; z2 holomorphic;

|z|2 differentiable at z = 0 but not holomorphic



CAUCHY-RIEMANN EQUATIONS

f = u+ iv is holomorphic on open set D ⊂ C if and only if

u, v are continuously differentiable and

∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −

∂u

∂y
(CR eqs.)

Prove ⇒ .

• Take first ∆z = ∆x.

f(z +∆z)− f(z)

∆z
=

u(x+∆x, y)− u(x, y)

∆x
+ i

v(x+∆x, y)− v(x, y)

∆x

∆x→0 ⇒ f ′(z) =
∂u

∂x
+ i

∂v

∂x
• Take next ∆z = i∆y. Similarly, you get

∆y→0 ⇒ f ′(z) =
∂v

∂y
− i

∂u

∂y

holomorphy ⇒ limits must be equal: ∂u/∂x = ∂v/∂y , ∂v/∂x = −∂u/∂y



Prove ⇐ .

• u and v continuously differentiable ⇒

u(x+∆x, y +∆y)− u(x, y) =
∂u

∂x
∆x+

∂u

∂y
∆y + η∆x+ η

′∆y

v(x+∆x, y +∆y)− v(x, y) =
∂v

∂x
∆x+

∂v

∂y
∆y + η1∆x+ η

′

1∆y

where η, η1 → 0 as ∆x → 0 and η′
, η′

1 → 0 as ∆y → 0. Then

f(z +∆z)− f(z) =

(
∂u

∂x
+ i

∂v

∂x

)

∆x+

(
∂u

∂y
+ i

∂v

∂y

)

∆y + (η + iη1)∆x+ (η′ + iη
′

1)∆y

• Using the Cauchy-Riemann equations gives

f(z +∆z)− f(z) =

(
∂u

∂x
+ i

∂v

∂x

)

(∆x+ i∆y) + (η + iη1)∆x+ (η′ + iη
′

1)∆y

• Dividing through by ∆z and taking the limit ∆z → 0

⇒ f
′(z) = lim

∆z→0

f(z +∆z)− f(z)

∆z
=

∂u

∂x
+ i

∂v

∂x



EXPRESSING CAUCHY-RIEMANN EQUATIONS IN TERMS OF ∂/∂z, ∂/∂z

f = u+ iv

♠ Using ∂ ≡
∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)

, ∂ ≡
∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)

,

Cauchy-Riemann equations can be recast in compact form as

∂f = 0

because ∂f =
1

2

(
∂

∂x
+ i

∂

∂y

)

(u+ iv) =
1

2

(
∂u

∂x
−

∂v

∂y

)

︸ ︷︷ ︸

=0 by CR

+
i

2

(
∂v

∂x
+

∂u

∂y

)

︸ ︷︷ ︸

=0 by CR

= 0 .

♠ The complex derivative is given by

f ′(z) = ∂f

because ∂f =
1

2

(
∂

∂x
− i

∂

∂y

)

(u+iv) =
1

2

(
∂u

∂x
+

∂v

∂y

)

︸ ︷︷ ︸

=2(∂u/∂x) by CR

+
i

2

(
∂v

∂x
−

∂u

∂y

)

︸ ︷︷ ︸

=2(∂v/∂x) by CR

=
∂u

∂x
+i

∂v

∂x
.



• Example. cos z = cos(x+ iy) is holomorphic on the entire C,
while cos z = cos(x− iy) is nowhere holomorphic.

Note

Holomorphic functions are independent of z: functions of z alone.

They are true functions of a complex variable,
not just complex functions of two real variables.



GEOMETRIC INTERPRETATION OF CAUCHY-RIEMANN EQUATIONS

f(z) = u(x, y) + iv(x, y)

f holomorphic ⇒

⇒ ∇u · ∇v =
∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y
= 0 by CR

v = const. 

x

y

u = const. 

♠ Cauchy-Riemann ⇒ level curves u(x, y) = const. and
v(x, y) = const. form orthogonal families of curves

• We will interpret this in the next lecture as a particular case
of a general property of holomorphic f : conformality.



SINGULAR POINTS

z = a is singular point of f if f is not holomorphic in a.

The singular point z = a is

• isolated if there exists a neighbourhood of a with no other singular points.

• a pole if 1/f is holomorphic in a neighbourhood of a and a is a zero of 1/f .

• an essential singularity if neither f nor 1/f are bounded in a neighbourhood of a.

Examples

f(z) = 1/z has a pole at z = 0;

f(z) = e1/z has an essential singularity at z = 0;

both cases above are isolated singular points.

f(z) = 1/ sin(1/z) has a non-isolated singularity at z = 0,

poles at z = 1/nπ, n = ±1,±2, . . .



entire f = holomorphic in the whole finite complex plane
meromorphic f = holomorphic in an open set except possibly for poles

Behaviour at z = ∞

The behaviour of f(z) at z = ∞ is by definition the behaviour of
g(ζ) ≡ f(1/ζ) at ζ = 0.

Example: f(z) = z2 has a pole at z = ∞
(because g(ζ) = 1/ζ2 has a pole at ζ = 0)

f(z) = e1/z is holomorphic at z = ∞
f(z) = 1/ sin(1/z) has a pole at z = ∞


